光合细菌生物膜制氢反应器传输与产氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界经济的发展强烈依赖于以化石燃料为主的能源供应,然而这些资源并非是取之不竭的。能源持续紧张,国际石油价格大幅振荡,不断攀升,能源短缺问题日益成为困扰社会和经济发展的首要问题,同时化石能源的开采和应用对环境造成了严重破坏,特别是产生的CO2引起的温室效应带来的极端和异常气候变化、氮氧化物和SO2带来的酸雨等问题严重地威胁着地球和人类的可持续发展。我国是一个能源资源相对贫乏的国家,特别是石油、天然气人均资源量仅为世界平均水平的7.7%和7.1%。因此开发可再生的生物能源对于促进可持续社会的发展具有重要意义。
     氢气在所有已知能源中具有最高的单位质量能量密度,并在通过电化学或者燃烧的能量转化过程中不释放危害环境的产物,因此成为最具潜力的清洁可再生能源。2007年4月国家颁布能源发展“十一五”规划更明确指出将氢能开发作为我国今后重点的前沿发展技术之一。目前广泛采用的传统制氢方法一方面仍消耗化石能源,另一方面对环境造成破坏。太阳辐射能是目前世界储量最大的可再生能源。采用光合细菌的光生物制氢技术反应条件温和,可以把太阳能利用与有机污染物降解耦合起来,完美解决了能源需求和环境保护之间的矛盾。
     采用细胞固定化技术实现连续化的产氢是光生物制氢付诸实际的基础。生物膜和包埋这两种细胞固定化方法已经应用于生物制氢的研究。采用该技术可提高制氢反应器单位体积内的生物量、反应器内细菌的环境耐受力、以及产氢速率和生物降解速率。然而包埋方法由于传质阻力大、透光性差以及机械强度差的缺点不利于反应器长期运行。本文采用生物膜细胞固定化技术,分别从提高反应器中的生物持有量、强化传质和提高光能转化效率出发,构造了微槽透光板式光生物制氢反应器、环流形光纤生物膜反应器和光纤束生物膜制氢反应器等三个能够高效连续产氢的新型光生物制氢反应器。实验研究了不同操作条件下上述光生物制氢反应器的产氢速率、底物消耗速率、产氢得率和光能转化效率等特性和变化规律。
     通过微槽透光板式光生物制氢反应器与普通平板生物膜光生物制氢反应器的对比实验发现,由于微槽道结构可以提高反应器的比表面积进而增加了反应器的生物持有量,同时微槽道的起伏结构又可以增加反应器主流区和生物膜区域之间的对流传质系数,底物和产物传输的增强使得生物膜区域可维持较好的微生态环境。另外微槽道还可以增强光照在生物膜区域的散射,从而提高该区域的光照均匀性,使得生物膜区域内的微生物具有更高的光能转化效率。在相同的实验条件下,微槽透光板式光生物制氢反应器的产氢速率、产氢得率系数和光能转化效率分别达到3.816 mmol/m2/h, 0.75 molH2/molglucose和3.8%,比普通平板反应器产氢速率提高约75%。微槽道的结构形式可以为生物膜方法光生物制氢反应器的载体改良提供参考。
     本文首次将生物膜细胞固定化技术与导光载体相结合构造了环流形光纤生物膜制氢反应器,用于解决目前光生物制氢反应器存在的实现细胞固定化和增强反应器导光性之间的矛盾。通过实验研究发现该反应器在入射光波长为530 nm光纤表面光强度为4.15 W/m2的条件下,反应器的光能转化效率和产氢速率得到显著提高,分别达到47.9 %和0.83 mmol/g cell/h。在实验研究的基础上建立了环流型光纤生物膜制氢反应器中底物传输与消耗的数学模型,分析了外界操作因素对该反应器内质量传递和底物降解的影响规律,理论预测值与实验值基本吻合。在此基础上构造的光纤束生物膜制氢反应器实现了反应器的内容积空间的充分利用并获得了反应器内均匀的光强分布。在模拟自然光照的实验条件下得到了当光照强度为5.1 W/m2时,反应器的产氢速率和光能转化效率分别达到0.6 mmol/L/h和3.64%。
     固定化技术是当今生物工程领域中的研究热点,但关于固定化细胞光生物制氢反应器中传输特性的研究还极少进行,本文的研究工作将促进对固定化细胞光生物制氢的传递及产氢的强化机理和规律的认识,解决固定化细胞技术中的传输限制性问题和光生物制氢反应器内光能利用率低、产氢率低等问题,为新型高效规模化光生物制氢反应器的开发和应用奠定基础,具有重要的学术价值和工程实际意义。
Economic growth in the last few decades was strongly dependant on fossil fuels as sources of energy, while these resources were not unlimited on a long view. Today absence of energy supply in the world remains in strain that lead to the always rising of international price of oil.The primary obstacle affecting the development of society and economy presently is the increasing shortage of energy resources. Meanwhile, the exploitation and application of fossil fuel brought seriously environmental problems, especially the resent worldwide‘greenhouse effect’attributed to an increasing concentration of carbon dioxide in the air due to combustion of fossil fuels, while the acid rain was ascribed to the emitted NOx and SO2. These pollutants disturbed the sustainable development of earth and human being. Compared with other country, there was less energy resources in Chinese. The storage amount per capita of oil and natural gas in our country is only 7.7% and 7.1% of word average level. So our requirement for new technologies to obtain sustainable and environmentally acceptable energy was more urgently.
     Hydrogen has the highest gravimetric energy density among any known fuel and is compatible with electrochemical and combustion processes for energy conversion without producing emissions that add to environmental pollution. Therefore, offers tremendous potential as clean, renewable energy supplyment. And in the 11th Five-Year Plan of energy resource promulgated the exploitation of hydrogen energy will become one of the important and advanced technologies needed to study. However, hydrogen production by conventional methods needed fossil energy consumption thus destroyed our living environment also. Solar energy is the most abundant one of various renewable energy sources. Its radiation provides the biggest flow of energy on the earth. Hydrogen production via biological process by photosynthetic bacteria can operate in moderate reaction condition that coupled with the organic contamination degradation and solar energy utilization, leading to a solution for the confliction of energy requirements and environment protection perfectly.
     It should be pointed out that one necessary premise of practical photobiological hydrogen production is to make the process operate continuously. Cell immobilization was the feasible technique to realize the continuous hydrogen production. A few studies on immobilized-cell techniques for biological hydrogen production had been carried out revealed that the reactor using cell immobilization technology ,gel entrapment and biofilm, could effectively increase the biomass amount in the unit bioreactor space, enhance the tolerance ability of the bacteria and increase the hydrogen production rate and bio-degradation rate. For gel entrapment, the main drawbacks were low hydrogen production rate, insufficient light supply, weak mechanical strength and poor stability for long-term operation. Immobilized-cell systems with biofilm formation were considered as suitable means for continuous and efficient hydrogen production. Measures on mass transfer enhancement, biomass immobilization increasing and light conversion efficiency improvement are motivations of present study. Three novel photobiological reactors of groove-type photobioreactor, annular fiber-illuminating biofilm photobioreactor and annular bundle of optical-fiber-illuminating photobioreactor were developed for continuous and efficient hydrogen production by immobilized PSB. The different performances with respect to hydrogen production rate, substrate consumption rate, hydrogen yield and light conversion efficiency of the photobioreactor were investigated and effects of different operation conditions on the performance of photobioreators were obtained also.
     Results of parallel experiments on groove-type photobioreactor and flat panel photobioreactor indicated that groove structure with large specific surface area was beneficial to cell immobilization and biofilm formation of the photosynthetic bacteria on photobioreactor surface to increase the amount of biomass in the bioreactor. The fluctuant structure could also enhance the convective mass transfer of the substrate from the bulk flow to the biofilm and metabolic production transfer from the biofilm to the bulk flow to attain a better microenvironment in biofilm zone. Moreover, the groove structure with a high surface-to-volume ratio offered a larger illumination area for the photobioreactor and this, in turn, leaded to even distribution of the light and less light attenuation in the biofilm zone, hence improved the light conversion efficiency. The maximum hydrogen production rate, H2 yield and light conversion efficiency in the groove-type photobioreactor were 3.816 mmol/m2/h, 0.75 molH2/molglucose and 3.8%, respectively, which were about 75% higher than those in the flat panel photobioreactor. The groove-type structure offered a reference about the improvement of the carrier within bioreactor for photobiological hydrogen production with biofilm technology.
     Our newly developed annular fiber-illuminating biofilm photobioreactor firstly solved the confliction of cell immobilization and light transfer enhancement in the study field of photobiological hydrogen production. A comprehensive investigation of operational conditions on the performance of AFIBR was carried out by a series experiments. A novel increasement of light conversion efficiency of 47.9% and hydrogen production rate of 0.83 mmol/g dry cell/h were attained by monochromatic light illumination at 530 nm and even light intensity distribution character of inside light source in AFIBR at 4.15 W/m2. A mathematic model on substrate transfer and degradation of AFIBR was built based on experimental results. It described effects of different operating conditions on characters of the AFIBR, model predictions were accordant with experimental results on the whole. The newly developed annular bundle of optical-fiber-illuminating photobioreactor based on the previous studies attained sufficient utilization of inner space and evenly light intensity distribution in the bioreactor. It achieved excellent hydrogen production rate (0.6 mmol/L/h) and light conversion efficiency (3.64%) under sunlight simulative conditions of 5.1 W/m2. These results have instructional effects on the study of efficient photobiological hydrogen production in large scale.
     So far, the cell immobilization technology has become positive in biotechnology, but there was few study on the transfer characteristics of immobilized PSB cells in the process of photobiological hydrogen production. Our researches, which would set a primitive effort for application of immobilized cells technology in bioenergy production to solve the problem of mass transfer limitation within immobilized cells, low light conversion efficiency and low hydrogen production rate of the bioprocess. These studies offered valuable referents on the research of efficient photobioreactor for continuous hydrogen production in large-scale, they could give necessary aidances for both therotical and practial studies in the future.
引文
[1] Toshihiko Nakata. Energy-economic models and the environment[J]. Progress in Energy and Combustion Science 2004,30:417–475.
    [2] Arif Hepbasli. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future[J]. Renewable and Sustainable Energy Reviews 2008,12:593–661.
    [3] S. Jebaraj, S Iniyan. A review of energy models[J]. Renewable and Sustainable Energy Reviews 2006,10:281-311.
    [4]江泽民.对中国能源问题的思考[J].上海交通大学学报2008,42 (3): 345-359.
    [5]费维扬,赵兴雷,周文戟.全球气候变暖人类面临的世纪挑战[J].生态经济2009,4:24-29.
    [6]匡廷云,马克平,白克智.生物质能研发展望[J].中国科学基金2005,6: 326-330.
    [7]严陆光.对我国能源可持续发展的战略思考[J].中国科学院院刊2006,4: 280-286.
    [8]倪维斗,陈贞,李政.我国能源现状及某些重要战略对策[J].中国能源2008,30(12):5-9.
    [9]曾培炎.发展循环经济实现经济与环境双赢[J].再生资源与循环经济2008,1(3):1-2.
    [10]胡鞍钢.以科学发展观红线引领绿色强国之路[J].环境保护2009,1:47-49.
    [11] Debabrata Das, T. Nejat Veziroglu. Hydrogen production by biological processes: a survey of literature[J]. International Journal of Hydrogen Energy 2001,26: 13-28.
    [12] David B. Levin, Lawrence Pitt, Murray Love. Biohydrogen production: prospects and limitationsto practical application[J]. International Journal of Hydrogen Energy 2004, 29: 173– 185.
    [13]郭烈锦,赵亮.可再生能源制氢与氢能动力系统研究[J].中国科学基金2002,4: 210-212.
    [14] Alessandra Perna. Combined power and hydrogen production from coal.Part A—Analysis of IGHP plants[J]. International Journal of Hydrogen Energy 2008, 33: 2957-2964.
    [15]岳建芝,徐桂转,张杰,张百良.制氢技术和工艺[J].可再生能源2003;3: 33-35.
    [16]吴川,张华民,衣宝廉.化学制氢技术研究进展[J].化学进展2005,5: 423-429.
    [17]周未,王金全.制氢技术发展概况[J].贵州化工2003,2: 5-10.
    [18] Ilgi Karapinar Kapdan, Fikret Kargi. Bio-hydrogen production from waste materials[J]. Enzyme and Microbial Technology 2006,38: 569–582.
    [19] Yasuo Asada, Jun Miyake. Photobiological Hydrogen Production[J]. Journal of Bioscience and Bioengineering 1999, 80:1-6.
    [20] Patrick C. Hallenbeck, John R. Benemann. Biological hydrogen production: fundamentals and limiting Processes[J]. International Journal of Hydrogen Energy 2002,27: 1185-1193.
    [21]李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展[J].生物技术通报2003, 4:1-5.
    [22] Anastasios Melis. Green alga hydrogen production: progress, challenges and prospects[J]. International Journal of Hydrogen Energy 2002,27:1217-1228.
    [23] Anastasios Melis, Matthew R, Melnicki. Integrated biological hydrogen production[J]. International Journal of Hydrogen Energy 2006,31 :1563-1573.
    [24]管英富,邓麦村,金美芳,虞星炬,张卫.微藻光生物水解制氢技术[J].中国生物工程杂志2003,23(4): 8-13.
    [25] Martin Winkler, Anja Hemschemeier, Cecilia Gotor, Anastasios Melis, Thomas Happe. Fe-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation[J]. International Journal of Hydrogen Energy 2002,27:1431-1439.
    [26] Yingfu Guan, Maicun Deng, Xingju Yu, Wei Zhang. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis[J]. Biochemical Engineering Journal 2004,19: 69–73.
    [27] Hajime Masukawa, Mari Mochimaru, Hidehiro Sakurai. Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria[J]. International Journal of Hydrogen Energy 2002,27:1471-1474.
    [28] Fernando A. Lopes Pinto, Olga Troshina, Peter Lindblad. A brief look at three decades of research on cyanobacterial hydrogen evolution[J]. International Journal of Hydrogen Energy 2002,27:1209-1215.
    [29]喻国策,王建龙.蓝细菌制氢研究进展[J].中国生物工程杂志2005,25 (12): 86-91.
    [30]才金玲,王广策,杨素萍,周百成.生物制氢研究进展[J].海洋科学集刊2007,5:176-190.
    [31] E.Fascetti, E.Daddario, O.Todini, A.Robertiello. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes[J]. International Journal of Hydrogen Energy 1998,23(9):753-760.
    [32] Yasuo Asada, Jun miyake. Photobiological hydrogen production[J]. Journal of Bioscience and Bioengineering 1999,88(1):1-6.
    [33]杨素萍,曲音波.光合细菌生物制氢[J].现代化工2006,23(9):17-22.
    [34] NeilWlsaace, Richard J Cogdell, Andrew A Freer,Stephen M Prince. Light-harvesting mechanisms in purple photosynthetic bacteria[J].Current Opinion in Structural Biology 1995,5(6):794-797.
    [35] Harun Koku, Inci Eroglu, Ufuk Gunduz, Meral Yucel, Lemi Turker. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J]. International Journal ofHydrogen Energy 2002,27:1315-1329.
    [36]刘飞,方柏山.微生物产氢机理的研究进展[J].工业微生物2007;37(3):58-62.
    [37]王毅,安静,张全国,李刚,荆艳艳.光合细菌光合作用及固氮酶产氢作用研究进展[J].可再生能源2009,27(1):52-57.
    [38]朱建良,冯有智.固氮类微生物产氢机理研究进展[J].南京工业大学学报2003,25(1):102-106.
    [39]康铸慧,王磊,郑广宏,周琪.微生物产氢研究的进展[J].工业微生物2005,35(2):41-49.
    [40]杨素萍,赵春贵,曲音波,钱新民.铁和镍对光合细菌生长和产氢的影响[J].微生物学报2003,43(2):257-263.
    [41]孙琦,徐向阳,焦杨文.光合细菌产氢条件的研究.微生物学报1995, 35(1):65-73.
    [42]刘灵芝,孙军德,韩梅,陈锡时.光合细菌产氢因子的研究进展[J].生态科学2004,23(2):184-186.
    [43]李永峰,任南琪,郑国香,胡立杰,李建政.碳氮质量比对发酵细菌产氢性能的影响[J].化学工程2005,33(4):41-43.
    [44] C.Y. Lin, C.H. Lay. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora, International Journal of Hydrogen Energy 2004,29: 41-45.
    [45]吴光学,管运涛,王剑秋,蒋展鹏.碳源及氮源对紫色非硫光合细菌积累PHB的影响[J].环境科学2004,25(6):102-107.
    [46]岳文洁,夏元生,张小凡.红色非硫菌生长及聚β-羟基丁酸积累的研究[J].环境与可持续发展2008,2:18-20.
    [47]王永忠,廖强,朱恂,巴淑丽,张攀,张川.底物初始浓度对光合细菌产氢动力学特性的影响[J].环境工程学报2007,1(7):125-129.
    [48]张明,史家梁.光合细菌光合产氢机理研究进展[J].应用与环境生物学报1995,5:25-29.
    [49] Mino Yang, Ritesh Agarwal, Graham R. Fleming. The mechanism of energy transfer in the antenna of photosynthetic purple bacteria[J]. Journal of Photochemistry and Photobiology A:Chemistry 2001,142:107-119.
    [50] Eiju Nakada, Yasuo Asada, Takaaki Arai, Jun Miyake. Light Penetration into Cell Suspensions of Photosynthetic Bacteria and Relation to Hydrogen Production[J]. Journal of Fermentation and Bioengineering 1995,80(1):53-57.
    [51] Q.Xu, M.R.Gunner. Trapping conformational intermediate states in the reaction center protein from photosynthetic bacteria[J]. Biochemistry 2001,40:3232-3241.
    [52] Kiley PJ, Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides[J]. Microbiol Rev 1988,52(1):50-69.
    [53] Jianguo Liu, Vyacheslav E. Bukatin, Anatoly A. Tsygankov, Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations[J]. International Journal of Hydrogen Energy 2006,31:1591-1596.
    [54]李鹏,龙敏南.光生物产氢研究进展[J].厦门大学学报2004;43 (8):159-165.
    [55] Koku H. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J]. Intern J Hydrogen Energy 2002, 27:1315~1329.
    [56] Nakada E, Asada Y, Arai T, Miyake J. Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production[J]. J Ferment & Bioengin 1995, 80: 53~57.
    [57] Wakayama T, Miyake J. Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV[J]. Intern J Hydrogen Energy 2002,27: 1495~1500.
    [58] Lata DB, Chandra R, Kumar A, Misra A. Effect of light on generation of hydrogen by Halobacterium halobium NCIM 2852[J]. Intern J Hydrogen Energy 2007,32 (15): 3293~3300.
    [59] Katsuda T, Arimoto T, Igarashi K, Azuma M, Kato J, Takakuwa S, Ooshima H. Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus[J]. Biochem Engin J 2000, 5: 157~164.
    [60] Kondo T. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment[J]. Intern J Hydrogen Energy 2006,31: 1522~1526.
    [61] Chen CY, Lee CM, Chang JS. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors[J]. Biochem Engin J 2006,32:33~42.
    [62] Liu JG, Bukatin VE, Anatoly A. Tsygankov. Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations[J]. Intern J Hydrogen Energy 2006,31: 1591~1596.
    [63] Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y. Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production[J]. J Biosci & Bioengin 1999,88 (6): 659~663.
    [64] Agalidis I, Ivancich A, Tony A, Mattioli FRH. Characterization of the Rhodocyclus tenuis photosynthetic reaction center[J]. Biochim et Biophys Acta (BBA)– Bioenergetics 1997,1321: 31~46.
    [65] Miyake J, Miyake M, Asada Y. Biotechnological hydrogen production: research for efficient light energy conversion[J]. J Biotechnol 1999,70: 89~101.
    [66] Kondo T. Hyd rogen produc t ion by combining two types of photosynthetic bacteria with different characteristics[J]. Intern J Hydrogen Energy 2002,27: 1303~1308.
    [67] Hata J, Taya M, Tani K, Nasu M. Photoautotrophic cultures of the host and transformed cells of Marchantia polymorpha under controlled incident light intensity[J]. J Biosci & Bioengin 1999, 88: 582~585.
    [68] Asada Y, Miyake J. Photobiological hydrogen production[J]. J Biosci & Bioengin 1999, 80: 1~6.
    [69] Laurinavichene T, Tolstygina I, Tsygankov A. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii[J]. J Biotechnol 2004,114: 143~151.
    [70] Patrick C. Hallenbeck, John R. Benemann. Biological hydrogen production: Fundamentals and limiting processes[J]. Intern J Hydrogen Energy 2002,27: 1185~1193.
    [71] Vasilyeva L, Miyake M, Khatipov E, Wakayama T, Sekine M, Hara M, Nakada E, Asada Y, Miyake J. Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system[J]. J Biosci & Bioengin 1999,87: 619~624.
    [72] Kondo T, Arakawa M, Hirai T, Wakayama T, Hara M, Miyake J. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment[J]. J Biosci & Bioengin 2002, 93: 145~150.
    [73] Wenk SO, Qian DJ, Wakayama T, Nakamura C, Zorin N, R?gner M, Miyake J. Biomolecular device for photoinduced hydrogen production[J]. Intern J Hydrogen Energy 2002,27: 1489~1493.
    [74] Morozov SV, Voronin OG, Karyakina EE, Zorin N A, Cosnier S, Karyakin AA. Tolerance to oxygen of hydrogen enzyme electrodes[J]. Electrochem Commun 2006,8: 851~854.
    [75] Eroglu E, Gündüz U, Yücel M, Türker L, Eroglu I. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source[J]. Intern J Hydrogen Energy 2004,29: 163~171.
    [76] Redwood MD, Macaskie LE. A two-stage, two-organism process for biohydrogen from glucose[J]. Intern J Hydrogen Energy 2006,31: 1514~1521.
    [77] Yetis M, Gündüz U, Eroglu I, Yücel M, Türker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001[J]. Intern J Hydrogen Energy 2000,25: 1035~1041.
    [78] Sebastiaan Hoekema, et al, A pneumatically agitated flat-panel photobioreactor with gasre-circulation: anaerobic photoheterotrophic cultivation of apurple non-sulfur bacterium[J], International Journal of Hydrogen Energy 2002, 27: 1331– 1338.
    [79] Modigell M, Holle N. Reactor development for a biosolar hydrogen production process[J]. Renewable Energy 1998,14: 421~426.
    [80] He D, Bultel Y, Magnin J, Roux C and John C. Willison. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell[J]. J Power Sourc 2005,141: 19~23.
    [81] Zabut B, Kahlout KE, Yücel M, Gündüz U, Türker L, Ero?lu ?. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor[J]. Intern J Hydrogen Energy 2006,31: 1553~1562.
    [82]朱铁群,雷庆铎,李卫忠,孙蕾.固定化光合细菌研究与应用[J].水利渔业2006,26(6):4-7.
    [83]骆艳娥,李华,刘树文.固定化细胞生物反应器的应用及研究进展[J].微生物学杂志2002,22(2):36-38.
    [84]郑耀通,闵航.共固定光合和发酵性细菌处理有机废水生物制氢技术[J].环境污染治理技术与设备1998,11(3):187-189.
    [85]李捷,杨大庆,朱章玉.胶质红假单胞菌J-2菌株光合产氢的研究[J].上海交通大学学报1994,28(2):76-82.
    [86]徐向阳,俞秀娥,郑平,陈蔚,冯孝善.固定化光合细菌产氢过程的基质利用动力学[J].生物工程学报1995,11(1):51-57.
    [87]任南琪,李建政.生物制氢技术[J].太阳能2003,2: 4~6.
    [88]柯水洲,马晶伟.生物制氢研究进展[J].化工进展.2006,25(9):1006-1010.
    [89]戚以政,汪叔雄.生化反应动力学与反应器(第2版)[M].北京:化学工业出版社, 1999.
    [90] Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH. A pneumatically agitated f lat-panel photobioreactor with gas recirculation: Anaerobic photoheterotrophic cultivation of a purple nonsulfur bacterium[J]. International Journal of Hydrogen Energy 2002,27: 1331~1338.
    [91] Shi XY, Yu HQ. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulate. Intern J Hydrogen Energy 2006,31: 1641~1647.
    [92]许进香,颜立成.光合细菌规模生产工艺研究[J].微生物学杂志2000,20(3):25-29.
    [93] Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community[J]. Proc Biochem 2006,41: 2118~2123.
    [94] Akkerman I, Janssen M, Rocha J, RenéHW. Photobiological hydrogen productionphotochemical efficiency and bioreactor design[J]. Intern J Hydrogen Energy 2002,27: 1195~1208.
    [95] Chun-Yen Chen, Jo-Shu Chang. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination[J]. Process Biochemistry 2006,41: 2041–2049.
    [96]王建龙,施汉昌,钱易.固定化微生物技术在难降解有机污染物治理中的研究进展[J].环境科学研究1999,12:60-64.
    [97]王建龙.生物固定化技术与水污染控制[M].科学出版社.2002.
    [98]徐向阳.固定化细胞技术在废水处理中的应用[J].中国给水排水1992,8(2):39-43.
    [99]俞汉青.固定化细胞技术处理废水的原理和进展[J].环境保护科学1992,18(4):13-19.
    [100]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报2000,22(5):95-101.
    [101]徐杰明,张平,李文远.固定化细胞技术在重金属废水处理中的应用研究进展[J].环境科学与管理2005,30(6):82-85.
    [102]吴国庆,张琳,牛志卿.固定化PSB细胞技术研究及应用[J].环境科学研究1994,7(6):51-55.
    [103]包云,黄兵,罗欢.固定化细胞技术发酵产氢的应用研究[J].贵州化工2007;32(1):8-12.
    [104]孙清,代廷广,王君玲.固定化细胞技术在能源与环境工程上的应用[J].农村能源2002,2:22-23.
    [105]崔建涛,李建新,王育红,艾志录.细胞固定化技术的研究进展[J].农产品加工学刊2007,1:24-26.
    [106] Jo-Shu Chang, Kuo-Shing Leee, Pin-Jei Lin. Biohydrogen production with fixed-bed bioreactors[J]. International Journal of Hydrogen Energy 2002,27:1167-1174.
    [107] Lorena Lima de Oliveira, Iolanda Cristina Silveira Duarte, Isabel Kimiko Sakamoto. Influence of support material on the immobilization of biomass for the degradation of linear alkylbenzene sulfonate in anaerobic reactors[J]. Journal of Environmental Management 2009,90:1261–1268.
    [108]时彦芳,胡翔,王建龙.移动床生物膜反应器处理废水的特性研究[J].环境科学研究2005,18(5):49-55.
    [109]武淑文,黄兵,孙佩石,曹桂萍,廖雄稳.固定化细胞技术在环境工程中应用[J].环境科学动态2003,4:32-34.
    [110]王建龙,施汉昌,钱易.固定化微生物技术在难降解有机污染物治理中的研究进展[J].环境科学研究1999,12(1):60-64.
    [111]于霞,柴立元,甘雪萍.细胞固定化技术及其在废水处理中的应用研究[J].工业水处理2001,21(10):9-12.
    [112] Chi-Neng Lin, Shu-Yii Wu, Jo-Shu Chang. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge[J]. International Journal of Hydrogen Energy 2006,31:2200-2210.
    [113]孙少晨,林永波,寇广孝.包埋法固定化细胞技术及其在水处理中的应用研究[J].环境科学与管理2006,31(4):95-97.
    [114]郑耀通.固定化细胞处理废水的关键性包埋技术条件研究[J].重庆环境科学1995,17(5):10-14.
    [115]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学2003,24(4):158-161.
    [116]刘蕾,李杰,王亚娥.生物固定化技术中的包埋材料[J].净水技术2005,24(1):40-42.
    [117]齐水冰,罗建中,乔庆霞.固定化微生物技术处理废水[J].上海环境科学2002,21(3):185-188.
    [118]闵航,郑耀通,陈美慈.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究[J].环境科学1994,15(5):10-14.
    [119]吴晓磊,刘建广,黄霞,俞毓馨.海藻酸钠和聚乙烯醇作为固定化微生物包埋剂的研究[J].环境科学1993,14(2):28-32.
    [120]荆洁颖,李文英.移动床生物膜反应器污水处理工艺的研究现状及展望[J].煤化工2008,4:23-27.
    [121]李兵,张建强.移动床生物膜反应器在污水处理中的应用[J].工业安全与环保2007,33(4):6-8.
    [122]董双石,周丹丹,高欣.好氧锥形流化床生物膜反应器启动与生物膜形成特征研究[J].环境科学2009,30(3):827-833.
    [123]田鑫,廖强,张攀,王永忠,朱恂,石泳,丁玉栋.光合细菌生物膜反应器葡萄糖降解及产氢特性实验[J].化工学报2008,59(9):2346-2350.
    [124]师存杰.生物膜技术在水处理中的应用[J].青海大学学报2001,19(5):32-34.
    [124]田鑫,廖强,张攀,朱恂,王永忠.生物膜光生物反应器启动及产氢特性[J].工程热物理学报2008,10: 46-50.
    [125] Bruce E. Rittmann. Biofilm technology used to improve water quality[J].Journal of Shanghai Teachers University 2004,33(4):1-8.
    [125]李平,吴海珍,韦朝海.生物流化床反应器生物膜特性研究进展[J].环境污染治理技术与设备2002,3(9):75-79.
    [126]赵庆良,黄汝常.复合式生物膜反应器中生物膜的特性[J].环境污染与防治2000,22(1):4-7.
    [127]赵庆良,刘淑彦,王琨.复合式生物膜反应器中生物膜量厚度及活性[J].哈尔滨建筑大学学报1999,32(6):39-43.
    [128]刘雨,杨学富,高大林.流动系统内生物膜的形成及控制[J].环境科学1999,6:98-99.
    [129]刘雨,王岐东.生物膜增长动力学模型[J].北京轻工业学院学报1997,15(2):28-31.
    [130]赵薇,康勇,赵春景.水处理用纤维素载体的降解及生物膜附着性能[J].环境科学学报2009,29(2):259-266.
    [131]路远,孙力平,衣雪松,李志伟,安莹.生物膜法水处理用悬浮填料的筛选[J].工业用水与废水2008,39(5):69-72.
    [132]海景,黄尚东,程江,杨卓如,龚盛昭.水处理用塑料生物膜载体改进研究进展[J].合成材料老化与应用2006,35(4):41-45.
    [133]陈洪斌,屈计宁,何群彪.悬浮填料生物膜工艺的研究进展[J].应用与环境生物学报2005,11(4):514-520.
    [134]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展[J].环境科学研究2002,13(5):50-53.
    [135]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].中国建筑工业出版社.2000.
    [136] Teresa R. Scheuerman, Anne K. Camper and Martin A. Hamilton, Effects of Substratum Topography on Bacterial Adhesion[J]. Journal of Colloid and Interface Science 1998,208:23-33.
    [137] Kathryn A. Whitehead, Dale Rogers, John Colligon, et al. Use of the atomic force microscope to determine the effect of substratumsurface topography on the ease of bacterial removal[J]. Colloids and Surfaces B: Biointerfaces 2006,51: 44–53.
    [138] Michael A. Ginsburg, Dimitre Karamanev. Experimental study of the immobilization of Acidithiobacillus ferrooxidans on carbon based supports[J]. Biochemical Engineering Journal 2007,36: 294–300.
    [139] Laurence Ponsonnet , Mirela Boureanu, Nicole Jaffrezic, Ali Othmane, Corinne Dorel, Philippe Lejeune. Local pH variation as an initial step in bacterial surface-sensing and biofilm formation[J]. Materials Science and Engineering C. 2008,28: 896–900.
    [140] J. Zhang, H.C. Chua, J. Zhou, A.G. Fane. Factors affecting the membrane performance in submerged membrane bioreactors[J]. Journal of Membrane Science. 2006,28(4): 54–66.
    [141] R. Ribeiro, M.B.A. Varesche, E. Foresti, M. Zaiat. Influence of the carbon source on the anaerobic biomass adhesion on polyurethane foam matrices[J]. Journal of Environmental Management. 2005,74: 187–194.
    [142] D. Mowla, M. Ahmadi. Theoretical and experimental investigation of biodegradation of hydrocarbon polluted water in a three phase fluidized-bed bioreactor with PVC biofilmsupport[J]. Biochemical Engineering Journal.2007,36: 147–156.
    [143] Sandeep Mudliar, Saumita Banerjee, Atul Vaidya, Sukumar Devotta. Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm[J]. Bioresource Technology 2008,99: 3468–3474.
    [144] A.G.Brito, L.F.Melo. Mass transfer coefficients within anaerobic biofilms: effects of external liquid velocity[J]. Water Resource.1999,33 (17):3673-3678.
    [145] Vinod AV, Reddy GV. Mass transfer correlation for phenol biodegradation in a fluidized bed bioreactor[J]. Journal of Hazardous Materials B 2006,136:727-734.
    [146] Yen-Hui Lin. Kinetics of nitrogen and carbon removal in a moving-fixed bed biofilm reactor[J]. Applied Mathematical Modelling 2008,32: 2360–2377.
    [147] Kumar N, Monga PS, Biswas AK, Das D. Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08[J]. International Journal of Hydrogen Energy2000;25:945-952. [148] L.Prasanna Lakshmi, Y.Pydi Setty. Liquid–solid mass transfer in a two phase fluidized bed bioreactor[J]. Chemical Engineering Journal. 2008,135:135–140.
    [149] Ntaikou I, Gavala HN, Kornaros M, Lyberatos G.. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus[J]. International Journal of Hydrogen Energy 2008,33:1153-1163.
    [150] Bruce E. Rittmann, Douglas Stilwell, Akiyoshi Ohashi. The transient-state, multiple-species biofilm model for biofiltration processes[J]. Water Research 2002,36: 2342–2356.
    [151] Yen H. Lin, Jyh Y. Leu, Chi R. Lan, P-Hsiu P. Lin, Fuh L. Chang. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor[J]. Chemosphere 2003,53: 779–787.
    [152] R. Guy Riefler, Barth F. Smets. Comparison of a type curve and a least-squared errors method to estimate biofilm kinetic parameters[J]. Water Research 2003,37: 3279–3285.
    [153] Plattes M , Fiorelli D. Modelling and dynamic simulation of a pilot-scale moving bed bioreactor for t he t reatment of municipal wastewater :model concept s and t he use of respiromet ry for t he estimation of kinetic parameters[J]. Wat Sci Tech 2007,55 (8) :309-316.
    [154] Jih C G, Huang J S. Effect of biofilm thickness distribution on substrate-inhibited kinetics[J]. Wat Res 1994,28 (4) :967-973.
    [155] Cao Y S ,Alaert s GJ. Influence of reactor type and shear stress on aerobic biofilm morphology , population , and kinetics[J]. Wat Res 1995,29 (1) :107-118.
    [156] Kreft J U ,Wimpenny J W T. Effect of EPS on biofilm structure and function as revealed byan individual2based model of biofilm growth[J]. Wat Sci Tech 2001,43 :135-141.
    [157] Hui Zeng, Tian C. Zhang. Evaluation of kinetic parameters of a sulfur–limestone autotrophic denitrification biofilm process[J]. Water Research.2005,39: 4941–4952.
    [158] Zhang S ,Huck P M. Parameter estimation for biofilm process in biological water t reatment[J] . Wat Res 1996,30 :456-464.
    [159] Riefler R G, Ahlfeld D P. Respirometric assay for biofilm kinetics estimation : Parameter identifiability and ret rievability[J]. Biotechnology and Bioengineering 1998,57 (1) :1232-1239
    [160] Sandeep Mudliar, Saumita Banerjee, Atul Vaidya, Sukumar Devotta. Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm[J]. Bioresource Technology 2008,99:3468-3474.
    [161] Zhang ZP, Tay JH, Show KY, Yan R, Liang DT, Lee DJ, Jiang WJ. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor[J]. International Journal of Hydrogen Energy 2007,32:185-191.
    [162] Zhen-Peng Zhang, Kuan-Yeow Show, Joo-Hwa Tay, David Tee Liang, Duu-Jong Lee, Wen-Ju Jiang. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community[J]. Process Biochemistry 2006,41:2118–2123.
    [163] Sule Seker, Haluk Beyenal, Abdurrahman TanyolaG. The effects of biofilm thickness on biofilm density and substrate consumption rate in a differential fluidizied bed biofilm reactor[J]. Journal of Biotechnology 1995,41: 39-47.
    [164]周小红,施汉昌,蔡强.基于微电极的生物膜分析技术的研究进展[J].污染防治技术2006,18(1):32-35.
    [165] Huang JS, Jih CG. Deep-biofilm kinetics of substrate ultilization in anaerobic filter[J]. Water Research 1997,31(9):2309-2317.
    [166]廖强,田鑫,陈蓉.有机废气净化生物膜滴滤塔代谢产热的理论模型[J].自然科学进展2006,16(6):727-732.
    [167] Haluk Beyenal, Abdurrahman Tanyolaq. The effects of biofilm characteristics on the external mass transfer coefficient in a differential fluidized bed biofilm reactor[J]. Biochemical Engineering Journal 1998,1: 53-61.
    [168] Zhang ZP, Tay JH, Show KY, Yan R, Liang DT, Lee DJ, Jiang WJ. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor[J]. International Journal of Hydrogen Energy 2007,32:185-191.
    [169] Amorim ELC, Barros AR, Damianovic HRZ, Silva EL. Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation ofglucose[J]. International Journal of Hydrogen Energy 2009,34:783-790.
    [170] Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ. Biohydrogen production with anaerobic fluidized bed reactors - A comparison of biofilm-based and granule-based systems[J]. International Journal of Hydrogen Energy 2008,33:1559-1564.
    [171] Lin CN, Wu SY, Chang JS. Fermentative hydrogen production with a draft tube fluidized bedreactor containing silicone-gel-immobilized anaerobic sludge[J]. International Journal of Hydrogen Energy 2006,31:2200-2210.
    [172] Guwy AJ, Hawkes FR, Hawkes DL, Rozzi AG.. Hydrogen production in a high rate fluidized bed anaerobic digester[J]. Water Research 1997,31(6):1291-1298.
    [173] Shida GM, Barros AR, Reis CM, Amorim EC, Damianovic HRZ, Silva EL. Long-term stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor using heat treated anaerobic sludge inoculum[J]. International Journal of Hydrogen Energy 2009,34:3679-3688.
    [174] Chang JS, Lee KS, Lin PJ. Biohydrogen production with fixed-bed bioreactors[J]. International Journal of Hydrogen Energy 2002,27:1167-1174.
    [175] Leite AC, Fernandes BS, Pozzi E, Barboza M, Zaiat M. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids[J]. International Journal of Hydrogen Energy 2008,33:579-586.
    [176] Mohan SV, Bhaskar YV, Sarma PN. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia[J]. Water Research 2007,41:2652-2664.
    [177] Tian X, Liao Q, Zhu X, Wang YZ, Zhang P, Li J, Wang H. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production[J]. Bioresource Technology 2010,101:977-983.
    [178] Mulcahy, L.T., La Motta, E.J., 1978. Mathematical model of the fluidized bed biofilm reactor. In: Proceedings of 51st Annual Conference, Water Pollution Control Federation, Anaheim, CA.
    [179] Zaiat M, Rodrigues JAD, Foresti E. External and internal mass transfer effects in an anaerobic fixed-bed reactor for wastewater treatment[J]. Process Biochemistry 2000,35:943-949.
    [180] Carrara C, Mammarella EJ, Rubiolo A. Prediction of the fixed-bed reactor behaviour using dispersion and plug-flow models with different kinetics for immobilised enzyme[J]. Chemical Engineering Journal 2003,92:123-129.
    [181] Teresa R. Scheuerman, Anne K. Camper and Martin A. Hamilton, Effects of SubstratumTopography on Bacterial Adhesion[J]. Journal of Colloid and Interface Science 1998,208:23-33.
    [182] A. Carlén, K. Nikdel, A. Wennerberg, K. Holmberg, J. Olsson. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin[J]. Biomaterials 2001,22: 481-487.
    [183] Michael A. Ginsburg, Dimitre Karamanev. Experimental study of the immobilization of Acidithiobacillus ferrooxidans on carbon based supports[J]. Biochemical Engineering Journal 2007,36: 294–300.
    [184]王永忠,廖强,朱恂,田鑫,王中康,张攀,张宝鹏.产氢光合细菌的分离鉴定及高产氢菌株的筛选[J].应用与环境生物学报2008;14(5):673-677.
    [185]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:高等教育出版社;2003,1-3.
    [186] Mohan SV, Mohanakrishna G, Raghavulu SV, Sarma. Enhancing biohydrogen production from chemicalwastewater treatment inanaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmentingwith selectively enriched kanamycin resistant anaerobic mixed consortia[J]. International Journal of Hydrogen Energy 2007,32: 3284–3292.
    [187] Bhaskar YV, Mohan SV, Sarma PN. Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor[J]. Bioresource Technology 2008,99:6941-6948.
    [188] de Beer, D., Huisman, J.W., van den Heuvel, J.C., Ottengraf, S.P.P., 1992. The effect of pH profiles in methanogenic aggregate on the kinetics of acetate conversion[J]. Water Research 26,1329–1336.
    [189] Chen CY, Lee CM, Chang JS. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors[J]. Biochemical Engineering Journal 2006,32:33-42.
    [190] Yamada A, Takano H, Burgess JG, Matsunaga T. Enhanced hydrogen production by a marine photosynthetic bacterium, Rhodobacter marinus, immobilized onto light-di1using optical fibers[J]. J Mar Biotechnol 1996,4:23–9.
    [191]江源,凌根华,殷志东.侧面发光光纤的制备原理及其应用[J].光纤与电缆及其应用2000,4:10-16.
    [192]朱源圆.光纤照明系统在虣国博物馆中的应用[J].玻璃纤维2009,2:17-20.
    [193]杨光.光纤照明技术及应用前景[J].大众用电2007,2:22-23.
    [194]徐思华,张晓晶,徐传骧.通体发光光纤及其应用[J].化工新型材料2003,31(8):38-42.
    [195] Hata J, Taya M, Tani K, Nasu M. Photoautotrophic cultures of the host and transformedcells of Marchantia polymorpha under controlled incident light intensity[J]. J Biosci & Bioengin 1999,88: 582~585.
    [196] Chen CY, Chang JS. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination[J]. Process Biochemistry 2006,41:2041-2049.
    [197]温程璐,李姮,王蓬勃,李伟,赵井泉.藻类细胞趋光性机理研究及其显微操作技术进展[J].自然科学进展2007,17(20):141-147.
    [198]王应铨,许福康,杨雪南.光合细菌培养技术的探讨[J].土壤通报1990,1:42-45.
    [199] Tian X, Liao Q, Zhu X, Wang YZ, Zhang P, Li J, Wang H. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production[J]. Bioresource Technology 2010,101:977-983.
    [200]邓洪权,潘永亮,杨平.内循环生物流化床反应器数学模型分析[J].四川大学学报(工程科学版)2001,33(2):52-56.
    [201] Levin DB, Pitt L, Love M, Biohydrogen production: prospects and limitations to practical application[J]. International Journal of Hydrogen Energy 2004,29:173-185.
    [202] Chen CY, Chang JS. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination[J]. Process Biochemistry 2006,41:2041-2049.
    [203] Fang HHHP, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater[J]. International Journal of Hydrogen Energy 2005,30:785-93.
    [204] Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y. Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production[J]. Journal of Bioscience and Bioengineering 1999,88(6):659-63.
    [205] Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers[J]. International Journal of Hydrogen Energy 2008,33:6886-95.
    [206] Lee JZ, Klaus DM, Maness PC, Spear JR. The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitate resource recovery process[J]. International Journal of Hydrogen Energy 2007,32:3301-07.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700