高压氢气快充温升控制及泄漏扩散规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益枯竭以及对环境问题的关注,氢能以其可再生、无污染等特性在未来可能成为重要的二次能源。目前高压储氢以其储氢容器结构简单、压缩氢气能耗少、充装和排放速度快等优点被绝大多数加氢站和氢能汽车采用,而高压供储氢在实际应用过程中存在一定的危险性,因此安全可靠的高压储氢技术是氢能广泛应用急需解决的关键问题之一。
     针对氢气快速充装温升、高压氢气泄漏扩散等储氢安全问题,本文在国家高技术研究计划(“863”计划)目标导向课题项目“高压容器储氢技术和装备(2006AA05Z143)”、国家重点基础研究发展计划(973计划)课题“高密度车载储氢新体系及其安全性预测理论研究(2007CB209706)”和美国交通部资助的中美合作项目“Safety Issues Related to Transport and Storage of Hydrogen Fuelsin Northern Climates(Grant No.DTOS59-06-G-00048)”的支持下,开展了相关的研究。主要研究内容和成果如下:
     (1)在氢气瓶快充温升理论分析的基础上,建立了氢气瓶快充温升理论分析模型,并对气瓶壁面绝热状态下的温升进行了分析计算,得到了绝热条件下的快充温升大小,即确定了充装过程可能的最高温升,同时得出了初始温度、初始压力等参数对绝热温升的影响规律。考虑到非绝热充装的复杂性,基于真实气体状态方程与Spalart-Allmaras湍流模型,建立了精度较高的氢气瓶快充过程温升数值计算模型,模型可用于不同充装参数下气瓶内温升的预测。
     (2)国内首次开展了氢气瓶快充温升试验研究,搭建了氢气瓶快充温升测试平台,得到了大量的快充温升数据。基于测试平台对氢气瓶快充过程的非定常流动进行了研究,得到了气瓶压力、储氢罐压力、气瓶内温度、加注流量等在快充过程中的变化规律,通过试验得出了气瓶初始压力、快充速率等参数对快充温升的影响规律。
     (3)针对35MPa 150L氢气瓶,依据试验与数值模拟结果,得出了较为精确的温升计算公式。基于公式,得出了不同充装参数下的充装速率限制值,并提出了控制快充温升的方法,研究结果表明通过控制充装速率或初始充装温度能有效地控制氢气瓶充装温升。得出了额定充装量下不同充装参数时的充装压力。
     (4)建立了高压氢气与天然气的泄漏扩散数值计算模型,对氢气和天然气的泄漏扩散进行了数值模拟研究。应用模型分析了泄漏位置、环境温度、环境风速、障碍物等对泄漏扩散的影响,并得出了相关的影响规律;得到了氢气不同于天然气的泄漏扩散性质。基于模型研究了储氢罐的防火间距,结果表明储氢罐与地面建筑的防火间距应较天然气罐小,与垂直距离相关的防火间距应略大于天然气罐。相关研究结论可以为加氢站等高压储氢场合的泄漏扩散应急处理提供理论依据。
Due to the scarcity of fossil fuels and environment problems,hydrogen is likely to be one of the most important carriers of energy due to its renewable and no polluting product.The most popular and most highly developed storage method for hydrogen refueling station and fuel cell vehicles is high pressure hydrogen storage due to its technical simplicity and low cost.Safe and reliable transportation and storage of hydrogen for hydrogen energy is one of the key issues which are needed to be resolved.There is a certain degree of risk for high-pressure hydrogen storage in the practical application.Therefore,safe and reliable high pressure storage of hydrogen is needed to be gotten hold of.
     This paper aimed at research on temperature rise in hydrogen fast filling process for composite hydrogen storage cylinders,high-pressure hydrogen leakage and diffusion funded by the National Basic Research Program(863) of China "technology and equipment of high-pressure hydrogen storage vessels"(Project No: 2006AA05Z143),the National Hi-Tech Research and Development Program(973) of China "New high-density on-board hydrogen storage system and its theoretical safety prediction research"(Project No:2007CB209706),and the U.S.Department of Transportation,Office of the Secretary "Safety issues related to transport and storage of hydrogen in northern climates"(Grant No.DTOS59-06-G-00048),and main contents and research results were as follows:
     (1) Establish a theoretical analysis model for temperature rise in hydrogen fast filling process for composite hydrogen storage cylinders based on theoretical analysis.The temperature rise in adiabatic filling process for the cylinder was analyzed with the model and the settled temperature rise was obtained,that is,the maximum value of temperature rise in practical filling process was found out.Based on this model,the effect of the initial temperature and initial pressure in the storage cylinder on the temperature rise was obtained.Establish a numerical model for temperature rise in hydrogen fast filling process for composite hydrogen storage cylinders based on real gas state equation.The model was an accurate and visually displayed model to forecast the temperature rise in the fast filling process under different filling parameters.
     (2) First carried out the experimental study on temperature rise in the hydrogen fast filling process for hydrogen storage cylinders in China.Testing platform for temperature rise in fast filling process was build and much experimental data was obtained.Based on the testing platform,the unsteady flow in fast filling process for hydrogen storage cylinder had been studied.And the changing regularity of pressure in the cylinder and storage tank,temperature in the cylinder,mass filling rate in filling process was obtained.Furthermore,the effect of initial temperature in the cylinder, mass filling rate on the temperature rise was found out with the testing platform.
     (3) Based on the simulation results and experimental data,an equation for temperature rise calculation of 35MPa 150L storage cylinder was put forward.Furthermore,an equation for fulfill rate calculation of the cylinder was obtained.The limited mass filling rate in different filling pare meters was obtained.Furthermore,the control method for temperature rise was brought out.It could be implemented by controlling the temperature of hydrogen before into the cylinder and mass filling rate.The settled pressure for mass requirement with various filling parameters was obtained.
     (4) Establish a numerical calculation model for analysis of leakage and diffusion of high-pressure hydrogen and natural gas due to pipeline or storage tank failure basing Reliableκ-εturbulent model.The effect of leakage position,diameter of leakage hole,ambient temperature,ambient wind velocity and obstacle on the diffusion of hydrogen due to storage tank failure was also obtained.And corresponding law was found out.Also the different diffusion properties of hydrogen to natural gas were obtained.The simulation results show that the natural gas is more danger than hydrogen.The rationality of safety distance for hydrogen storage tanks was analyzed. The corresponding results could provide reference for dealing with emergency in high pressure gaseous hydrogen occasions such as in hydrogen refueling stations.
引文
[1]Forsberg,C.W.Future hydrogen markets for large-scale hydrogen production systems.International Journal of Hydrogen Energy.2007.32:p.431-439.
    [2]毛宗强.氢能—我国未来的清洁能源.太阳能.2005(3):P.6-8.
    [3]王传荣.氢能—未来船舶的推进动力?.船舶物资与市场.2007(3):p.24-26.
    [4]方明强.21世纪新能源—氢能.山西化工.2004.24(4):p.14-16.
    [5]余阳.美国氢燃料电池技术的发展—由化石能源体系向氢能源体系及多样化的重大转换.全球科技经济瞭望.2006(2):p.50-53.
    [6]李永梅.氢:一种运输工具燃料.新能源.1995.17(5):p.35-42.
    [7]毛宗强.氢能—21世纪的绿色能源.2005:北京:化学工业出版社.
    [8]毛宗强.使用太阳能制氢气.电源技术.2006.30(1):p.5-5.
    [9]许之扬等.不同预处理对颗粒污泥利用厨余物产氢性能的影响.安徽农业科学.2008.36(5):p.2002-2004.
    [10]邓平,费良润,刘雪梅,光合细菌产氢机制研究进展.安徽农业科学 2008.36(15):p.6184-6186.
    [11]包红旭,任南琪,王爱杰.一株纤维素降解新菌种发酵玉米秸秆的生物产氢特性研究.太阳能学报.2008.29(7):p.775-780.
    [12]高清慧.制氢技术的研究与发展趋势.中国高新技术企业.2008(15):p.57-58.
    [13]徐英达,史祥群,朱红奎.我国发展煤制油利弊剖析.科技成果纵横.2008(4):p.45-46.
    [14]朱同清,朱宇.水电解制氢的现状和发展趋势.氢能技术交流研讨会.2005.
    [15]杨裕生.关于可再生氢-氧燃料电池的几个问题.第八届全国氢能学术会议.2007:陕西:西安.
    [16]Tzimas,E.,et al.Hydrogen storage:state-of-the-art and future perspective,European Commission.2003:The Netherlands.
    [17]D.Solomon,B.and A.Banerjee.A global survey of hydrogen energy research,development and policy.Energy Policy.2006(34):p.781-792.
    [18]McDowall,W.and M.Eames.Forecasts,scenarios,visions,backcasts and roadmaps to the hydrogen economy:A review of the hydrogen futures literature.Energy Policy.2006(34):p.1236-1250.
    [19]章炎生,许沅.日本的JHFC计划和加氢站基础建设的展望.工厂动力,2006(1):p.24-28.
    [20]Energy,U.S.D.National Hydrogen Energy Roadmap.2002:Washington,DC.
    [21]Hydrogen from solar energy Refocus.International Journal of Hydrogen Energy.2003.4(4):p.10.
    [22]A,B.M.,Michigan.Ohio:States Compete to be the Fuel Cell Capital,Detroit Free Press.2002.
    [23]Canadian Hydrogen and Fuel Cell Sector Profile 2006.2006:Industry Canada.
    [24]Meakin,I.The Future Energy Economy:Hydrogen Development in Japan.British Embassy.2002:Tokyo
    [25]Considering a Basic Area-Wide Hydrogen Fuelling Station Network in Europe,HyNet Coordination Office.
    [26]Standard,I.O.f.Basic consideration for the safety of hydrogen systems.2001.
    [27]Watanabe,S.,et al.The new facility for hydrogen and fuel cell vehicle safety evaluation.European Energy Conference.September 2003.
    [28]袁成.本田公司的FCX—V4型氢燃料电池车.城市公用事业.2002.16:p.40-42.
    [29]开方明.铝内衬轻质高压储氢容器强度和可靠性研究.材料与化学工程学院.2007,浙江大学:杭州.
    [30]美籍华裔物理学家蒋廷仪博士论氢汽车.汽车与配件,2006(6):p.20-23.
    [31]中国新能源与可再生能源1999白皮书.中国国家发展计划委员会基础产业发展司.2000,北京:中国计划出版社.
    [32]顾钢.国外氢能技术路线图及对我国的启示.国际技术经济研究.2004,4(7):34-37
    [33]马涛.国外氢能源经济发展现状及对我国的启示.节能技术.2008,4(7):324-327
    [34]胡里清,邰兴良,陈倩.氢能与燃料电池汽车.高科技与产业化.2008, 7:36-37
    [35]潘爱华,马建新,高峰,麦云飞.汔车用氢燃料加氢站系统配置的研究.工矿自动化.2003(6):17-19
    [36]中国首款量产自主混合动力车长安杰勋下线.http://auto.sina.com.cn/news /2007-12-13/0924334083.shtml.
    [37]Woodtli,J.and R.Kieselbach.Damage due to hydrogen embrittlement and stress corrosion cracking.Failure Analysis.2000.7(6):p.427-450.
    [38]Dicken,C.J.B.and W.Merida.Measured Effects of Filling Time and Initial Mass on the Temperature Distribution within a Hydrogen Cylinder during Refuelling.Journal of Power Sources.2007.165:p.324-336.
    [39]K.Takano,et al.Dispersion and explosion field tests for 40MPa pressurized hydrogen.International Journal of Hydrogen Energy.2007.32:p.2144-2153.
    [40]王协琴.燃料电池汽车开发展望.西华大学学报 自然科学版.2006(25):p.21-24.
    [41]毛宗强.通向氢能经济的桥梁—从“浅氢”到“全氢”.武汉理工大学学报.2006.28:p.6-10.
    [42]杨振中,氢经济时代的车用氢燃料发动机的研究与展望.车用发动机.2005.156:p.1-5.
    [43]毛宗强.氢能知识系列讲座(4)—将氢气输送给用户.太阳能.2007(4):p.18-20.
    [44]陈桂华.一起氢气火灾事故分析.江苏安全生产.2008(5):p.52-52.
    [45]Rigas,F.and S.Sklavounos.Evaluation on hazard associated with hydrogen storage facilities.International Journal of Hydrogen Energy.2005.
    [46]Khristenko,Y.A.,V.P.Tomilin,and V.I.Ryazhskih.Mathematical model for nonstationary regime of gaseous hydrogen outflow from vertical pipelines to atmosphere.International Journal of Hydrogen Energy.1999.24:p.1171-1176.
    [47]李磊,加氢站高压氢系统工艺参数研究,材料与化学工程学院2007,浙江大学:杭州.
    [48]Harstad,K.and J.Bellan.Global analysis and parametric dependencies for potential unintended hydrogen-fuel release.Combustion and Flame.2006.144:p.89-102.
    [49]Zhao,Y.,L.Xihong,and L.Jianbo.Analysis on the diffusion hazards of dynamic leakage of gas pipeline.Reliability Engineering and System Safety.2007.92:p.47-53.
    [50]Mohamed,K.and M.Paraschivoiu.Real gas simulation of hydrogen release from a high-pressure chamber.International Journal of Hydrogen Energy.2005.30:p.903-912.
    [51]Kim,B.G.,C.Lee,and J.S.Kim.Largrangian Stochastic Model for Buoyant Gas Dispersion in a Simple Geometric Chamber,World Conference on Safety of Oil and Gas Industry 2007.2007:Gyeongju,Korea.
    [52]Houf,W.and R.Schefer.Predicting radiative heat fluxes and flammability envelopes from unintended releases of hydrogen.International Journal of Hydrogen Energy.2007.32:p.136-151.
    [53]蔡正敏等.长输管道泄漏故障诊断方法的研究.应用力学学报,2002.19(2):p.38-43.
    [54]Mizobuchi,Y.,et al.A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame.Proceedings of the Combustion Institute.2005.
    [55]Schefer,R.W.,et al.Spatial and radiative properties of an open-flame hydrogen plume.International Journal of Hydrogen Energy.2006.31:p.1332-1340.
    [56]Groethe,M.,et al.Large-scale hydrogen deflagrations and detonations.International Journal of Hydrogen Energy.2007.32:p.2125-2133.
    [57]Liu,L.H.,et al.Fluctuating characteristics of radiative source term in hydrogen turbulent jet diffusion frame.Journal of Quantitative Spectroscopy & Radiative Transfer.2004.87:p.193-201.
    [58]Theron,M.and M.Bellenoue.Experimental investigation of the effects of heat release on mixing processes and flow structure in a high-speed subsonic turbulent H_2jet.Combustion and Flame.2006.145:p.688-702.
    [59]Hu,S.,et al.Experimental and numerical investigation of non-premixed tubular flames.Proceedings of the Combustion Institute.2007.
    [60]Law,C.K.and O.C.Kwon.Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation.International Journal of Hydrogen Energy.2004.29:p.867-879.
    [61]Tanaka,T.,et al.Experimental study on hydrogen explosions in a full-scale hydrogen filling station model.International Journal of Hydrogen Energy.2007.32:p. 2162-2170.
    [62]Cisse,P.and G.A.Karim.The rapid formation and dispersion of flammable zones within cylindrical vertical enclosures following the release of a fixed mass of hydrogen and other gaseous fuels into air.International Journal of Hydrogen Energy.2007.32:p.630-636.
    [63]傅丛,李文华.我国氢能技术规范和标准体系初步研究.第六届全国氢能学术会议.2005:上海.
    [64]Liang,Y.,P.Sofronis,and R.H.Dodds.Interaction of hydrogen with crack-tip plasticity:effects of constraint on void growth.Materials Science and Engineering A.2004.366:p.397-411.
    [65]Puzach,S.V.Some features of formation of local combustible hydrogen-air mixtures during continuous release of hydrogen in a room.International Journal of Hydrogen Energy.2003.28:p.1019-1026.
    [66]Manninen,M.,et al.Simulation of hydrogen deflagration and detonation in a BWR reactor building.Nuclear Engineering and Design.2002.211:p.27-50.
    [67]A.G.Venetsanos,et al.Source,dispersion and combustion modelling of an accidental release of hydrogen in an urban enviorment.Journal of Hazardous Materials.2003.A105:p.1-25.
    [68]陈瑞.高压储氢风险控制技术研究.材料与化学工程学院.2008,浙江大学:杭州.p.23.
    [69]孙立贤等.氢的制备、储存、安全检测与生物燃料电池研究.合成化学,2007.15(B11):p.132-132.
    [70]Janssen,H.,et al.Safety-related studies on hydrogen production in high-pressure electrolysers.International Journal of Hydrogen Energy.2004.29:p.759-770.
    [71]Swain,M.R.,et al.Hydrogen leakage into simple geometric enclosures.International Journal of Hydrogen Energy.2003.28:p.229-248.
    [72]Swain,M.R.,E.S.Grdhot,and M.N.Swain.Experimental verification of a hydrogen risk assessment method.Chemical Health & Safety.1999.29:p.28-32.
    [73]Keller,J.,et al.Hydrogen Safety,Codes and Standards R&D,D.H.Program,Editor.2005.p.1261-1272.
    [74]SY/T5853-1993石油工业车用压缩天然气气瓶安全管理规定
    [75]Matthijsen,A.J.C.M.and E.S.Kooi,Safety distances for hydrogen filling stations.Fuel Cells Bulletin,2006.12:p.12-16.
    [76]J.K.Kenneth.Modeling the Fast Fill Process in Natural Gas Vehicle Storage Cylinders.207th ACS National Meeting-Division of Fuel Chemistry.San Diego Hyatt Hotel.1994.
    [77]Shipley,E.Study of Natural Gas Vehicles(NGV) During the Fast Fill Process.2002,Thesis for the degree of Master of Science,College of Engineering and Mineral Resources at West Virginia University.
    [78]Norman L.Newhouse,W.E.L.Fast Filling of NGV Fuel Containers.1999,SAE Technical Paper Series.
    [79]严家騄.工程热力学.高等教育出版社:2006,北京.68-78.
    [80]吴沛宜,马元.变质量系统热力学及其应用.1983,北京:高等教育出版社.
    [81]Eihusen,J.A.Application of Plastic-Lined Composite Pressure Vessels For Hydrogen Storage.2002,General Dynamics Armament and Technical Products.
    [82]Liss,W.E.,et al.Development and Validation Testing of Hydrogen Fast-Filling Fueling Algorithms.2003,Hydrogen Energy Systems Center.Gas Technology Institute.
    [83]Werlen,E.,et al.Thermal effects related to H2 fast filling in high pressure vessels depending on vessels type and filling procedures:modeling,trials and studies,European Energy Conference.September 2003.
    [84]Perret,C.Modeling and Simulation of the Filling of a Gaseous Hydrogen Tank under very high pressure.2004,EIHP2-00-00111.
    [85]広谷龍一等.自勤車用圧縮水素容器の急速充填にぉける容器内温度举動:第1報.自動車研究.2006.28(7):p.25-29.
    [86]伊藤裕一等.自動車用圧缩水素容器への急速充填の数値解析.自動車研究,2006.28(7):p.29-32.
    [87]傅国旗,周理.吸附天然气储罐充气过程的数学模拟.化工学报,2003.54(10):p.1419-1423.
    [88]刘昊,陶国良.气动汽车快速加气站加气过程研究.中国机械工程,2005.18(3):p.369-373.
    [89]张浩,刘昊,陈鹰.压缩空气动力汽车加气站的设计.机床与液压,2004(10):p.27-28.
    [90]Bain,A.and W.D.V.Vorst.The Hindenburg tragedy revisited:the fatal flaw found. International Journal of Hydrogen Energy. 1999. 24: p. 399-403.
    
    [91] 卡尔.约斯主编. Matherson 气体数据手册[M]. 2003, 北京:化学工业出版社.
    
    [92] Cashdollar, K.L., et al. Flammability of methane, propane, and hydrogen gases. Journal of Loss Prevention in the Process Industries. 2000. 13: p. 327-340.
    
    [93] Adamson, K.A., P. Person. Hydrogen and methanol:a comparison of safety, economics, efficiencies and emissions. Journal of Power Sources. 2000(86): p. 548-555.
    
    [94] Schefer, R.W., et al. Characterization of high-pressure, underexpanded hydrogen-jet flames. International Journal of Hydrogen Energy. 2006(doi: 10.1016/j.ijhydene.2006.08.037).
    
    [95] R.Swain, M. Fuel leak simulation. Proceedings of the 2001 DOE Hydrogen Program Review. 2001.
    
    [96] Sato, Y., et al. Experiments on hydrogen deflagration. Journal of Power Sources. 2006. 159: p. 144-148.
    
    [97] Middha, P., O. R.Hansen, and I. E.Storvik. Validation of CFD-model for Hydrogen Dispersion, World Conference on Safety of Oil and Gas Industry 2007. 2007: Gyeongju, Korea.
    
    [98] Michael R, Swain., et al. Hydrogen leakage into simple geometric enclosures. International Journal of Hydrogen Energy. 2003. 28: p. 229-248.
    
    [99] K. Takeno., et al. Dispersion and explosion field tests for 40 MPa pressurized hydrogen. International Journal of Hydrogen Energy. 2007. 32: p. 2144-2153.
    
    [100] L.C, Shirvill., et al. Characterisation of the hazards from jet releases of hydrogen. 2nd International Conference on Hydrogen Safety. 2007: Spain.
    
    [101] O.A.rosyid, D.Jablonsk, and U.Hauptmanns. Risk analysis for the infrastructure of a hydrogen economy. International Journal of Hydrogen Energy. 2007. 32: p. 3194-3200.
    
    [102] D.Schmidt, U.Krause, and U.Schmidtchen. Numerical simulation of hydrogen gas release betwen buildings. International Journal of Hydrogen Energy. 1999. 24: p. 479-488.
    
    [103] A.G.Venetsanos, et al. CFD modelling of hydrogen release, dispersion and combustion for automotive scenarios. Journal of Loss Provetion in the Process Industries. 2008. 21: p. 162-184.
    [104]Rigas,F.and S.Sklavounos.Evaluation of hazard associated with hydrogen storage facilities.International Journal of Hydrogen Energy.2005.30:p.1501-1510.
    [105]A.Olvera,H.and A.R.Choudhuri.Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres.International Journal of Hydrogen Energy.2006.31:p.2356-2369.
    [106]H.Wilkening and D.Baraldi.CFD modelling of accidental hydrogen release from pipelines.International Journal of Hydrogen Energy.2007.32:p.2206-2215.
    [107]Molkov,V.V.,D.V.Makarov,and E.Prost.Numerical simulation of liquefied and gasous hydrogen releases at large scales.2nd International Conference on Hydrogen Safety.2007:Spain.
    [108]Granovskiy,E.A.,et al.Numerical modelling of hydrogen release,mixture and dispersion in atmosphere.2nd International Conference on Hydrogen Safety.2007:Spain.
    [109]王红雨.液氢加注系统的气体置换方法探讨.低温与特气.2007.25(3):p.20-22.
    [110]潘爱华等.汔车用氢燃料加氢站系统配置的研究.工矿自动化.2003(6):p.17-19.
    [111]National Institute of Standards and Technology.http://webbook.nist.gov /chemistry.
    [112]华自强,张忠进.工程热力学.2000:高等教育出版社.
    [113]何喜鹏,孙伟民.新型节能墙体的动态传热反应系数法分析.南京工业大学学报:自然科学版.2002.24(1):p.67-71.
    [114]马威,王丹华,陆利蓬.提高Spalart-Allmaras湍流模型对分离模拟能力的研究.航空动力学报.2008.23(8):p.1474-1479.
    [115]罗东明.基于预处理的低速小展弦比机翼数值模拟.南京航空航天大学学报.2008.40(4):p.480-483.
    [116]黄玉娟,李晓东,陈江.湍流模型对涡轮数值模拟结果的影响.工程热物理学报.2007.28(1):p.97-100.
    [117]李广宁,李杰,李凤蔚.S-A湍流模型在N-S方程求解中的应用研究.弹箭与制导学报.2006.26(2):p.1180-1186.
    [118]夏刚,文科,秦子增.Spalart-Allmaras湍流模型在高超声速气动加热计算中的应用.国防科技大学学报.2002.24(6):p.15-18.
    [119]Liu,YL,et al.Numerical simulation on fast filling of hydrogen for composite storage cylinders.ASME Pressure Vessels and Piping Conference.2008.Chicago,Illinois.
    [120]Fluent操作手册中文版.第9章:p.9.
    [121]美国NIST数据中心http://webbook.nist.gov/chemistry
    [122]赵稼祥.苏联碳纤维性能的测试分析和研究.宇航材料工艺.1991(3):p.30-35.
    [123]李春胜,黄德彬.机械工程材料手册.2007,北京:电子工业出版社.
    [124]陈平,刘胜平.环氧树脂.1999,北京:化学工业出版社.
    [125]张仲,刘浩.简立方结构复合材料导热系数的研究.山东工业大学学报.1996.26(3):p.256-260.
    [126]陈则韶,钱军,叶一火.复合材料等效传热系数的理论推算.中国科学技术大学学报.1992.22(4):p.416-424.
    [127]杨泽亮,刘承东,杨元俊.多孔不均匀性金属混合物的传热研究.华南理工大学学报(自然科学版).1997.25(6):p.80-84.
    [128]何陵挥,成振强,刘人怀.含均匀界面相碳/碳纤维复合材料等效热传导性质的研究.应用数学和力学.1997.18(3):p.193-201.
    [129]黄丽.聚合物复合材料.2001,北京:中国轻工业出版社.
    [130]卢建航,孙宏,尹海山.用准稳态法测定橡胶及橡胶基复合材料的导热系数和比热容.轮胎工业.2001.21(5):p.305-309.
    [131]JC,M.,A treatise on electricity and magnetism.1954,New York:Dover.
    [132]Dag,B.The prediction of the thermal conductivity of heterogeneous mixtures.Annual Physics.1935.24:p.636-640.
    [133]McCullough,R.L.Generalized combining rules for predicting transport properties of composite materials.Composite Science Technology.1985.22:p.3-21.
    [134]Zhou,H.,S.Zhang,and M.Yang.The effect of heat transfer passagers on the effective thermal conductivity of high filler loading composite materials.Composite Science and Technology.2007.67:p.1035-1040.
    [135]J.Hu,et al.Analysis of composite hydrogen storage cylinders subjected to localized flame impingements.International Journal of Hydrogen Energy.Accepted paper,2008.
    [136]丁信伟,王淑兰,徐国庆.可燃及毒性气体泄漏扩散研究综述.化学工业 与工程.1999.16(2):p.118-121.
    [137]陈天石,胡双启.可燃气体爆炸发生过程研究进展.科技情报开发与经济.2006.16(17):p.171-172.
    [138]王淑兰等.易燃气和毒气泄放扩散浓度计算.化工装备技术.2001.22(4):p.22-25.
    [139]Pesquill,F.,Atmospheric diffusion.1974,New York:Wiley.
    [140]李学军.化学毒性气体事故泄漏扩散的数值模拟及评价.山东化工,2003.32:p.21-23.
    [141]段卓平,吕武轩.易燃、易爆(有毒)重大危险源(罐区)泄漏物扩散模型及数值模拟.中国安全科学学报.1999.9(4):p.65-69.
    [142]Ermak,D.L.,et al.A comparison of dense gas dispersion model simulations with burro series LNG spill test results.Journal of Hazardous Materials.1982.6(1-2):p.129-160.
    [143](日)难波桂芳编.化工厂安全工程.1985,北京:化学工业出版社.
    [144]Chan,S.T.,D.L.Ermak,and L.K.Morris.FEM3 model simulations of selected thorney island phase Ⅰ trials.Journal of Hazardous Materials.1987.16:p.267-292.
    [145]刘延雷等.环境温度对高压储氢罐泄漏扩散影响的数值模拟.工程热物理学报.2008.29(5):p.770-772.
    [146]刘延雷等.障碍物对管道天然气泄漏扩散影响的数值模拟.石油化工高等学校学报.2007.20(4):p.81-84.
    [147]氢气安全使用技术规程.1985.
    [148]吴子牛.计算流体力学基本原理.2001,北京:科学出版社.
    [149]中国气象局国家气象信息中心
    [150]氢气加氢站技术规范.中华人民共和国国家标准.
    [151]徐平等.高压储氢罐不同位置泄漏扩散的数值模拟研究.高校化学工程学报.2008.29(12):p.921-926.
    [152]刘诗飞,詹予忠.重大危险源辨识及危害后果分析.2004.北京:化学工业出版社
    [153]董志勇.射流力学.2005,北京:科学出版社.
    [154]范宝春,姜孝海,谢波.障碍物导致甲烷—氧气爆炸的三维数值模拟.煤 炭学报,2002.27(4):p.371-373.
    [155]R.Mvros,B.S.Dean and E.P.Krenzelok.Home exposure to chorine/chloramine gas.Review of 216 cases.Southern Medical Joumal.1993.29:p.3075-3087.
    [156]H.Kang and T.W.Jones.Numerical studies of diffusive shock acceleration at spherical shocks.Astroparticle Physics.2006.25:p.246-258.
    [157]A.Bouazza and T.Vangpaisal.Laboratory investigation of gas leakage rate through a GM/GCL composite liner due to a circular defect in the geomembrane.Geotextiles and Geomembranes.2006.24:p.110-115.
    [158]Tchouvelev,A.V.,et al.Effectiveness of small barriers as means to reduce clearance distances.Intemational Joumal of Hydrogen Energy.2007.32:p.1409-1415.
    [159]Barbosa,S.,et al.Control of combustion instabilities by local injection of hydrogen.Proceedings of the Combustion Institute.2007.
    [160]孟志鹏,王淑兰,丁信伟.可燃性及毒性气体在障碍物附近泄漏扩散的数值模拟.化工装备技术.2004.25(1):p.47-50.
    [161]Tabkhi,F.,et al.A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection.International Journal of Hydrogen Energy.2008.33(21):p.6222-6231.
    [162]Grasso,N.,et al.Fire prevention technical rule for gaseous hydrogen transport in pipelines.International Journal of Hydrogen Energy.2009.34(10):p.4675-4683
    [163]Haeseldonekx,D.and W.D'haeseleer.The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure.International Journal of Hydrogen Energy.2007.32(10-11):p.1381-1386.
    [164]刘延雷等.管道输运高压氢气与天然气的泄漏扩散数值模拟.太阳能学报.2008.29(10):p.1250-1253.
    [165]Kang,H.Jones,T W.Numerical studies of diffusive shock acceleration at spherical shocks.Astroparticle Physics.2006,25:p.246-258
    [166]别海燕等,环境风速对高压储氢罐泄漏扩散影响的数值模拟与分析.第二届中国国际氢能大会.上海,2007:p.167-171
    [167]郑津洋等.障碍物对高压储氢罐泄漏扩散影响的数值模拟.浙江大学学 报工学版.2008,42(12):p.2177-2180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700