光发酵细菌的选育及其与暗发酵细菌耦合产氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,化石能源能源短缺,石油价格日益攀升,亟需寻求可再生、高效、清洁能源来替代。氢气作为清洁能源的首选,是未来理想的燃料之一。光发酵生物制氢技术能将有机废水净化处理、氢能开发和太阳能利用三者有机耦合,是一种低成本、低能耗的绿色能源生产技术。暗-光发酵细菌耦合生物制氢技术能够提高底物转化效率,实现氢气产量的最大化,深度产氢,具有更为广阔的应用前景,对于加快生物制氢技术的产业化步伐也具有重要的意义。
     本文从淡水鱼塘底泥中分离获得一株产氢光发酵细菌菌株RLD-53,经细胞形态学、生理生化特征以及系统进化发育分析,将其鉴定为Rhodopseudomonas faecalis的新菌株RLD-53,并采用间歇培养试验确定了其最佳生长和产氢条件。菌株RLD-53对乙酸具有高效的氢转化率,其比产氢量为2.64-2.835 mol H2/mol乙酸钠,底物转化效率为66%-71%,最大产氢速率可达32.62 ml H2/l/h,平均氢气含量约81%。
     菌株RLD-53不能利用丁酸和乙醇进行产氢,而丁酸和乙醇分别是丁酸型发酵细菌和乙醇型发酵细菌代谢物的主要成分,它们和乙酸的浓度比决定着耦合系统的产氢能力。因此,本文研究了双碳源作为底物时光发酵的氢气生产效能,结果表明丁酸钠添加到乙酸钠培养基中对菌株的生长和产氢影响显著,高浓度的丁酸钠抑制细菌的生长和产氢,同时确定了二者最佳产氢的比例关系。当丁酸钠对乙酸钠比例1:2时,比产氢量为3.425 mol H_2/mol乙酸钠,最大氢气产率32.53 ml H2/l/h,氢气含量高达84.27%。乙醇的添加对细菌的生长和产氢有微弱促进作用。
     Ni~(2+)、Fe~(2+)和Mg~(2+)三种金属离子对光发酵细菌的产氢和生长有明显的影响。其中Ni~(2+)和Fe~(2+)是构成产氢关键酶的主要成分,在一定的浓度范围内能够促进细菌的生长和产氢,过高或过低的浓度对产氢和生长有抑制作用。Mg~(2+)对产氢无明显影响,但在试验浓度范围内却明显的促进细胞的生长,是培养基中不可或缺的成分。不同的气体作为气相对产氢有显著影响,其中高浓度的二氧化碳作为气相明显抑制光发酵细菌的生长和产氢。据此,提出了二氧化碳和反应体系分离的试验方法,成功的促进了R.faecalis RLD-53的氢气生产,降低了二氧化碳的抑制作用。
     采用间歇重复补料的方法进行光发酵产氢试验,通过控制补料浓度和pH实现高效产氢,平均氢气产量达3.17 mol H_2/mol乙酸钠,同间歇试验产氢能力相比有较大的优越性。为了增加R. faecalis RLD-53对酸性环境的耐受力,提高基质的氢转化率,试验采用琼脂固定化RLD-53,从琼脂颗粒粒径、菌龄、琼脂颗粒浓度、包埋生物量、耐酸性和光照强度等方面展开固定化光发酵细菌产氢研究,结果表明:固定化细菌能够明显促进氢气生产,延长产氢时间,增加底物利用率和转化效率,而且能够耐受一定程度的酸性环境,甚至在pH 5.0时也有氢气产生。
     在暗光发酵细菌耦合产氢过程中,首次使用了游离的暗发酵细菌和固定化的光发酵细菌,更重要的是利用磷酸缓冲液来维持反应体系不同的pH,使暗发酵代谢物成分发生了转变,成功的增加了乙酸在代谢物中的含量,同时使用琼脂包埋RLD-53,增加了其对酸的耐受力和氢气产量。研究发现,在暗光两步法产氢过程中暗发酵代谢物的稀释率扮演着重要角色,影响着光发酵细菌对代谢物的有效转化和利用;在混合培养间歇产氢试验中,控制系统的初始pH和暗光细菌的比例也是一个关键因素。初始pH控制在7.5时,整个反应过程中pH在6.5-7.5,并适当的增加光发酵细菌的数量,以寻求暗光细菌在生长和产氢速率上的相对匹配,有助于暗光发酵细菌协同作用、高效产氢。同时对暗-光发酵耦合产氢机制和产氢关键因素进行了初步分析。
At present, energy substitute for fossil fuels need urgently because the lack of fossil energy source and the increase of international petrolic price. Hydrogen is to replace fossil fuels in the future, will become world’s“clean energy choice”, it has to be produced renewably and in large scale, through environmentally benign processes. Among bio-hydrogen production processes, photo-fermentation hydrogen production can combining solar energy, wastewater treatment and cleaning energy source production, the cost was decreased, considered as a potential hydrogen production technology in engineering application. The combination of dark and photo-fermentation can improve hydrogen yield and substrate conversion efficiency, and it is significant for scale bio-hydrogen production in future.
     In this study, a photo-fermentation bacterium strain RLD-53 was isolated from freshwater pond sludge. According to their morphology, physiological and biochemical characteristics, blast of the sequences of 16S rDNA and analysis of phylogenetic tree, we characterized it as a new strain within the species R. faecalis and designated as R. faecalis strain RLD-53. Optimal culture and H_2 production conditions of strain RLD-53 were determined in batch tests. Strain RLD-53 can convert acetate into H_2 with high efficiency. The hydrogen yields were 2.64-2.84 mol H_2/mol acetate and the maximum hydrogen production rate was 32.62 ml-H_2/l/h and average hydrogen content was about 81%。
     R. faecalis RLD-53 can not utilize butyrate and ethanol as sole carbon source for hydrogen production under anaerobic light conditions. But, butyrate and ethanol are main byproducts in butyrate and ethanol fermentation, respectively. The ratio of butyrate and ethanol to acetate was key factors for hydrogen production of the combination of dark and photo-fermentation bacteria. Therefore, the capacity of hydrogen production was studied when dual carbon sources were used as substrate. Results indicate that butyrate added in acetate medium significantly affected on photo-hydrogen production and butyrate of high concentration evidently inhibited on the growth and hydrogen production of RLD-53, and the optimal ratio of butyrate to acetate for H_2 production was determined. When the ratio of butyrate to acetate at 1:2, the hydrogen yields and maximum hydrogen production rate were 3.43 mol H_2/mol acetate and 32.53 ml H_2/l/h, respectively, and average hydrogen content reached about 84.27%. Effect of ethanol on hydrogen production was slightly.
     Effects of Ni~(2+), Fe~(2+) and Mg~(2+) on photo-hydrogen production and cell growth were obviously. In an appropriate range, Ni~(2+) and Fe~(2+) can increase the hydrogen production and cell growth with increasing their concentration. A low or high Ni~(2+) and Fe~(2+) concentration will inhibit photo-hydrogen production. Mg~(2+) concentration did not obviously affect hydrogen production by R. faecalis RLD-53. However, Mg~(2+) of different concentration in culture medium just promoted cell growth.
     Different gases as gas phase evidently influenced on photo-hydrogen production. Observation indicates that CO2 of high concentration have inhibited effect on cell growth and H_2 production. Therefore, we proposed a method of separation of CO2 from reaction system and it successfully stimulated photo-H_2 production in the entire H_2 production process.
     In fed-batch culture hydrogen production process, hydrogen production was improved by the control of feeding acetate concentration and pH. The average hydrogen yield of 3.17 mol H_2/mol acetate in this study was substantially higher than that in other study by pure cultures of bacteria. So experiments demonstrated the repeated fed-batch mode compared with batch culture obtained higher efficiency for hydrogen production.
     In order to increase acid-resistant capacity of RLD-53 and efficiency of substrate conversion into hydrogen, immobilized cells were used. The effects of diameter of agar granule, inoculant age, agar concentration, biomass in agar and light intensty on immobilized RLD-53 were investigated and at pH 5.0 hydrogen was also produced.
     The combination of dissociate dark-fermentation bacteria and immobilized photo-fermentation bacteria for hydrogen production was adopted first time in this study. To important, phosphate buffer was used to maintain different pH of culture system and the change of component of metabolites from dark-fermentation, and the content of acetate was successfully increased. Results showed that the dilution ratio of metabolites from dark-fermentation play an important role in two step hydrogen production and the control of initial pH and the ratio of dark and photo-bacteria were key factors in mixed culture hydrogen production. At initial pH 7.5, pH of entire process at 6.5-7.5, and properly increased the concentration of strain RLD-53, these were favorable to dark and photo-fermentation bacteria. The mechanism and key factors of hydrogen production by the combination of dark and photo-fermentation was analyzed preliminary.
引文
1能源技术展望2008.世界环境. 61-64.
    2 Winter CJ. Into the hydrogen energy economy-mile stones. Int J Hydrogen Energy 2005; 30: 681-685.
    3 Armor JN. Themultiple roles for catalysis in the production of H2. Appl Catal A: Gen 1999; 176: 159-176.
    4 United States Department of Energy. An integrated research, development and demonstration plan. Hydrogen Pasteur Plan, 2004.
    5周汝雁,尤希凤,张全国.光合微生物制氢技术的研究进展.中国沼气. 2006; 24(2): 31-34.
    6 Ren NQ, Wang BZ, Huang JC. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. BIOTECHNOLOGY BIOENGINEERING 1997; 54(5): 428-433
    7林明.高效产氢发酵新菌种的产氢机理及生态学研究.哈尔滨工业大学博士学位论文. 2002.
    8 Xing DF, Ren NQ, Li QB, Lin M, Wang AJ, Zhao LH. Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int J Systematic Evolutionary Microbiology 2006; 56: 755-760.
    9 Xing DF, Ren NQ, Wang A J, Li QB, Feng YJ, Ma F. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. Int J Hydrogen Energy 2008; 33: 1489-1495.
    10 Happe T, Hemschemeier A, and Winkler M. Hydrogenase in green: do they save the algae’s life and solve our energy problems? Trends In Plant Science 2002; 7: 246-225.
    11 Gaffron H. Reduction of carbon dioxide with molecular hydrogen in green algae. Am J Bot 1939; 27: 273-283.
    12 Gaffton H, Rubin J. Fermentative and photochemicali production of hydrogen in algae. J Gen Physio 1942; 26: 219-240.
    13 Greenbaum E. Photosynthetic hydrogen and oxygen production: kinetic studies. Science 1982; 196: 879-880.
    14 Maione T.E, Gibbs M. Hydrogenase-mediated activities in isolated chloroplast of Chlamydomonas reinhardtii. Plant physiol 1986; 80: 360-363.
    15 LammaM J, Serra RaoK K, HallD O. Isolation and characterization of thehydrogenase activity from the nonheterocystous cyanobaeterium Spirulinamaxima. Febslett 1979; 98(2): 342-346.
    16 Kessler E. Effect of anaerobiosis on photosynthetic reactions and nitrogen metabolismofalgaewith andwithout hydrogenase. Arch Microbiol 1973; 93: 91-100.
    17 Florin L, Tsokoglou A, Happe T. A novel type of [Fe]-hydrogenase in the green alga Scenedesmus obliques is linked to the photosynthetical electron transport chain. J Biol Chem 2001; 276: 6125-6132.
    18 Ghirardi ML, Togasaki RK, Seibert M. Oxygen sensitivity of algal H2 production. Applied Biochemistry Biotechnology 1997; 63-65: 141-151.
    19潘丽霞,杨登峰,梁智群.绿藻高效制氢影响因素的研究.中国生物工程杂志. 2007; 27(4): 146-152.
    20 Melis A, Zhang LP, Mare F,Ghirardi ML, Seibert M. Sustained Photobiologieal Hydrogen Gas Production upon Reversible Inaetivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii.Plant Physiology. 2000; 122: 127-135.
    21 Zhang L, Happe T, Melis A. Biochemistry and morphological characterization of sulfur-deprived amd H2-producting Chlamydomonas reinhardtii (green alga). Planta 2002; 214: 552-561.
    22 Melis A, Happe T. Hydrogen production: Green algae as a source of energy. Plant Physiology 2001; 127: 740-748.
    23 Seribert M, Ghirardi M.L, Serbert M. Accumulation of O2-tolerant phenotypes in H2-producing strains of Chlamydomonas reinhardtii by sequential application of chemical mutagenesis and selection. Int J Hydrogen Energy 2002; 27:1421-1430.
    24 Zhu CX, Chen BJ, Song HY. Rhodopseudonlonas capsulate membrane union condition hydrogen enzyme physiology electron acceptor archery target research. Acta Micrologica Sinica 1986; 26(4): 326-332.
    25 Pinto FAL, Troshina O, Lindblad P. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy 2002; 27(11): 1209-1215.
    26才金玲,王广策,杨素萍,周百成.生物制氢研究进展.海洋科学集. 2007; 48: 176-190.
    27 Benemann JR. Hydrogen production by microalgae. J Applied Phycology 2000;12: 291-300.
    28 Kumar D, Kumar HD. Hydrogen production by several cyanobacteria. Int J Hydrogen Energy 1992; 17(11): 847-852.
    29朱建良,冯有智.固氮类微生物产氢机理研究进展.南京工业大学学报. 2003; 25(1): 102-105.
    30 Belkin SPE. Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica. Archives Microbiology 1978; 116(1): 109-111.
    31 Willison JC, Madern D, Vignais PM. Increased photoproduction of hydrogen by non-autrophic nutants of Rhodopseudomonas capsulate. Biochem J 1984; 219: 583.
    32 Vasilyeva L, Miyake M, Khatipov E, Wakayama T, Sekine M, Hara M, Nakada E, Asada Y, Miyake J. Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system. J Bioscience Bioengineering 1999; 87(5): 619-624.
    33 Kim MS, Baeka JS, Leeb JK. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant.Int J hydrogen energy 2006; 31: 121–127.
    34 Tao YZ, He YL, Wu YQ, Liu FH , Li XF, Zong WM, Zhou ZH. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrogen Energy (2008), doi: 10.1016/j.ijhydene.2007.11.021.
    35杨素萍,赵春贵,李建波,康从宝,曲音波.高效选育产氢光合细菌的研究.山东大学学报. 2002; 37(4): 353-358.
    36郑耀通,胡开辉,高树芳.高效净化水产养殖水域紫色非硫光合细菌的分离与筛选.福建农业大学学报.1998, 27(3): 342-346.
    37郑耀通,高树芳.耐氨光合细菌Rhodobacter sphaeroides G2B处理有机废水产氢性能研究.武夷科学. 2003; 19: 11-16.
    38 Kim EJ, Lee MK, Mi-Sun Kim, Lee JK. Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum. Int J Hydrogen Energy 2008; 33: 1516-1521.
    39 Kars G, Gündüz U, Yücel M, Rakhelyc G, Kovacsc KL, Erog I. Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources. Int J HydrogenEnergy 2009; 34: 2184-2190.
    40 Deisenhofer J, Epp O, Sinning Ietal. Mo.l Bio.l 1995; 246: 429.
    41 Zinth W, Kaiser W. Time-resolved spectroscopy of the primary electron transfer in reaction centers of Rhodopseudomonas viridis and Rhodobacter sphaeroides.In: Deisenhofer J, Norris J R, eds. The Photosynthetic Reaction Center, Vol:Ⅱ. California: Academic Press Inc, 1993. 71-88.
    42 Fischer S F, Scherer POJ. Charge separation in photosynthesis via a spin exchange coupling mechanisim. Eur Biophys J, 1997; 26(6): 477-483.
    43 B.K. Burgess, D.J. Lowe, Chem. Rev. 1996; 96: 2983-3011.
    44 J. Kim, D.C. Rees, Science 1992; 257: 1677-1682.
    45 J. Kim, D.C. Rees, Nature 1992; 360: 553-560.
    46 M.K. Chan, J. Kim, D.C. Rees, Science 1993; 260: 792-794.
    47 J. Kim, D.C. Rees, Biochemistry 1994; 33: 389-397.
    48 Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC. Crystallographic Structure of the Nitrogenase Iron Protein from Azotobacter vinelandii. Science 1992; 257: 1653.
    49 Jones BL, Monty KJ. Glutamine as a feedback inhibitor of the Rhodopseudomonas sphaeroides nitrogenase system. J Bacteriol 1979; 139(3): 1007-1013.
    50 Gest H, Kamen MD, BregoN. Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J Biol Chem 1950; 182: 153-170.
    51 Fedorov AS, Tsygankov AA, Rao KK, Hall DO. Hydrogen photo-produetion by Rhodobaeters phaeroides immobilized on polyurethane foam.Bioteehnol Lett.1998; 20: 1007-1009.
    52 Nandi R, Sengupta S. Microbial production of hydrogen: An overview. Crit Rev Microbiol 1998; 24(1): 61-84.
    53 Yakunin AF, Tsygankov AA, Troshina OY, Gogotov IN. Growth and nitrogenase activity of continuous cultures of the purple bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides depending on the presence of Mo, V, and W in the medium. Mikrobiyologiya 1991; 60: 41-46.
    54 Jouanneau Y, Wong B, Vignais PM. Stimulation by light of nitrogenase synthesis in cells of Rhodopseudomonas capsulata growing in N-limited continuous cultures. Biochim Biophys Acta 1985; 808: 149-155.
    55 Meyer J, Kelley BC, Vignais PM. ENect of light on nitrogenase function andsynthesis in Rhodopseudomonas capsulata. J Bacteriol 1978; 136(1): 201-208.
    56 Vignais PM, Colbeau A, Willison JC, Jouanneau Y. Hydrogenase, nitrogenase and hydrogen metabolism in photosynthetic bacteria. Adv Microb Physiol 1985; 26: 154–234.
    57 Turkarslan S, Yucel M, Gunduz U, Turker L, Eroglu I. Identification of hydrogenase from Rhodobacter species and hydrogen gas production in photobioreactors. In: Abstract Book, BioHydrogen 2002 Conference, Ede, the Netherlands, April 21-24, 2002.
    58 Gogotov IN. Hydrogenases of phototrophic microorganisms. Biochimie 1986; 68: 181-187.
    59 Jahn A, Keuntje B, DorYer M, Klipp W, Oelze J. Optimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in th hupL gene. Appl Microbiol Biotechnol 1994; 40(5): 687–690.
    60 Kern M, Klipp W, Klemme JH. Increased nitrogenase dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum. Appl Env Microbiol 1994; 60(6): 1768–1774.
    61徐冬青,吴永强.光合菌Rhodobacter sphaeroides 601 hupT基因的克隆与功能分析.植物生理学报. 2001; 27(6): 509-514.
    62龙敏南,苏文金, Albracht SPJ,张凤章,许良树.光合细菌Chromatium vinosum可溶性氢酶的FTIR谱的研究.生物物理学报. 2001; 17(2): 267-274.
    63 Winter G, Buhrke T, Lenz O, Jones AK, Forgber M, Friedricha B. Amodel system for [Ni-Fe] hydrogenase maturation studies: Purification of an active site-containing hydrogenase large subunitwithout small subunit. FEBS Letter 2005; 579: 4292-4296.
    64 Cantrell MA, Haugland RA,Evans H J. Proc Natl Acad Sci USA 1983; 80: 181-185.
    65 Rey FE, Oda Y, Harwood CS. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J Bacteriology 2006; 188(17): 6143-6152.
    66 Zepp RG, Callaghant V, Erickson EJ. Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochem Photobiol Sci 2003; 2: 51-61.
    67 Sasikala K, Ramana CV, Rao PR. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001.Int J Hydrogen Energy 1991; 16(9): 597–601.
    68杨素萍,赵春贵,刘瑞田,曲音波,钱新民.沼泽红假单胞菌乙酸光合放氢研究.生物工程学报. 2002; 18(4): 486-491.
    69朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子试验研究.应用生态学报. 1997; 8(2): 194-198.
    70徐向阳,郑平,俞秀娥,冯孝善.固定化光合细菌处理有机废水过程产氢的研究-Ⅱ.红细菌菌株D利用有机物光产氢的特性.太阳能学报. 1993; 14(4): 288-294.
    71钱一帆,郑广宏,康铸慧,王磊.不产氧光合细菌Rhodobacter sphaeroides产氢影响因子研究.工业微生物. 2007; 37(5):6-12.
    72 Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnology 2001; 85: 25–33.
    73张军合,张全国,杨群发,王艳锦.光照度对猪粪污水条件下红假单胞菌光合产氢的影响.农业工程学报. 2005; 21(9):134-136.
    74 Basar Uyar, Inci Eroglu, MeralYücel, Ufuk Gündüz, Lemi Türker. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. 2007; 32: 4670-4677.
    75 Kim NJ, Lee JK, Lee CG. Pigment reduction to improve photosynthetic productivity of Rhodobacter sphaeroides. J Microbiol Biotechnol 2004; 14(3): 442–449.
    76 Barbara R, Genthner S, Judy D. Wall Ammonium uptake in Rhodopseudomonas capulata. Arch Microbiol 1985; 141: 219-224.
    77 Oh YK, Seol EH, Kimc MS, Parka S. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 2004; 29: 1115-1121.
    78 Lakshmi R and Polasa H. Influence of nitrogen source on hydrogen generation by a photosynthetic bacterium. World J Microbiology Biotechnology 1991; 7: 618-621.
    79 Takabatake H, Suzuki K, Ko IB, Noike T. Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresource Technology 2004; 95: 151-158.
    80 Shi XY, Yu HQ. Continuous production of hydrogen frommixed volatile fatty acids with Rhodopseudomonas capsulate. Int J Hydrogen Energy 2006; 31:1641-1647.
    81 Chen CY, Lu WB, Liu CH, Chang JS. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresource Technology 2008; 99: 3609–3616.
    82 Yetis M, Gunduz U., Eroglu I, Yucel M, Turker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 2000; 25: 1035–1041.
    83 Eroglu E, Gunduz U, Yucel M, Turker L,˙Eroglu I. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrogen Energy 2004; 29: 163-171.
    84尤希凤,周静懿,张全国,王艳锦.红假单胞菌利用畜禽粪便产氢能力的试验研究.河南农业大学学报. 2005; 39(2): 215-217.
    85孙琦,徐向阳,焦杨文.光合细菌产氢条件的研究.微生物学报. 1995; 35(1): 65-73.
    86傅雅婕,黄锦丽,龙敏南,魏文铃,张凤章.产氢细菌的分离鉴定和条件.南昌大学学报. 2004; 28(2): 167-169.
    87钱一帆,郑广宏,康铸慧,王磊.不产氧光合细菌Rhodobacter sphaeroides产氢影响因子研究.工业微生物. 2007; 37(5): 6-12.
    88魏丽芳,郑先君,张治红,许培援,魏明宝. pH值对光合细菌利用乙酸(钠)产氢的影响.河南化工. 2007; 24: 32-34.
    89杨素萍,赵春贵,刘瑞田,曲音波,钱新民.沼泽红假单胞菌乙酸光合放氢研究.生物工程学报. 2002; 18(4): 486-491.
    90 Yetis M, Gündüz U, Eroglu I, Yücel M, Türker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 2000; 25: 1035-1041.
    91 Chen CY, Lee CM, Chang JS. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors. Biochem Eng J 2006; 32: 33-42.
    92 Ludden PW, Roberts GP. The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria. In: Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Netherlands, 1995; pp: 929-947.
    93 Sasikala K, Ramana CV, Rao PR, Subrahmanyam M. Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U.001. Int J HydrogenEnergy 1990; 15 (11): 795-797.
    94 Weaver PF, Lien S, Senbert M. Photobiological production of hydrogen. Sol. Energy 1980; 24, 3-45.
    95 de Morais MG, Costa JA. Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 2007; 129: 439-445.
    96 Chae SR, Hwang EJ, Shin HS. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor. Bioresource Technol 2006; 97: 322-329.
    97 Keffer JE, Kleinheinz GT. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J Ind Microbiol Biotechnol 2002; 29: 275-280.
    98 Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S. Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manage 1995; 36: 689-692.
    99 Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 1996; 82: 351-354.
    100杨素萍,赵春贵,曲音波,钱新民.铁和镍对光合细菌生长和产氢的影响.微生物学报. 2003; 43(2): 257-263.
    101 Zhu HG, Fang HHP, Zhang T, Beaudettec LA. Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 2007; 32: 4112-4118.
    102 Nath K, Das D. Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 2004; 65: 520-529.
    103 Hawkes FR, Dindale R, Hawkes DL, Hussy I. Sustainable fermentative biohydrogen: challenges for process optimization. Int J Hydrogen Energy 2002; 27: 1339-1347.
    104 Momirlan M, Veziroglu TN. Recent directions of world hydrogen production. Renewable Sustainable Energy Rev 1999; 3: 219-231.
    105 Nath K, Kumar A. Das D. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 2005; 68: 533-554.
    106 Tao YZ, Chen Y, WuYQ, He YL, Zhou ZH. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J HydrogenEnergy 2007; 32: 200-206.
    107 Chen CY, Yang MH, Yeh KL, Liu CH , Chang JS. Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrogen Energy (2008), doi:10.1016/j.ijhydene.2008.06.055.
    108 Lo YC, SD Chen, CY Chen, TI Huang, CY Lin, Jo-Shu Chang. Combining enzymatic hydrolysis and dark–photo fermentation processes for hydrogen production from starch feedstock: A feasibility study. Int J Hydrogen Energy (2008), doi:10.1016/j.ijhydene.2008.05.014.
    109 Oh YK, Seol EH, Kim MS, Parka S. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energ 2004; 29: 1115–1121.
    110 Nath K, Muthukumar M, Kumar A, Das D. Kinetics of two stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 2008; 33 (4): 1195-1203.
    111 Yokoi H, Mori S, Hirose J. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnol Lett 1998; 20(9): 895–899.
    112 Redwood MD, Macaskie LE. A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energ 2006: 31(11): 1514–1521.
    113 Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 2001; 91(1): 58-63.
    114李建政,任南琪,林明,王勇.有机废水发酵法生物制氢中试研究.太阳能学报. 2002, 23(2): 252-256
    115 Weetall HH, Sharma BP, Detar CC. Photo-metabolic production of hydrogen from organic substrates by immobilized mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae. Biotechnol Bioeng 1981; 23: 605–614.
    116 Odom JM, Wall JD. Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Applied Environmental Microbiology 1983; 45: 1300-1305
    117 Miyake J, Mao XY, Kawamura S. Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum. J Ferment Tech 1984; 62: 531–535.
    118 Yokoi H , Mori S, Hirose J, Hayashi S, i Takasaki Y. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters 1998; 20(9): 895-899.
    119郑耀通,闵航.共固定光合和发酵性细菌处理有机废水生物制氢技术.污染防治技术. 1998; 11(3): 187-189.
    120 Asada Y, Tokumoto M, AiharaY, Oku M, Ishimi K, WakayamaT, Miyake J, Tomiyama M, Kohno H. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrogen Energy 2006; 31: 1509-1513.
    121 Fang HHP, Zhu HG, Zhang T. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricumand and Rhodobacter sphaeroides. Int J Hydrogen Energy 2006; 31: 2223-2230.
    122 Weetall HH et al. Abst of papers Fifth int Fermentation Symp 1976; 299.
    123 Francou N, Vignais PM. Hydrogen production by Rhodopseudomonas capsulatacells entrapped in carrageenan beads. Biotechnology Letters 1984; 6(10): 639-644.
    124 Alain Planchard. Photoproduction ofmolecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures. Applied Microbiology and Biotechnology 1989; 31(1): 49-54.
    125徐向阳,俞秀娥,郑平,冯孝善.固定化光合细菌利用有机物产氢的研究.生物工程学报. 1994; 10(4): 362-368.
    126张全国,荆艳艳,周雪花,李鹏鹏,尤希凤.吸附法固定光合细菌技术产氢能力的研究.农业工程学报. 2008; 24(9): 199-202.
    127张全国,荆艳艳,李鹏鹏,尤希凤,师玉忠.包埋法固定光合细菌技术对光合产氢能力的影响.农业工程学报. 2008; 24(4): 190-193.
    128 B. Schmid, O. Einsle HJ, Chiu A, Willing M, Yoshida JB, Howard, Rees DC. Biochemical and Structural Characterization of the Cross-Linked Complex of Nitrogenase: Comparison to the ADP-AlF?4–Stabilized Structure. Biochemistry 2002; 41: 15557
    129 Zhang DM, Yang HF, Huang ZY, Zhang W, Liu SJ. Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int J Syst Evol Micr 2002; 52: 2055–2060.
    130张明,史家梁.光合细菌光合产氢机理研究进展.应用与环境生物学报. 1999; 5: 25-29.
    131 Hind G, Jagendorf AT. Operation of cofactors two-stage photophosphorylation. Z Naturtorchung. 1963; 189: 689-694.
    132 Takakuwa S, Wall JD. Enhancement of hydrogenase activity inRhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 1981; 12: 359-363.
    133 Wang J, Wan W. Influence of Ni2+ concentration on biohydrogen production. Bioresour Technol 2008. doi:10.1016/j.biortech.2008.04.052.
    134 Lin CY, Lay CH. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 2005; 30: 285-292.
    135 Li CL, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 2007; 37: 1-39.
    136 Fissler J, Schirra C, Kohring GW, Gihorn F. Hydrogen production from aromatic acids by Rhodopseudomonas palustris. Appl Microbiol Biotechnol 1994; 41: 395-399.
    137 Fang HHP, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy 2005; 30: 785-793.
    138 Lee JZ, Klausa DM, Maness PC, Spearc JR. The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process. Int J Hydrogen Energy 2007; 32: 3301-3307.
    139 Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 1985; 50: 1165-1170.
    140 Tsygankov AA, Gogotov IN. The activities of nitrogenase and hydrogenase of Rhodopseudomonas capsulata during its growth under the conditions of nitrogen fixation depending on temperature and pH. Mikrobiologiia 1982; 51: 396-401.
    141 Tsygankov AA, Laurinavichene TV. Dependence of growth and nitrogenase activity on the illumination and pH in Rhodobacter capsulatus with and without Mo. Microbiol 1996; 65: 436-441.
    142 Kim DH, Han SK, Kim SH, Shin HS. Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energy 2006; 31: 2158-2169.
    143林明,任南琪,王爱杰,马放.高效产氢发酵细菌在不同气相条件下产氢.中国沼气. 2002; 20(2): 3-8
    144 Tanisho S, Kuromoto M, Kadokura N. Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 1998; 23(7): 559-563.
    145 Kumazawa S.Photoproduction of hydrogen by the marine heterocystouscyanobacterium Anabaena sp TU37-1 under a nitrogen atmosphere. Mar Biotechnol. 2003; 5: 222-226.
    146 Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technol 2000; 73: 59-65.
    147 Lamed RJ, Lobos JH, Su TM. Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Biol 1988; 54(5): 1216-1221.
    148 Sweet JW, Burris RH. Inhibition of nitrogenase activity by NH4+ in Rhodospirilhm rubrum. J. Bacteriol. 1981; 145: 824-831.
    149 Schnackenberg J, Ikemoto H, Miyachi S. Relationship between oxygen evolution and hydrogen-evolution a Chlorococcum strain with high CO2-tolerance. J Photochem Photobiol B Biol 1995; 28: 171-174.
    150 Li YH, Zhao ZB, Bai FW. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology 2007; 41: 312–317.
    151 Matsui T, Sato H, Yamamuro H, Misawa S, Shinzato N, Matsuda H, Takahashi J, Sato S. High cell density cultivation of recombinant Escherichia coli for hirudin variant 1 production. J Biotechnology 2008; 134: 88–92.
    152 Callewaert R, De Vuyst L. Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation. Applied Environmental Microbiology 2000; 66: 606-613
    153 Chen CY, Lee CM, Chang JS. Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical fiber-assisted illumination systems. Int J Hydrogen Energy 2006; 31: 2345-2355.
    154 Oshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M. Production of hydrogen by a hydrogenase deficient mutant of Rhodobacter capsulatus. J Ferment Bioeng 1998; 85(5): 470-475.
    155 Felten P, et al. Appl Microbiol Biotechnol.1985; 23(l): 15-20.
    156 Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT. Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrogen Energy. 2005; 30: 1393-1397.
    157 Kargi F, Pamukoglu MY. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. Int J Hydrogen Energy 2009;34: 2940–2946.
    158 Kotay SM, Das D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresource Technol 2007; 98: 1183-1190.
    159 Shin JH, Yoon JH, Ahn EK, Kim MS, Sim SJ, Park TH. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. Int J Hydrogen Energ. 2007; 32: 192-199.
    160 Zhao QB, Mu Y, Wang Y, Liu XW, Dong F, Yu HQ. Response of a biohydrogen-producing reactor to the substrate shift from sucrose to lactose. Bioresource Technol 2008; 99: 8344-8347.
    161 Tang GL, Huang J, Sun ZJ, Tang QQ, Yan CH, Liu GQ. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 2008; 106(1): 80-87.
    162 Jo JH, Lee DS, Park D, Park JM. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technol. 2008, doi: 10.1016/j.biortech.2007.11.067.
    163 Sivaramakrishna D, Sreekanth D, Himabindu V, Anjaneyulu Y. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora. Renew Energy 2008; doi:10.1016/j.renene.2008.04.016.
    164 Nath K, Das D. Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. Int J Hydrogen Energy 2009, doi:10.1016/j.ijhydene.2008.11.065
    165 Hustede E, Steinbuchel A, Schlegel HG.Relationship between photoproduction of hydrogen and the accumulation of PHB in non-sulphurpurple bacteria. Appl Microbiol Biotechnol 1993; 39: 87-93.
    166 Singh SP, Sivastava SC, Pandey KD. Hydrogen production by Rhodopseudomonas as the expense of vegetable starch.sugar cane juice and whey. J Hydrogen Energy 1994; 19: 437-440.
    167聂艳秋.废水产氢产酸/同型产乙酸耦合系统厌氧发酵产酸工艺及条件优化.江南大学博士学位论文. 2007.
    168 Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G. X-ray Structure Determination of the Cytochrome c2: Reaction Center ElectronTransfer Complex from Rhodobacter sphaeroides. J Mol Biol 2002; 319: 501–515.
    169 Kim SH, Han SK, Shin HS. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 2006; 41: 199-207.
    170邓娴.一株光发酵细菌的分离鉴定及其产氢特性的研究.哈尔滨工业大学硕士学位论文. 2007
    171 Das D and Veziroglu TN. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 2001; (26): 13-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700