以太阳能为热源的真空膜蒸馏组件与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜蒸馏是一种新型的膜分离技术,可用于海水和苦咸水淡化等领域。目前膜蒸馏海水淡化存在水通量低、产水成本高等问题,制约了其大规模应用。因此,深入研究膜蒸馏系统,提高膜蒸馏海水淡化的产率、降低产水成本,具有重要的现实意义。本文将真空膜蒸馏与太阳能集热系统结合,从真空膜蒸馏过程设计出发,同时对中空纤维膜组件、操作条件等因素对膜蒸馏过程通量的影响进行了模拟优化,并在此基础上进一步研究太阳能真空膜蒸馏集成工艺。
     论文首先考察了中空纤维膜组件装填系数、组件长径比、操作条件、膜结构等对真空膜蒸馏过程的影响。结果表明:膜通量随组件装填系数增加而增加,在装填系数约为11%时达到最大值,随着装填系数继续增加,膜通量减少;膜通量随组件长径比增加而减少,产水量随组件长径比增加而增加,综合以上两方面的因素,组件长径比在4.3-5左右时比较合适;进料温度增加,膜通量显著增加;料液在层流状态下,膜通量随料液流速增加而显著增加,在湍流状态下,膜通量随料液流速增加不明显;增加真空度可以显著提高膜通量;平均孔径适中、空隙率大、厚径比小的膜具有较好的真空膜蒸馏性能。
     其次,基于能量衡算建立了膜管内热量传递方程,利用数值逼近法对中空纤维膜内温度分布进行了模拟计算;基于气相传质关联式,将装填系数等膜组件参数以壳程传质系数形式进行关联;在此基础上利用总传质系数计算真空膜蒸馏的膜通量。通过实验结果与模拟计算结果的比较表明,该模型具有较高的准确性。模型模拟了膜组件参数及膜蒸馏操作条件对真空膜蒸馏过程中温度和通量的影响规律,并为预测系统通量、优化系统操作条件提供了理论依据和指导。
     最后,以杭州地区太阳辐射的理论数据为基础,计算了太阳能真空膜蒸馏集成工艺的生产能力,并研究太阳辐射强度、组件连接方式、组件数目等因素对该工艺的影响。结果表明:我国沿海地区太阳能资源丰富,年产水量约为954kg·m~(-2)(太阳能集热板)。较合适的太阳能集热板面积与膜面积的比例约为11:1。太阳能真空膜蒸馏集成工艺的日产水量随太阳辐射强度增加而显著增加,阴雨天气时工艺无法正常运行。集成工艺的最大膜通量达14L·m~(-2)·h~(-1)。工艺中组件连接方式对通量和产水量影响不大。集成工艺的通量随组件数目的增加而降低,产水量随组件数目的增加而增加。
Membrane distillation(MD)is an emerging separation technology,which can be applied for seawater desalination.At present,low water flux and high cost are still the main barriers for the application of MD in industry.As a result,it is important to study the MD system to increase the water flux and reduce the cost.The vacuum membrane distillation(VMD)system was integrated with the solar still in this paper.And,in the work a VMD process had been designed,and a mathematic model had been built to describe the effect of the membrane module and the operation conditions on VMD performance.Based on these results,the integrated process of vacuum membrane distillation and solar still was studied in detail.
     The effects of some facts on the performance of VMD process were studied,including the packing fraction of the hollow fibers,the ratio of length to diameter of the module,the operation conditions and the membrane.The experiment showed that,with the packing fraction increasing,the flux of the VMD system increased to a maximum at the packing fraction of 11%,and then decreased.The flux of the VMD system decreased with the increasing of length to diameter ratio of the module while the yield of the pure water increased with the ratio of the module.Considering the yield and the flux,the optimum ratio was about4.3-5.As the inlet temperature of the feed increased,the flux of the VMD increased. It also increased with the velocity of the feed water and vacuum degree.An excellent membrane for VMD should exhibit large pore size,high porosity and small ratio of thickness to diameter.
     A model of heat transfer was acquired based on the conservation equation of energy,and solved by the numerical approximation method.The parameters of the membrane module were correlated in the shell-side mass transfer coefficient based on the correlations of the gas phase mass transfer coefficient.And then the model of flux was built based on the overall mass transfer coefficient.It was found that the model values were in qualitative agreement with experiment results.The model could be used for forecast flux and optimize operation of the process.
     The portable water yield of the integrated system in Hangzhou city was estimated theoretically,and the effects of some facts on the performance of the integrated system were studied,including the intensity of the solar radiation,connecting styles of the modules and the number of membrane modules used.It was found that the solar energy was rich in the costal area of China and the yield of the pure water in a year could reach to 954kg·m~2 of the solar collector area.The preferred ratio of the area of the solar collector to the area of the membrane was about 11.The flux of the integrated system varied with the solar intensity in a day,and the maximum reached 14L·m~(-2)·h~(-1).At the same time,the performance of the integrated system was influenced little by the connecting styles of the modules.The flux of the system decreased as the number of membrane modules used increased,while the yield of the pure water increased slowly as the number of membrane modules increased.
引文
[1]Mulder M.Basic Principles of Membrane Technology[M].The Netherlands:Kluwer Academic Publishers,1997.
    [2]de Zerate J.M.O,Pena L,Mengual J I.Characterization of membrane distillation membranes prepared by phase inversion[J].Desalination.1995,100:139-148.
    [3]徐又一,项慧,陈元胜.膜蒸馏研究的新进展[J].膜科学与技术.1998,18(6):1-6.
    [4]Tomaszewska M.Preparation and properties of flat-sheet membranes from poly(vinylidene)fluoride for membrane distillation[J].Desalination.1996,104:1-11.
    [5]于德贤,于德良.膜蒸馏海水淡化的研究[J].膜科学与技术.2002,22(1):17-20.
    [6]Khayet M,Matsuura T.Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation[J].Industrial & Engineering Chemistry Research.2001,40:5710-5718.
    [7]陆茵,陈欢林,李伯耿.制膜条件对PVDF膜结构形态的影响[J].功能高分子学报.2002,15:171-176.
    [8]Peng M,Li H,Wu L,et al.Porous poly(vinylidene fluoride)membrane with highly hydrophobic surface[J].Journal of Applied Polymer Science.2005,98:1358-1363.
    [9]Feng C H,Khulbe K C,Matsuura T,et al.Production of drinking water from saline water by air-gap membrane distillation using poly(vinylidene fluoride)nanofiber membrane[J].Journal of Membrane Science.2007,311:1-6.
    [10]Lloyd D R,Kinzer K E,Tseng H S.Microporous membrane formation via thermally induced phase separation.Ⅰ.Solid-liquid phase separation[J].Journal of Membrane Science.1990,52:239-261.
    [11]Lloyd D R,Kim S S,Kinzer K E.Microporous membrane formation via thermally-induced phase separation.Ⅱ.Liquid-liquid phase separation[J].Journal of Membrane Science.1991,64:1-11.
    [12]Matsuyama H,Berghmans S,Lloyd D R.Formation of anisotropic membranes via thermally induced phase separation[J].Polymer.1999,40:2289-2301.
    [13]Atkinson P M,Lloyd D R.Anisotropic flat sheet membrane formation via TIPS:thermal effects[J].Journal of Membrane Science.2000,171:1-18.
    [14]Atkinson P M,Lloyd D R.Anisotropic fiat sheet membrane formation via TIPS:atmospheric convection and polymer molecular weight effects[J].Journal of Membrane Science.2000,175:225-238.
    [15]Kim J,Hwang J R,Kim U Y,et al.Operation parameters of melt spinning of polypropylene hollow fiber membranes[J].Journal of Membrane Science.1995,108:25-36.
    [16]Kim J,Jang T,Kwon Y,et al.Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method[J].Journal of Membrane Science.1994,93:209-215.
    [17]李凭力.热致相分离聚丙烯中空纤维膜及其萃取特性的研究[D].天津:天津大学,2002.
    [18]朱宝库;徐又一:项慧;徐志康.聚丙烯中空纤维微孔膜减压膜蒸馏[J].膜科学与技术.1999,19(5):51-54.
    [19]冯春生,吴庸烈,李国民.F2.4微孔膜的制备及在膜蒸馏过程中应用的初步研究[J].膜科学与技术.1999,19(5):51-54.
    [20]冯文来,吴茵,王世昌.PVDF管式复合微孔膜及其膜蒸馏浓缩腹蛇抗栓酶的研究[J].膜科学与技术.2003,23(6):36-39.
    [21]唐娜,马敬环.聚丙烯平板微孔膜膜蒸馏海水淡化研究[J].水处理技术.2006,32(6):5-7.
    [22]Li J M,Xu Z K,Liu Z M,et al.Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination[J]. Desalination. 2003, 155(2): 153-156.
    [23]Xu J L, Furuswa M, Ito A. Air-sweep vacuum membrane distillation using fine silicone, rubber, hollow-fiber membranes[J]. Desalination. 2006,191(2): 223-231.
    [24]Wu Y, Kong Y, Lin X, et al. Surface modified hydrophilic membranes in membrane Distillation[J]. Journal of Membrane Science. 1992,72(2): 189-196.
    [25]Larbot A, Gazagnes L, Krajewski S. Water desalination using ceramic membrane distillation[J]. Desalination. 2004,168(3): 367-372.
    [26]Khayet M, Matsuura T, Menguala J I. Design of novel direct contact membrane distillation membranes[J]. Desalination. 2006,192(1): 105-111.
    [27]Khayet M, Menguala J I, Matsuura T. Porous hydrophobic/hydrophilic composite membranes Application in desalination using direct contact membrane distillation[J]. Journal of Membrane Science. 2005,252(1): 101-113.
    [28]Khayet M, Matsuura T, Qtaishat M. Porous hydrophobic/hydrophilic composite membranes preparation and application in DCMD desalination at higher temperatures[J]. Desalination. 2006, 199: 180-181.
    [29]Bonyadi S, Chung T S. Flux enhancement in membrane distillation by fracbrication of dual layer hydrophilic-hydrophobic hollow fiber membranes[J]. Journal of Membrane Science. 2007, 306: 134-146.
    [30]Li B, Sirkar K K. Novel membrane and device for direct contact membrane distillation-based desalination process[J]. Industrial & Engineering Chemistry Research. 2005,43: 5300-5309.
    [31]Li B, Sirkar K K. Novel membrane and device for vacuum membrane distillation-based desalination process[J]. Journal of Membrane Science. 2005,257(1): 60-75.
    [32]Peng P, Fane A G, Li X. Desalination by membrane distillation adopting a hydrophilic membrane[J]. Desalination. 2005,173(1): 45-54.
    
    [33]Lawson K W, Lloyd D R. Membrane distillation[J]. Journal of Membrane Science. 1997,124(1): 1-25.
    [34]Lagan'a F, Barbieri G, Drioli E. Direct contact membrane distillation: modelling and concentration experiments[J]. Journal of Membrane Science. 2000,166(1): 1-11.
    [35]El-bourawi M S, Ding Z, Ma R Y, et al. A framework for better understanding membrane distillation separation process[J]. Journal of Membrane Science. 2006,285(1): 4-29.
    [36]Termpiyakul P, Jiraratananon R, Srisurichan S. Heat and mass transfer characteristics of a direct contact membrane distillation process for desalination[J]. Desalination. 2005,177: 133-141.
    [37]Amali E, Bouguecha S, Maalej M. Experimental study of air gap and direct contact membrane distillation configurations: application to geothermal and seawater desalination[J]. Desalination. 2004, 168: 357.
    [38]Wirth D, Cabssud C. Membrane distillation for water desalination - optimization of module design and operating conditions in regards with energy consumption[C]. Engineering with Membranes. Granada, Spain: 2001. 285.
    [39] Martinez L. Comparison of membrane distillation performance using different feeds[J]. Desalination. 2004,168:359-365.
    [40]Criscuoli A, Carnevale M C, Drioli E. Evaluation of energy requirements in membrane distillation[J]. Chemical Engineering Progress. 2008,47:1098-1105.
    [41]Wu J, Chen V. Shell-side mass transfer performance of randomly packed hollow fiber modules[J]. Journal of Membrane Science. 2000,172: 59-74.
    [42]Zhang J M,Xu Y Y.Flow distribution in a randomly packed hollow fiber membrane module[J].Journal of Membrane Science.2003,211:263-269.
    [43]Ding Z W,Liu Y,Ma R Y.Study on the effect of flow maldistribution on the performance of the hollow fiber models used in membrane distillation[J].Journal of Membrane Science.2003,215:11-23.
    [44]Zhang J M,Xu Z K,Li J M,et al.Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance:a novel model prediction[J].Journal of Membrane Science.2004,236:145-151.
    [45]Asimakopoulou A G,Karablas A J.A study of mass transfer in hollow-fiber membrane contactors-The effect of fiber packing fraction[J].Journal of Membrane Science.2006,282:430-441.
    [46]Ding W P,Gao D Y.Theoretical estimation of shell-side mass transfer coefficient in randomly packed hollow fiber modules with polydisperse hollow fiber outer radii[J].Journal of Membrane Science.2006,284:95-101.
    [47]Thanedgunbawom R,Jiraratananon R.Shell-side mass transfer of hollow fiber modules in osmotic distillation process[J].Journal of Membrane Science.2007,290:105-113.
    [48]Teoh M M,Bonyadi S,Chung T.Investigation of different hollow fibers module designs for flux enhancement in the membrane distillation process[J].Journal of Membrane Science.2008,311(1-2):371-379.
    [49]Meindersma G W,Guijt C M,de Haan A B.Desalination and water recycling by air gap membrane distillation[J].Desalination.2006,187:291-301.
    [50]Khayet M,Godino M P,Mengual J I.Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method[J].Desalination.2003,157:297-305.
    [51]Chouikh R,Bouguecha S,Dhahbi M.Modeling of a modified air gap distillation membrane for the desalination of seawater[J].Desalination.2005,181:257-265.
    [52]Cath T Y,Adams V D,Childress A E.Experimental study of desalination using direct contact membrane distillation:a new approach to flux enhancement[J].Journal of Membrane Science.2004,228:5-16.
    [53]Khaayet M,Godino M P,Mengual J I.Study of asymmetric polarization in direct contact membrane distillation[J].Separation Science and Technology.2004,39.
    [54]Martinez-diez L,Vazquez-gonzalez M I.Effect of polarization on mass transport through hydrophobic porous membranes[J].Industrial & Engineering Chemistry Research.1998,37:4128-4135.
    [55]Martinez-diez L,vazquez-gonzalez M I.Temperature and concentration polarization in membrane distillation of aqueous salt solution[J].Journal of Membrane Science.1999,156:265-273.
    [56]Zhu C,Liu G.Modeling of ultrasonic enhancement on membrane distillation[J].Journal of Membrane Science.2000,176:31-41.
    [57]Martinez-diez L,vazquez-gonzalez M I.A method to evaluate coefficients affecting flux in membrane distillation[J].Journal of Membrane Science.2000,173:225-234.
    [58]丁忠伟,马润宇,Fane A G.膜蒸馏跨膜传质过程的新模型—TPKPT[J].高校化学工程学报.2001,15:312-317.
    [59]Mengual J I,Khayet M,Godino M P.Heat and mass transfer in vacuum membrane distillation[J].International Journal of Heat and Mass Transfer.2004,47:865-875.
    [60]马润宇,袁其朋,阎建民.气隙式膜蒸馏传递过程的研究[J].高校化学工程学报.2000,14:109-114.
    [61]Alklaibi A M,Lior N.Transport analysis of air-gap membrane distillation[J].Journal of Membrane Science.2005,255:239-253.
    [62]马润宇.膜蒸馏技术的回顾与展望[J].天津城市建设学院学报.2003,9(2):100-104.
    [63]Ding Z,Ma R Y,Fane A G.A new model for mass transfer in direct contact membrane distillation[J].Desalination.2003,151:217-227.
    [64]Schofield R W,Fane A G,Fell C J D.Heat and mass transfer in membrane distillation[J].Journal of Membrane Science.1987,33:299-313.
    [65]Phattaranawik J,Jiraratananon R,Fane A G.Effect of pore size distribution and air flux on mass transport in direct membrane distillation[J].Journal of Membrane Science.2003,215:75-85.
    [66]Khayet M,Khuble K C,Matsuura T.Characterization of membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process[J].Journal of Membrane Science.2004,238:199-211.
    [67]Ugrozov V V,Elkina I B.Mathematical modeling of influence of porous structure of membrane on its vapor-conductivity in the process of membrane distillatio[J].Desalination.2002,147:167-171.
    [68]Martinez-diez L,Florido-diaz FJ,Hernandez A,et al.Characterization of three hydrophobic porous membranes used in membrane distillation[J].Journal of Membrane Science.2002,203:15-27.
    [69]Bandini S,Sar G C.Heat and Mass Transport Resistances in Vacuum Membrane Distillation Per Drop[J].AIChE.J.1999,7:1422-1435.
    [70]Alklaibi A M,Lior N.Heat and mass transfer resistance analysis of membrane distillation[J].Journal of Membrane Science.2006,282:362-369.
    [71]Izquierdo-gil M A,Abildskov J,Jonsson G.The use of VMD data/model to test different thermodynamic models for vapour-liquid equilibrium[J].Journal of Membrane Science.2004,239:227-241.
    [72]Godino M P,Pena L,Mengual J I.Membrane distillation:theory and experiments[J].Journal of Membrane Science.1996,121(1):83-93.
    [73]Banat F,Al-rub F A,Bani-melhem K.Desalination by vacuum membrane distillation:sensitivity analysis[J].Separation and Purification Technology.2003,33:75-87.
    [74]Khayet M,Matsuura T.Pervaporation and Vacuum Membrane Distillation Processes:Modeling and Experiments[J].AIChE.J.2004(8):1697-1712.
    [75]Imdakm A O,Khayet M,Matsuura T.A Monte Carlo.Simulation Model for Vacuum Membrane Distillation Process[J].Journal of Membrane Science.2007,306:341-348.
    [76]Hongan P A,Sudjito,Fane A G,et al.Desalination by solar heated membrane distillation[J].Desalination.1991,81:81-90.
    [77]Banat F,Jumah R,Garaibeh M.Exploitation of solar energy collected by solar stills for desalination by membrane distillation[J].Renewable Energy.2002,25(2):293-305.
    [78]Ding Z,Liu L,El-bourawi M S,et al.Analysis of a solar-powered membrane distillation system[J].Desalination.2005,172:27-40.
    [79]Bier C,Plantikow U.Solar-Powered Desalination by Membrane Distillation[C].Abu Dhabi:1995.
    [80]Koschikowski J,Wieghaus M,Rommel M.Solar thermal-driven desalination plants based on membrane distillation[J].Desalination.2003,156:295-304.
    [81]Rommel M,Koschikowski J,Wieghaus M,et al.Solar driven desalination system based on membrane distillation[C].Hammamet Tunesia:2006.
    [82]Banat F,Jwaied N,Rommel M,et al.Desalination by a "compact SMADES" autonomous solar-powered membrane distillation[J].Desalination.2007,217:29-37.
    [83]Banat F,Jwaied N,Rommel M,et al.Performance evaluation of the "large SMADES" autonomous solar-driven membrane distillation plant in Aqaba,Jordan[J].Desalination.2007,217:17-28.
    [84]Drioli E,Laganh F,Crlscuoh A.Integrated membrane operations in desalination processes[J].Desalination.1999,122:141-145.
    [85]Macedonio F,Curcio E,Drioli E.Integrated membrane systems for seawater desalination:energetic and exergetic analysis,economic evaluation,experimental study[J].Desalination.2007,203:260-276.
    [86]Criscuoli A,Drioli E.Energetic and exergetic analysis of an integrated membrane desalination system[J].Desalination.1999,124:243-249.
    [87]Macedonio F,Drioli E.Pressure-driven membrane operations and membrane distillation technology integration for water purification[J].Desalination.2008,223:396-409.
    [88]Hsu S T,Cheng K T,Chiou J S.Seawater desalination by direct contact membrane distillation[J].Desalination.2002,143:279-287.
    [89]Karakulski K,Gryta M.Water demineralization by NF/MD integrated processes[J].Desalination.2005,177:109-119.
    [90]高振.真空膜蒸馏传递机理和过程特性研究[D].天津:天津大学,2003.
    [91]Smith J M,van Ness H C,Abbott M M.Introduction to chemical engineering Thermodynamics[M].7.ed;北京:化学工业出版社,2005.
    [92]谭天恩,麦本熙,丁惠华.化工原理下册[M].北京:化学工业出版社,1998.62-67
    [93]Yang M.C,Cussler E.L.Artificial gills[J]..Journal of Membrane Science.1989,42:273-284.
    [94]张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社,2004:2.
    [95]Zammaz.中国的太阳辐射分布http://www.jrdili.com/Photo/PhotoShow.asp?PhotoID=75,2007.10
    [96]张运林,秦伯强,陈伟民,et al.太湖无锡地区太阳总辐射的气候学计算及特征分析[J].应用气象学报.2003,14(3):339-347.
    [97]郭伟其,沙伟,沈红梅,et al.东海沿岸海水表层温度的变化特征及变化趋势[J].海洋学报.2005,27(5):1-8.
    [98]陈景玲.实用光源的1x与μ mol/m~2s的转换关系[J].河南农业大学学报.1998,32:199-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700