医疗废物热解特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医疗垃圾的热解技术具有无害化、减量化和资源化等优势,越来越受到人们的重视,对医疗垃圾在热解过程中的热失重特性和差热特性进行研究就显得十分重要。为此,本文用TG-DTA差热热重联用分析仪对影响单组分医疗废物热失重特性的主要因素、混合比对双组分热失重特性的影响规律、医疗废物热解过程的热量变化等进行了系统的基础研究。主要内容和结论有:
     1.系统地研究了影响单组分医疗废物热解特性的主要因素
     实验结果表明:试样种类不同表征热失重特性的主要参数也不同;一般来说,升温速率越大,起始温度和终止温度越高,反应区间ΔT越宽,峰温越高,峰高增加;随试样质量的增加,终止温度逐渐升高,反应区间逐渐增加,各步反应之间的界限逐渐模糊,热解程度有所降低;随着热解终温的升高,试样的热解程度逐渐升高,但温度越高作用越不明显。一般当热解终温超过700℃后,温度的影响基本可以忽略;一般来说,随保温时间的增加试样的热解程度有所提高,而且保温时间对热解程度较高的试样作用小,对热解程度较低的试样作用大。根据实验结果,综合考虑技术和经济因素等因素,保温时间一般以不超过30min为宜。
     2.系统地研究了混合比对双组分试样热解特性的影响规律
     混合比对双组分试样热解特性的影响主要表现在:⑴混合比对不同试样热解程度的影响不同;⑵对大多数试样来说,混合试样的起始温度和终止温度主要由双组分混合试样中含量较高成分决定;⑶混合比对反应区间ΔT有显著的影响。因此,在设计和确定医疗废物热解装置的运行参数时一定要考虑由于组成医疗废物的各种成分的比例不同而引起的显著失重持续时间的差异;⑷混合比对由相同两种成分组成的混合试样的峰温影响较小。
     3.通过对单组分、双组分、三组分和四组分试样热解过程进行差热分析,发现所有试样的DTA曲线上只有吸热峰,没有放热峰。说明它们的热解过程均为吸热反应。而且实验测得的DTA曲线的形状比较复杂,对称性较差,基线偏移较大。
     4.通过对DTA曲线的分析发现,在医疗废物的热解过程中,最大失重速率发生点的温度一般要比达到瞬时热平衡点的温度稍低。对大多数试样来说,两者之间的差别在10℃以内。
     5.用PPM法建立了单组分试样的热解动力学摸型并进行了数值求解。发现该模型与某些试样的实验结果吻合得较好,但与某些试样的实验结果之间存在着较大误差。
Pyrolysis technology of medical waste is drawing more and more attention because of being harmless, minimum and reusable. It is very important to investigate the characteristics of weight loss and heat change during the thermal decomposition of the medical waste. By using the TG-DTA apparatus, this paper attempts to complete a systematic research on the main influential factors effecting the thermal weight loss for single component medical wastes, the law on how mixing ratio effecting thermal weight loss for double component medical wastes, and the thermal changes in the process of thermal decomposition of the medical wastes. The main work and results are listed as follows.
     1. The main influential factors effecting the thermal weight loss of the single component medical wastes are investigated systematically.
     The experimental results indicate: Different samples show different parameters representing thermal weight loss; Generally speaking, the higher the heating rates, the higher the initial and finial temperature, the wider the reaction interval, the higher the peak height; The more the mass is, the higher the finial temperature is and the wider the reaction interval becomes, and the boundaries between the different thermal reaction become indistinct, and the weight loss ratio gets low; The thermal decomposition degree of the medical waste increases with the increase of the end-temperature. However, such effect becomes more indistinct when the temperature goes higher. The effect can be neglectable when the temperature exceeds 700℃; Generally speaking, the longer the heat-insulation time is, the higher the thermal decomposition degree of the medical wastes becomes. And the heat-insulation time has more obvious effect on those samples with easy pyrogenation than the others; According to experimental results, the suitable heat-insulation time is suggested to be under 30 minutes.
     2. The effect of the mixing ratio on the characteristics of double component samples has also been investigated, and the results indicate:
     ⑴The effect of mixing ratio on the thermal decomposition degree varies with the different double component medical waste samples;⑵For most samples, initial-temperature and finial-temperature are determined by the component with more quantity;⑶Mixing ratio has remarkable influence on the reaction interval, as a result, when designing the medical pyrolysis equipment, the ratio of each component in the wastes shall be brought into consideration fully;⑷The mixing ratio has little influence on the peak temperature of the double component mixture.
     3. Through the Differential Thermal Analysis on single component, double components, three components and four components samples, it indicates that there exists only heat-absorb peak on DTA curve, not heat-release peak. This explains that the thermal decomposition of medical waste is a heat-absorb process. What is more, the shape of the curve is complex, and does not appear symmetric. The base line shows deviation.
     4. By analyzing of the DTA curve, it seems that the temperature the maximum weight loss rate appears is lower than the temperature the instantaneous thermal balance appears. For most samples, the difference between is less than 10 degree.
     5. The pyrolysis dynamics model based on single component sample by PPM method is established and the further calculations have been done. It seems that the model coincides with experimental results of some samples, while appears obvious aberration for some other samples.
引文
[1]赵由才,张全,蒲敏等.医疗废物管理与污染控制技术[M].北京:化学工业出版社,2005,116.
    [2]周仲凡,王吉,乔致奇等.城市固体废物管理与处理处置技术[M].北京:中国石化出版社,2000,342-348.
    [3]吴舜泽,孙宁,周丰等.中国医疗废物管理处理现状与对策[J].环境保护,2005(1):36-38
    [4]何俊宝,刘正纲,戴行浩.天津市区医疗垃圾产出现状及处理对策[J].环境卫生工程,(4):6-13.
    [5]熊移民,曹宁泓.广铁集团医疗垃圾及其处理现状调研[J].铁道劳动安全卫生与环保,1998,25(4):236-239.
    [6]余春华,谭晓东.对武汉市医疗垃圾处理的调查分析[J].中国医院管理,2002,22(6):19-22.
    [7]徐谦.北京市医院废物产生与利用、处置现状及对策分析[J].环境保护科学,2000,26(5):20-23.
    [8]邓娜.医疗废物热解特性及动力学模型研究[D].博士毕业论文,天津大学,2005.
    [9]Mato R R A M,Kassenga G R, A study on problems of management of medical solid wastes in Dar es Salaam and their remedial measures, Resources[J]. Conservation and Recycling, 1997,21(1):1-16.
    [10] 涂光备等.医院建筑空调净化与设备[M].北京:中国建筑工业出版社,2005,280-310.
    [11]World Health Organization, Regional Office for Europe, Management of Waste from Hospitals and Other Health Care Establishments, EURO Reports and Studies 97, Copenhagen, Denmark, 1983.
    [12]Environmental Protection Agency, EPA Guide for Infectious Waste Management, Washington, DC, USA, 1986.
    [13]Miyazaki M, Une H. Infectious waste management in Japan: A revised regulation and a management process in medical institutions[J]. Waste Management, 2005, 25(6):616-621.
    [14]Levendis Yiannis A, Atal Ajay, Carlson Joel B. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads[J]. Chemosphere, 2001,42(5-7):775-783.
    [15]Muhlich M, Scherrer M, Daschner F D. Comparison of infectious waste management in European hospitals[J]. J Hosp, Infect, 2003, 55: 260-268.
    [16]Tudor T L, Noonan C L, Jenkin LET. Healthcare waste management: a casestudy from the National Health Service in Cornwall,United Kingdom[J] . Waste Management, 2005, 25(6): 606-615.
    [17]Da Silva C E, Hoppe A E, Ravanello M M, et al. Medical wastes management in the south of Brazil[J]. Waste Manaement, 2005,25(6):600-605.
    [18]Rami Oweis, Mohamad Al-Widyan, Ohood Al-Limoon. Medical waste management in Jordan: A study at the King Hussein Medical Center[J]. Waste Management, 2005,25(6):622-625.
    [19]邵芳,王强,赵由才.国内医疗废物处置与管理探讨[J]. 重庆环境科学,2001,23(5):53-56.
    [20]李剑,典型医疗废物组分的热解及气化特性研究,[硕士学位论文],浙江大学,2004:29-48
    [21]苏鹏宇,马增益,剑等.医疗废物典型组分在回转窑内的热解研究[J]. 能源工程,2004(6):38-43
    [22]Zhang Y F, Deng N, Ling J H, et al. A New Pyrolysis Technology and Equipment for Treatment of Municipal Household Garbage and Hospital Waste[J]. RENEWENERGY, 2003,28(15):2383-2393.
    [23]Lee C C, Huffman G L, Medical waste management/incineration: review, Journal of Hazardous Materials, 1996, 48(1-3): 1-30.
    [24]冉景煜.固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验[D]. 博士学位论文,重庆大学,2003:40-45.
    [25]周丰,刘永,郭怀成.医疗废物焚烧处置过程中关键参数研究[J].环境科学研究,2005,18(3):24-28.
    [26]Aae Redin L, Hjelt M, Marklund S. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator[J]. Waste Management and Research, 2001, 19(6): 518-525.
    [27]Thipse S S.Synthetic fuel for imitation of municipal solid waste in experimental studies of waste incineration[J]. Chemosphere, 2001, 44(5):1071-1077.
    [28]Garcia, A N, Esperanza M, Font R.Comparison between product yields in the pyrolysis and combustion of different refuse[J]. Journal of Analytical and Applied pyrolysis. 2003,68(8):577-598.
    [29]Hui, Chi-Wai. An integrated plant for municipal solid waste co-combustion incement Production[J]. Journal of Solid Waste Technology and Management, 2002,28(4):175-181
    [30]Nouwen J, Cornelis C, De Fre R, et al. Health risk assessment of dioxin emissions from municipal waste incinerators: the Neerlandquarter (Wilrijk, Belgium)[J]. Chemosphere,2001,43(4-7):909-923.
    [31]钟世云,许乾慰,王公善. 聚合物降解与稳定化[M].北京:机械工业出版社,2004,230-268.
    [32]Jangsawang W, Fungtammasan B Kerdsuwan S. Effects of operating parameters on the combustion of medical waste in a controlled air incinerator[J]. EnergyConversion and Management, 2005, 46(20) 3137-3149.
    [33]Tamplin S A, Davidson D, Powis B, et al. Issues and options for safe destruction and disposal of used injection materials[J].Waste Management, 2005,25(6):655-665.
    [34]鄢钢,袁兴中,曾光明.医疗垃圾高压蒸气消毒器设计[J].环境污染治理技术与设计,2003,4(1):69-72.
    [35]Jorge Emmanuel. PhD, CHMM, PE, Non-incineration medical waste treatment technologies, Health Care Without Harm, 2001.
    [36]Diaz L F, Savage G M, Eggerth L L. Alternatives for the treatment and disposal of healthcare wastes in developing countries waste Management[J]. 2005.25(6):626-637.
    [37]将达华,任如山.等离子体技术在环境污染治理中的应用研究[J].环境技术,2004,22(2):16-19.
    [38] 赵 由 才 . 生 活 垃 圾 资 源 化 原 理 与 技 术 [J]. 北 京 : 化 学 工 业 出 版社,2002,106.
    [39]Abu-Hijleh B A/K, Mousa M, Al-Dwairi R, Al-Kumoos M, et al. Feasibility study of a municipality solid waste incineration plant in Jordan[J]. Energy Conversion and Management, 1998,39(11):1155-1159.
    [40]Miyazaki T, Kang Y T, Akisawa A. A combined power cycle using refuse incineration and LNG cold energy[J].Energy, 2000,25(7):639-655.
    [41]Guo J, Lua A C.Kinetic study on pyrolytic process of oil-palm solid waste using two-step consecutive reaction model[J].Biomass and Bioenergy, 2001,20(3):223-233.
    [42]Malkow T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal[J]. Waste Management, 2004,24(1):53-79.
    [43]田贵全.德国固体废物热解技术方法[J].环境科学动态,2005(2):10-11.
    [44]Lee B K. A study of the characterization, disposal, recycling, and air emissions of medical and plastic wastes.PhD dissertation, University of Massachusetts Lowell,1996.
    [45]Garcia A N, Marcilla A, Font R. Thermogravimetric kinetic study of the pyrolysis of municipal solid waste[J]. Thermochimica Acta, 1995,254:277-304.
    [46]金保升,仲兆平,周山明.城市固体废物(MSW)热解热解特性及其动力学研究[J].工程热物理学报,1999,20(4):510-514.
    [47]Heikkinen J, Spliethoff H. Waste mixture composition by thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2003,72(3):1031-1039.
    [48]李斌,谷月玲,严建华等.城市生活垃圾典型组分的热解动力学模型研究[J]环境科学学报,1999,19(5):562-566.
    [49]范俊君,孟伟,赫英臣等.固体废物环境管理技术应用技术与实践[M].北京:中国环境科学出版社,2005.
    [50] Sφrum L, Grφnli M G, Hustad J E, Pyrolysis characterisitics and kinetics ofmunicipal solid wastes, Fuel, 2001,80(9):1217-1227.
    [51]Seungdo Kim, Eun-Suk Jang, Dae-Hyun Shin, et al. Using peak properties of a DTG cure to estimate the kinetic parameters of the pyrolysis reaction:application to high density polyethylene[J]. Polymer Degradation and Stability 85(2004)799-805.
    [52]S. Kim. Pyrolysis kinetics of waste PVC pipe[J]. Waste Management 21(2001) 609-616.
    [53]H.Bockhorn, A.Hornung, Horonung, et al. Modelling of isothermal and dynamic pyrolysis of plastics considering non-homogeneous temperature distribution and detailed degradation mechanism[J]. Journal of Analytical Applied Pyrolysis 49(1999)53-74. Soltes E J, Wiley A T, Lin S C K. Biomass pyrolysis-towards an understanding of its versatility and potentials[J]. Biotech&bioengineering symposium, 1981,11:125-136.
    [54]Williams P T, Besler S. The pyrolysis of rice husks in a thermogravimetric analyzer and static batch reactor[J].Fuel, 1993,72:151-159.
    [55]Nunn T R, Howard J B, Longwell JP, et al. Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood[J]. Ind. Eng. Chem. Process, 1985,24(3):836-844.
    [56]Volker S, Rieckmann Th. Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results[J]. Journal of Analytical and Applied Pyrolysis, 2002,62(2):165-177.
    [57]Colomba D B.Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels[J] .Jourmal of Analytical and Applied Pyrolysis,1998,47(1):43-64
    [58]廖艳芬.纤维素热裂解实验机理研究[D].博士学位论文,浙江大学,2003.
    [59] Marcilla A, Beltran M. Thermogravimetric kinetic study of poly(vinyl chloride) pyrolysis[J]. Ploymer Degration an d Stability,1995,48(2):219-229.
    [60]Budrugeac P, Segal E, Perez-maqueda L A.The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data[J]. Polymer Degradation and Stability, 2004, 84(2):311-320.
    [61]马文杰,黄子铮译. 聚氯乙烯的降解与稳定[J].北京:轻工业出版社,1985,25-29.
    [62]Conesa J A, Marcilla A, Font R, et al. Thermogravimetric studies on the thermal decomposition of polyethylene[J].Journal of Analytical and Applied Pyrolysis, 1996,36(1):1-15.
    [63]周浩生,周虎,陆继东.橡胶单体热解动力学过程及模拟[J].华中科技大学学报,2001,29(1):11-13,增刊 1.
    [64]刘阳生,白庆中,李迎霞等.废轮胎的热解及其产物分析[J]环境科学,2000,21(6):85-88.
    [65]Williams P T, Besler S. Pyrolysis-thermogravimetric analysis of tyres and tyrecomponents[J].Fuel, 1995,74(9):1277-1283.
    [66]刘振海,畠山立子主编.分析化学手册第八分册—热分析(第二版)[M].北京:化学工出版社,2000.
    [67]蔡正千.热分析[M].北京:高等教育出版社,1993.
    [68]李余增编.热分析[M].北京:清华大学出版社,1987,53.
    [69]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [70]Tello-Solis S R, Romero-Garcia B. Thermal denaturation of porcine pepsin: a study by circular, Dichroism[J]. International Journal of Biological Macromolecules, 2001, 28(2):129-133.
    [71]Fabian S, Dieter N. FTIR study on thermal denaturation and aggregation of recombinant hamster prion protein SHaPrP 90-232[J]..Vibrational Spectroscopy, 2005,38(1-2):39-44
    [72]罗春鹏.垃圾热解特性研究及热解特性神经网络预测[D].硕士学位论文,浙江大学,2004.
    [73]姜凡,江淑琴,潘中刚等.混合垃圾在热重分析仪中的燃烧特性分析[J].锅炉技术,2000,31(4):2-4.
    [74]Matsuzawa Y, Ayabe M, Nishino J.Acceleration of cellulose co-pyrolysis with polymer[J].Polymer Degradation and Stability, 2001,71(3):435-444.
    [75] Knumann R, Bockhom H.Investigation of the kinetics of pyrolysis of PVC by TG-MS-Analysis[J].Combust Sci and Tech, 1994, 101(1-6):285-299.
    [76]Roy M, Rollin AL, Schreiber H P. Value RECOVERY FROM POLYMER WASTES BY PYROLYSIS[J]. Polym.Eng.Sci,1978,18(9):721-727.
    [77]Faravelli T, Giulia Bozzano, Mauro Colombo,et al. Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2003,70(2):761-777.
    [78]Zevenhoven R, Axelsen E P, Hupa M. Pyrolysis of waste-derived fuel mixtures containing PVC[J].Fuel, 2002,81(4):507-510.
    [79]Vuthaluru H B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis[J]. Bioresource Technology, 2004,92(2):187-195.
    [80]Balzso M, Zelei B, Jakab E. Thermal decomposition of low-density polyethylene in the presence of chlorine-containing polymers[J]. J.Anal. Appl. Pyrolysis, 1995,35(2):221-235.
    [81]Miranda R, Yang J, Roy C, et al. Vacuum pyrolysis of commingled plastics containing PVC I:Kinetic study[J]. Polym. Degrad. Stab, 2001,72(3):469-491.
    [82]Miranda R, Pakdel H, Roy C, et al.Vacuum pyrolysis of cormmingled plastics containing PVC II:Product analysis[J].Polym. Degrad. Stab, 2001, 73(1),47-67.
    [83]Sanchez-Hervas J M, Armesto L, Ruiz-Martinez E. PCDD/PCDF emissions from co-combustion of coal and PVC in a bubbling fluidized bed boiler[J]. Fuel, 2005,84(17):2149-2157.
    [84]Carl-Johan L, Bert B V. Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility[J]. Chemosphere, 2005,61(3):405-412.
    [85]McGhee B, Norton F, Snape C E, et al. The copyrolysis of poly(vinylchloride) with cellulose derived materials as a model for municipal waste derived chars[J]. Fuel, 1995,7(4):28-31.
    [86]Truls L, Krister S. Heat transfer controlled pyrolysis kinetics of a biomass slab, rod or sphere[J]. Biomass & Bioenergy, 1998,15(6):503-509.
    [87]Jalan R K, Srivastava V K.Studies on pyrolysis of a single biomass cylindrical pellet─kinetic and heat transfer effects[J] Energy Conversion and Management, 1999,40(5):467-494.
    [88]Jenny L, Bo L, Morten Chr M. Modelling and measurements of heat transfer in charcoal from pyrolysis of large wood particles[J]. Biomass and Bioenergy,2000,18(6):507-514.
    [89]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201(1):68-69.
    [90]Ozawa T. Non-isothermal kinetics of consecutive reactions[J]. Joumal of Thermal Analysis and Calorimetry, 2000,60(3):887-894.
    [91]Kissinger H E. Variation of peak temperature with heating rate in different rate in different thermal analysis[J]. J Res But Standards, 1956.57(2):217-221.
    [92]胡荣祖,史启祯主编.热分析动力学[M].北京:科学出版社,2001.
    [93]宋春财,胡浩权,朱盛维等.生物质秸杆热重分析及几种动力学模型结果比较[J].燃烧化学学报,2003,31(4):311-316.
    [94]Li Sh Y, Yue Ch T. Study of different kinetic models for oil shale pyrolysis[J]. Fuel Processing Technology, 2004, 85(1):51-61.
    [95]Tang W K, Neit W K. Effects of Flame Retardants on Pyrolysis and Combustion of Cellulose[J]. J. Polym. Sci. 1964,C(6):65-81.
    [96]Ahuja P, Kumar S, Singh P C, A Model for Primary and Heterogeneous Secondary Reactions of Wood Pyrolysis[J]. Chem. Ene. Technol,1996,19(3):272-282.
    [97]陈冠益.生物质热解实验与机理研究[D].博士学位论文,浙江大学,1998.
    [98]温俊明,池涌,罗春鹏等.城市生活垃圾典型有机组分析混合热解特性的研究[J].燃料化学学报,2004,32(5):653-568.
    [99]谢忠麟,扬敏芳.橡胶制品实用配方大全[M].北京:化学工业出版社,1999,645.
    [100]宋春财.农作物秸杆的热解及在水中的液化研究[D].博士学位论文,大连理工大学,2003,4-61.
    [101]井上祥平.生物高分子功能及其模型[M].宗慧娟、韩哲文、刘志滨 译,北京:科学出版社,1987.
    [102]甘景镐,甘纯玑,胡炳环.天然高分子化学[M].北京:高等教育出版社,1993,318.
    [103]凌绳,王秀芬,吴友平.聚合物材料[M].北京:轻工业出版社,2000:14,24,124.
    [104]《合成材料助剂手册》编写组.合成材料助剂手册[M].北京:石油化学工业出版社,1977,666.
    [105]解强,赵由才.城市固定废弃物能源化利用技术[M].北京:化学工业出版社,2004,145.
    [106]W.施纳贝尔(W.Schnabel).聚合物降解原理及应用[M].陈用烈,张培尧等译,北京: 化学工业出版社,1981.
    [107]高艳玲,赵立军,霍保全等.固体废物处理处置与工程实例[M].北京:中国建材工业出版社,2004,59.
    [108]马文杰,黄子铮译.聚氯乙烯的降解与稳定[M].北京: 轻工业出版社,1985,25-29.
    [109]Montaudo G, Scamporrino E, Puglisi C, et al. Thermal decomposition progress in aliphatic polysulfides in investigated by mass spectrometry[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1987,25(6):475-487.
    [110]Rice F O, Rice K K. The aliphatic free radicals[J]. Baltimore:Johns Hopkins Press, 1936.
    [111]Md Azhar U, Kazuo K, Katuhide M, et al. Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil[J]. Polymer Degradation and Stability, 1997,56(1):37-44.
    [112]Kiran N,Ekinci E, Snape C E. Recyling of plastic wastes via pyrolysis, Resources[J]. Conservation and Recycling, 2000,29(4):273-283.
    [113]Green A E S, Sadrameli S M. Analytical representations of experimental polyethylene pyrolysis yields[J]. Journal of Analytical and Applied Pyrolysis, 2004,72(2):329-335
    [114]Levent B, Rainer R. Classification of volatile products from the temperature-programmed pyrolysis of polypropylene (PP), atactic-polypropylene (APP) and thermogravimetrically derived kinetics of pyrolysis[J]. Chemical Engineering and Processing, 2002, 41(4):289-296.
    [115]Bockhorn H, Hornung A, Hornybung U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements[J]. Journal of Analytical and Applied Pyrolysis, 1999,50(2):77-101.
    [116]Bockhorn H, Hornung A, Homung U, et al. Kinetic study on the thermal degradation of polypropylene and polyethylene[J]. Juornal of Analytical and APPLIED Pyrolysis,1999,48(2):93-109.
    [117]冯仰婕,史永强,何东明等.固体热分析动力学的热分析法研究[J].高分子材料科学与工程,1997,13(2):30-34.
    [118]Sezgi N A, Cha W S, Smith J M, et al. Polyehtylene pyrolysis: theory and experiments for molecular-weight-distribution kinetics[J]. Ind. Eng Chem. Res,1998,37(7):2582-2591.
    [119]Madras G, Mccoy BJ. Distribution kinetics for polymer mixture degradation[J]. Ind. Rng. Chem. Res, 1999,38(2):352-357.
    [120]周茜.聚烯烃催化剂裂解产物控制与机理研究[J].博士学位论文,四川大学,2003.
    [121]Faravelli T, Pinciroli M, Pisano F, et al. Thermal degradation of polystyrene[J].Journal of Analytical and Applied Pyrolysis, 2001,60(1):103-.121
    [122]汤子强.聚苯乙烯热解反应动力学[J].太原理工大学学报,1999,30(5):496-499.
    [123]Sterling W J, Walline K S, McCoy B J.Experimental study of polystyrene thermolysis to moderate conversion[J]. Polymer Degration and Stability,2001,73(1):75-82.
    [124]Kruse T M, Woo O S, Broadbelt LJ. Detailed mechanistic modeling of polymer degradation:application to polystyrene[J]. Chem. Eng. Sci. 2001,56(3):971-979.
    [125]Carniti P, Beltrame P L, Armada M, et al. Polystyrene thermodegradation. 2. Kinetics of formation of volatile products[J]. Ind Eng. Chem. Res. 1991,30(7):1624-1629.
    [126]王学锋,朱桂芬,刘茜霞等.废轮胎橡胶的热重分析[J].河南师范大学学报:自然科学版,2003,31(1):61-64.
    [127]Yang J, Miranda R, Roy C. Polym Degrad Stab 2001:73:455.
    [128]BOCKHORN h, horning A, Hornung U, Jakobstroer PJ. Appl Pyrolysis 1999:49:53-74.
    [129]Conesa JA, Marcilla A, Font R, Caballero JA. J Anal Appl Pyrolysis 1996:36:1-15.
    [130]Kim S, Park JK. Thermochim Acta 1995:264:137.
    [131]Flynn JH, Wall LA. J Res Nat Bur Stand A 1966:70:487.
    [132]Murray P, White J. Trans Br Ceram Soc 1955:54:204.
    [133]Flynn JH. Thermochim Acta 1980:37:225.
    [134]Sharp JH, Wentworth SA. Anal Chem 1969:41:2060.
    [135]Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. Polym Degrad Stab 2000:67:535
    [136]Kissinger HE. Anal Chem 1957:29:1702.
    [137]Bockhorn H, Hornung A, Hornung UJ. Anal Appl Pyrolysis 1999:50:77.
    [138]Chan JH, Balke ST. polym Degrad Stab 1997:57:135.
    [139]Freeman ES, Carroll B. J Phys Chem 1958:62:394.
    [140]Coats AW, Redfern JP. J Polym Sci Polym Lett Edn 1965:3:917.
    [141]Agrawal RK. In: Earnest CM, editor. Composional analysis by thermogravimetry. ASTM STP 997. Philadelphia, PA: American Society for Testing and Materials:1998. p. 259.
    [142]Madorsky SL. J Polym Sci 1952:9(2):133.
    [143]Gao Z, Amasaki I, Nakada M. J Anal Appl Pyrolysis 2003:67:1.
    [144]Vyazovkin,S. Int.Reviews in Physiical Chemistry, 2000,19(1):45-60.
    [145]Flynn,J.H. Thermochim.Acta,1997,300:83-92.
    [146]Borown,M.E.et al. Reaction in the Solid-State,Elsebiew:Amsterdam,1980.
    [147]Sestak.J. Thermophysical Promerties of Solids,Elsevier:Amsterdam,1984.
    [148]Galwey,A.K., Brown,B.E. Thermal Decomposition of Jonic Solid, Elsevier: Amsterdam,1999.
    [149]Koga,N. et al.Netsu Sokuter.1993,20(4):210.
    [150]Ortega,A. Thermochim.Acta,1996,284(2):379-387.
    [151]Ozawa,T., Bult. Chem.Soc.Jpn. 1965,38(11):1881-1886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700