微生物燃料电池处理苯胺废水的产电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全世界范围内环境污染和能源紧缺日益加剧,新能源的开发和利用技术成为环境工程领域研究的一个重要的方向。微生物燃料电池(Microbial fuel cell,MFC)是一种利用微生物作为催化剂,将废水中的化学能直接转变为电能的装置。是一种全新的生物处理废水技术,其独特的产能方式为实现解决能源危机和水污染问题提供新的思路。
     本课题组自制双室微生物燃料电池装置,电池主体采用圆柱型,气密性良好、操作方便。微生物燃料电池工作时放到本实验室自制的MFC控温装置内控制反应温度,反应温度可控制在15℃-50℃。
     利用自制双室微生物燃料电池,分别以葡萄糖和乙酸钠为底物启动MFC,研究不同底物下MFC的产电特性及对有机物的去除效果。乙酸钠为底物MFC最大输出功率较葡萄糖为底物的MFC提高了33%,COD去除率提高了10.7%。阳极底物的COD浓度从1000 mg·L~(-1)升至1500 mg·L~(-1)时,输出功率密度增大了20%,当COD浓度从1500 mg·L~(-1)升至2500 mg·L~(-1)时,输出功率密度只增大了4%左右。温度从15℃上升至25℃时,输出功提高了27.7%,25℃升至35℃时输出功率密度提高了54%,本实验构建的MFC在35℃时产电性能及对污水的处理效果是最好的。空气作为阴极时最大输出功率密度较铁氰化钾作为阴极低147%,表明液态阴极电子受体的产电性能要优于气态电子受体。
     利用自制双室微生物燃料电池处理模拟苯胺废水。以葡萄糖成功启动的MFC,当苯胺初始浓度为500mg·L~(-1),葡萄糖的浓度分别为500、300、100 mg·L~(-1)时,最大输出功率密度为205、180、169 mW·m~(-2),以500mg·L~(-1)苯胺为单一燃料时,最大输出功率密度为87mW·m~(-2),苯胺的降解率为74%。苯胺和葡萄糖在不同浓度配比下,苯胺的降解率均在71%以上,COD的降解率在73%以上。以乙酸钠成功启动的MFC,苯胺的浓度保持500mg·L~(-1)不变,乙酸钠的浓度分别为700、400、100mg·L~(-1)时,最大输出功率密度为231 mW·m~(-2)、207 mW·m~(-2)、189 mW·m~(-2),以500mg·L~(-1)苯胺为单一燃料时,最大输出功率密度为124mW·m~(-2),苯胺的去除率为87%。苯胺和乙酸钠无论在任何配比下,苯胺的降解率都能达到84%以上,COD的去除率达到88%以上。
     以乙酸钠和苯胺为底物,MFC的输出功率密度较葡糖和苯胺为底物的MFC提高12%以上,COD去除率和苯胺去除率提高了约14%和16%以上,苯胺作为单一燃料时,输出功率密度提高42%,苯胺去除率提高了22.5%。实验结果表明以乙酸钠启动的MFC处理苯胺废水时,产电特性及对苯胺的去除率都优于葡糖启动的MFC。
World-wide environmental contamination and energy depletion are inspiring, great attentions have been focused on the novel technology of energy exploration and utilization in the field of environmental engineering. Microbial fuel cells (MFCs) are devices that use microorganism as the bio-catalysts to oxidize organic and generate current. MFC is a new biological treatment of wastewater. The unique way for power generation from MFCs provides a creative method which can be used to resolve the energy crisis and environmental contamination simultaneously.
     A two-chamber microbial fuel cell was designed, which the cell is cylindrical shapes. The airtightness of MFC is excellent to keep anaerobic environment and the performance is convenience. In addition, the thermostatic bath are manufactured to maintain thermostatic condition of MFC, which temperature is from 15℃to 50℃.
     A microbial fuel cell was constructed for the study of organic degradation and power generation when use glucose and sodium acetate as the fuel to start-up the MFC. Compared to glucose as the fuel, the maximal power density is enhanced by 33% and the degradation rate of COD is enhanced by 10.7% when sodium acetate as the fuel. When the COD in the anodic chamber is changed from 1000mg·L~(-1) to 1500mg·L~(-1), The maximal power density is increased by 20% while the maximal power density is increased by 4% when COD is changed from 1500mg·L~(-1) to 2000mg·L~(-1). The operation temperature is changed from 15℃to 25℃, the maximal power density is enhanced by 27.7%. when temperature is increased from 25℃to 35℃, the maximal power density is enhanced by 54%. So the MFC provided the best performance of power generation and organic degradation at 35℃. The maximal power density is increased by 147% using potassium ferricyanide solution in the cathode compartment compared to using an oxygen-saturated aqueous cathode, Results show that the gaseous electron acceptor has better ability to accept electron than solid electron acceptor.
     We study two different methods to start-up the MFC and to treat aniline waste- water .When use glucose as the fuel to start-up MFC, The initial aniline concentration is 500 mg·L~(-1) with different glucose concentrations (500 mg·L~(-1), 300 mg·L~(-1), and 100 mg·L~(-1), respectively), the maximal area power densities are 205, 180 and 169 mW·m~(-2), respectively, The maximum power density of 87 mW·m~(-2) and the degradation rate of aniline is 74% using 500 mg·L~(-1) aniline as sole fuel. The degradation rate of aniline reaches over 71% and rate of COD over 73% at different concentration ratio. When use sodium acetate as the fuel to start-up MFC, The initial aniline concentration is 500 mg·L~(-1) with different sodium acetate concentrations (700mg·L~(-1), 400mg·L~(-1), and 100 mg·L~(-1), respectively), the maximal area power densities are 231, 207 and 189 mW·m~(-2). The maximum power density of 124 mW·m~(-2) and the degradation rate of aniline is 87% using 500 mg·L~(-1) aniline as sole fuel. The degradation rate of aniline reaches over 84% and rate of COD over 88% at different concentration ratio.
     Results show the maximal power density, the degradation rate of aniline, and removal of COD are enhanced by 12%, 14% and 16% repectively using sodium acetate -aniline mixture as the fuel more than that of glucose-aniline mixture as the fuel, When aniline is used as sole fuel, the maximal power density is enhanced by 42% and the degradation rate of aniline is enhanced by 17%. Results show that the generation performace selecting sodium acetate as the fuel is better than that of glucose as the fuel to start-up MFC.
引文
[1] R.E.Smalley. Testimony to the senate committee on energy and natural resources; hearing on sustainable, low emission, electricity generation. www.americanenergyindependence.com/ energychallenge. html.April 27th, 2004
    [2] G..Tchobanoglous, F.L.Burton. Wastewater Engineering:Treatment,Disposal and Reuse, 3rdedition. Metcalf &Eddy, Mc Graw-Hill:NewYork,1991
    [3]郑林静,陈洪斌,何群彪等.污水处理厂沼气发电的经济性分析.中国给水排水,2007,23(24):6-11
    [4] B.E.Logan.Feature Article: Extracting Hydrogen and Electricity from Renewable Resources. Environ.Sci.Technol.,2 004,38:160-167
    [5] N.Q.Ren,B.Z.Wang,J.Huang. Ethanol-type Fermentation from Carbohydrate in High Rate Acidogenic Reactor. Biotechnol. Bioeng., 1996, 54,428-433;
    [6] Park D H,Zeikus J G. Electricity gengeration in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology 2000,66(4):1292-1297
    [7] Gil G C, Chang I S, Kim B H et al. Operation parameters affecting the performance of a mediator-less microbial fuel cells. Biosensors and Bioelectronics, 2003,18:327-334.
    [8] McAlister D F. Effect of fungi on the oxidation-reduction potentials of liquid culture media [J]. American Journal of Botany, 1938,25:286-295.
    [9] Wilkinson S.Gastrobots- benefits and challenges of microbial fuel cells in food powered robot applications [J]. Autonomous Robots, 2000,9:9-111.
    [10] D.R.Bond, D.E.Holmes, L.M.Tender, D.R.Lovley. Electrode-reducing microorganisms that harvest energy from marine sediments.Science,2002,295:483~485
    [11] C.E.Reimers,L.M.Tender,S.Fertig,W.Wang.Harvesting energy from the marine sediment-water interface.Environ.Sci.Technol.,2001,35:192~195
    [12] Bretschger O,Osterstock J B,et al. Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research[J].Microbial Ecology.2009,1-13
    [13] Habermann W, Pommer E H. Biological fuel cells with sulphide storage capacity [J] .Applied Microbiology and Biotechnology,1991,35:128-133.
    [14] Liu H, Cheng S,Logan B E. Production of electricity from acetate or butyrate in a single chamber microbial fuel cell[J]. Environ Sci Technol,2005,-662
    [15] Rabaey K, Lissens G, Siciliano SD, Verstraete W.A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 2003,25:1531–1535
    [16] He Z, Wagner N, Minteer S D, et al. An upflow microbial fuel cell with an internal resistance by impedance spectroscopy[J]. Environ Sci Technol,2006, 40:5212-5217
    [17] Kim J R ,Jung S H, Regan J M ,et al. Electricity generation and microbial community analysis ofalcohol powered microbial fuel cells[J].Bioresource Technology,2007, 98 (13):2568-2577
    [18] Liu H, Ramnarayanan R,Logan B E.Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology, 2004, 38 (7) :2281-2285
    [19] Luo Haiping, Liu Guangli, Zhang Renduo,et al. Phenol degradation in microbial fuel cells [J]. Chemical Engineering Journal,2009, 147:259-264
    [20]骆海萍,刘广立,张仁铎等.以苯酚为燃料的微生物燃料电池的产电特性[J] .环境科学学报,2008,28(7):1279-1283
    [21] Huang Liping, Logan BE. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell[J]. Appl Microbiol Biotechnol, 2008,80:349-355.
    [22] Du Zhuwei, LiHaoran, Gu Tingyue. A state of the art review on microbial fuel cell:A promising technology for wastewater treatment and bioenergy[J]. Bioteehonology Advanees. 2007 ,25:464-482
    [23] Logan B. E.,Hamelers B, Rozendal RA, et al. Microbial fuel cells: Methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
    [24] Korneel R,WillyV. Microbial fuel cells: novel biotechnology for energy generation [J].Trends in Biotechnology, .2005,23:291-298.
    [25] U.Schroder,J.Niessen,F.Scholz.A Generation of Microbial Fuel Cells with Current Outputs Boosted by More than one Order of Magnitude.Angew.Chem.Int.Ed.,2003,42:2880~2883
    [26]付宁.利用微生物燃料电池技术处理有机废水的研究[D].硕士学位论文,大连理工,2006
    [27]连静,冯雅丽,李浩然.微生物燃料电池的研究进展[J].过程工程学报,2006,6(2):334~338.
    [28] G.Tayhas, R.Palmore, M.W.George.Microbial and Enzymatic Biofuel Cells. A Chem Soc Symp Ser, 1994,56(6):271~290
    [29] D.R.Lovley.Microbial Fuel Cell:Novel Microbial Physiologies and Engineering Approaches. Curr.Biol.,2006,17(3):327~332
    [30] S.K.Chaudhuri, D.R.Lovley.Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat.Biotechnol.,2003, 21:1229~1232
    [31] B.Min,S.A.Cheng,B.E.Logan.Electricity Generation Using Membrane andSalt Bridge Microbial Fuel Cells.Water Res.,2005,39(9):1675~1686
    [32] Delaney G.Electron Transfer Coupling in Microbial Fuel Cells:.Performance of Fuel Cells Containing Selected Microorganism–Mediator -Substrate Comb-inations.Journal of Chemical Technology & Biotechnology.1984,34B:13-27.
    [33] Roller S D,Delaney G,Mason J,et al,Thurston C.Electron Transfer Coupling in Microbial Fuel Cells:1.Comparison of Redox–mediator Reduction Rates and Respiratory Rates of Bacteria. Journal of Chemical Technology& Biotechno logy,1984,34B:2-12.
    [34] Ikeda T,Kano K.Bioelectrocatalysis-based application of quinoproteins and quinoprotein -containing bacterial cells in biosensors and biofuel cells. Biochimicaet Biophysica Acta, 2003, 1647:121-126.
    [35] Thurston C F,Bennetto H P,Delaney G M et al.Glucose metabolism in amicrobial fuel cell.Stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yield.Journal of General Microbiology,1985,131:1393-1398.
    [36] Lithgow A M,Romero L,Sanchez I C et al.Interception of the electr-on-transport chain in bacteria with hydrophilic redox mediators.Part1. Selective improvement of the performance of biofuel cells with 2,6–disulphonated thionine as mediator. Journal of Chemical Research Synopsis ,1986,5:178-179.
    [37] Veag C A,Fernandez I.Mediating effect of ferric chelate compounds in microbial fuel cells with lactobacillus plantarum, streptococius lactes,and erwina dissolvens.Bioelectrochem Bioeng, 1987, 17: 217 - 222.
    [38] Keith l H, Telliard W A. Priority pollutants I A perspective view [J ].Environ Sci Technol, 1979, 13:416-423
    [39] L.T.Angenent, K.Karim, M.H.Al-Dahhan, B.A.Wrenn, R.Domiaguez- Espinosa.Production of bioenergy and biochemicals from industrial and agricultural wastewater.Trends Biotechnol., 2004, 9: 477 ~485
    [40] Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cellinthe presence and absence of a proton exchange membrane. Environ Sci Technol .2004,38(14):4040–4046
    [41]冯雅丽,李浩然,连静,等.利用微生物电池研究微生物在矿物面电子传递过程[J].北京科技大学学报,2006,28(11):1009-1013
    [42]宋娟,赵华章等.微生物燃料电池阳极修饰的研究进展[J].化学与生物工程,2009,26(7)16-18
    [43] Park D H,Zeikus J G.Impact of electrode composition on electricity generation in a single -compartment fuel cell using Shewanella putrefucians[J].Applied Microbiology Biotechnology, 2002, 59 (1):58-61.
    [44] Prasad D,Arun S,Murugesan M,et al.Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J].Biosensors and Bioelectronics, 2007, 22(11) :2604-2610.
    [45]薄爱丽,林祥钦.循环伏安和现场红外光谱电化学研究镉在普鲁士蓝/铂修饰电极上的反应[J].分析化学,1999,27(4):392-397
    [46]钮金芬,姚秉华.多壁碳纳米管修饰电极的制备及其应用[J].化学分量,2006,15(4):24-26
    [47] Z.He,L.T. Angenent. Application of bacterial biocathodes in microbial fuelcells. Electroanal., 2006, 18:2009~2015
    [48] T.D.Gierke,G.E.Munn,F.C.Wilson.The morphology in Nafion perfluorinated membrane productsm as determined by wide-and small-angle X-ray studies. J. Polym .Sci.Polym.Phys.,1981,19:1687~1704
    [49] K.J.Chae,M.Choi,F.F.Ajayi,W.Park,I.S.Chang,I.S.Kim.Mass transport through a proton exchang emembrane(Nafion) in microbial fuel cells .Energ.Fuels, 2008, 22: 169 ~176
    [50] J.R.Kim,S.A.Cheng,S.E.Oh,B.E.Logan.Power generation usingdifferent cation, anion, ultrafiltration membranesinmicrobial fuel cells. Environ.Sci. Technol, 2007,41:1004~1009
    [51] N.Wagner.Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c.impedance spectroscopy.J.Appl. Electrochem.,2002,32:859~863
    [52]魏海娟,黄继国,贾国元等.一种快速测定化学需氧量(COD)的方法[J].环境科学与技术,2006,1(1):45-46
    [53] Pramauro E, Proevot AB. Photocatalytic treatment of lab-oratory wastes containing aromatic amines [J]. Analyst,1995, 120(2):237.
    [54]王格,卢燕,王蔺含苯胺类染料废水处理研究[J].环境保护科学, 2007,33(6):58-60 ;
    [55]项正心,张丽丽,陈建孟,等.好氧颗粒污泥及其高效菌株降解苯胺的试验研究[J].环境科学,2009,30(11):3336-334.
    [56]盛多红,张素琴,海舟.一株高浓度苯胺降解菌的分离[J].应用与环境生物学报,1999, 5(增刊):18-20
    [57]曹宏斌,李玉平,陈艳丽,等.生物膜接触氧化法处理苯胺废水[J].环境科学学报, 2004,24(1):33-37
    [58] Catal T, Li K,Bermekc H, et al.Electricity production from twelve monosaccharides microbial fuel cells[J].J Power Sources,2007, 175:196-200
    [59]张翠萍,王志强,刘广立,等.以吡啶和葡萄糖为燃料的MFC产电特性研究[J].环境科学,2009a, 30(10):3089-3092
    [60]张翠萍,王志强,刘广立等.降解喹啉的微生物燃料电池的产电特性研究[J].环境科学学报,2009b,29 (4):740-746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700