亚/超临界—发酵组合技术制备秸秆乙醇
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会能源需求的不断增长与环境污染的日益严重,以生物质秸秆为原料生产燃料乙醇有着广阔的市场前景。超临界技术为生物质秸秆的资源化利用提供了一条新的途径。本论文利用亚/超临界-发酵组合技术对生物质秸秆进行处理及资源化研究,利用间歇式高压反应釜,以生物质秸秆亚/超临界反应所产生的还原糖及发酵产生的乙醇为目标产物,研究了生物质秸秆亚/超临界处理的影响因素和液化产物的脱毒及发酵条件。
     本文采用亚/超临界技术对生物质秸秆进行水解,探讨了温度和固液比等因素对还原糖产率与浓度的影响。结果表明甘蔗渣在最佳温度343℃与最佳固液比1:3.7时,还原糖产率达30.4%,还原糖浓度为141.55g/L;稻草秸在最佳温度332℃与最佳固液比为1:3.6时,还原糖产率达20.6%,浓度为119.98g/L;小麦秸在最佳温度335℃,最佳固液比为1:6.5时,还原糖产率与浓度达23.75%, 62.17g/L;玉米秸在最佳温度312℃,最佳固液比1:3时,还原糖产率与浓度达34.9%,106.65g/L;油菜秸在最佳温度319℃,最佳固液比为1:5时,还原糖产率与浓度达34.21%,79.86g/L。
     本论文优化了超临界处理后的反应液的脱毒方法:将得到的超临界反应液,缓慢加入Ca(OH)_2,至pH=8-9,在60℃下放置,待Ca(OH)_2完全沉淀,抽滤得液体,用磷酸溶液调pH至5。再加入3%活性炭,50℃下搅拌30min,冷却后抽滤得液体。
     论文对反应液发酵的脱毒效果、菌种驯化、接种量以及培养基营养盐的配比等进行了探讨。结果表明,脱毒后的反应液更利于发酵,乙醇产率提高了35.6%;驯化后的酿酒酵母发酵产生的乙醇浓度由32g/L上升到42.9g/L,可能由于液化产物中酵母发酵抑制物的脱除尚不完全。最佳接种量为10%,pH值为5,最佳营养盐配比为:0.1g/L MgSO_4·7H_2O,0.15g/L KH_2PO_4,0.4g/L(NH_4)2SO4,并做验证实验,得乙醇浓度为52.6g/L。实验采用20g甘蔗渣在343℃,固液比为1:3.7时,还原糖产率为30.4%,产生还原糖浓度为141.55g/L。经计算,每生产1t乙醇需要2.09t还原糖,即需要6.88t甘蔗渣,则还原糖的利用效率为47.85%,纤维素的产糖率为75.94%,纤维素转化为乙醇的利用率为36.12%。
With the rising demand for liquid fuels and environment protection, the production technology of fuel ethanol from biomass is in great potential. Supercritical technology provides an effective method for the reutilization of biomass. The disposal and reutilization of biomass were realized by combined subcritical/supercritical and fermentation technology. To obtain high reducing sugar yield and concentration by subcritical/supercritical reaction and ethanol by fermentation, the influence factors, detoxification of liquefaction products and fermentation conditions were investigated.
     In this paper, the biomass was liquefied by subcritical/supercritical technology and the effects of temperature and solid liquid ratio on reducing sugar yield and concentration were studied. The results were as follows: (1) In the condition of 343℃, solid liquid ratio 1:3.7, the reducing sugar yield and concentration of bagasse can reach the maximum value 30.4% and 141.55g/L; (2) The reducing sugar yield and concentration of rice straw can reach the highest value 20.6% and 119.98g/L in the condition of 332℃, solid liquid ratio 1:3.6; (3) In the condition of 335℃, solid liquid ratio 1:6.5, the reducing sugar yield and concentration of wheat can reach the maximum value 23.75%,62.17g/L; (4) The reducing sugar yield and concentration of corn can reach the highest value 33.72% and 106.65g/L in the condition of 312℃, solid liquid ratio 1:3; (5) In the condition of 319℃, solid liquid ratio 1:5, the reducing sugar yield and concentration of cole can reach the maximum value 34.21% and 79.86g/L.
     The detoxification methods of liquid in the subcritical/supercritical water were improved: The liquid from subcritical/supercritical reaction was excessive neutralized using calcium hydroxide while pH reached 8-9, accurately regulating to 5.0 using phosphoric acid. Then 3% of volume rate of add activated carbon were added in, after stirring for 30 minutes at 50℃and filtered.
     The influence factors of fermentation of biomass liquefied in subcritical/supercritical water after detoxification to produce ethanol were discussed in this thesis, such as the effect of detoxification and domestication and inoculation volume of Saccharomyces cerevisiae and nutrient content. The results showed that the solution after detoxification was more conductive to fermentation and the ethanol production was improved by 35.6%. The ethanol concentration produced by Saccharomyces cerevisiae after domestication rose from 32g/L to 42.9g/L. The possible reason was that the detoxification inhibiting fermentation of the liquid was incomplete. The best inoculation volume was 10%, the pH reached 5.0 in the end of fermentation. Through the ethanol concentration, the best nutrients ratio are: MgSO_4·7H_2O 0.1g/L, KH_2PO_4 0.15g/L, (NH_4)_2SO_4 0.4g/L, and did the verification experiment, the ethanol concentration was 52.6g/L. The bagasse of 20g was liquefied in 343℃, the reducing sugar yield and concentration were 30.4% and 141.55g/L. So 2.09g of reducing sugar were required to produce each gram of ethanol, that was 6.88g of bagasse were required to produce each gram of ethanol. The utilization ratio of reducing sugar was 47.85%. The reducing sugar and ethanol concentration produced by cellulose were 75.94% and 36.12% .
引文
[1]《中国化工信息》周刊网(www.chemnewscom.cn ).
    [2] Nagaraja B.M., Siva Kumar V., Shasikala V., et al. A highly efficient Cu/MgO catalyst for vapour Phase hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2003, 4(6): 287-293.
    [3] Zhang H.Li.S., Luo H.. Ace-Promoted Ni-B amorphous alloy catalyst (Ni-Ce-B) for Liquid-Phase furfural hydrogenation to furfural alcohol[J]. Materials Letters, 2004, 58(22-23): 2741-2746.
    [4]刘荣厚.生物质快速热裂解制取生物油技术的研究进展[J].沈阳农业大学学报, 2007, 38 (1): 1-7.
    [5]孙振钧.中国生物质产业及发展取向[J].农业工程学报, 2004, 20(5): 1-5.
    [6]于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状[J].化工进展, 2006, 25(3): 244.
    [7]高洁,汤烈贵.纤维素科学[M].北京:科学出版社, 1999第2版: 24-25.
    [8]朱清时,阎立峰,郭庆祥.生物洁净能源[M].化学工业出版社, 2002: 35-74.
    [9] Fiedurek S.. Technology for conversion of lignocellulosic biomass to ethanol[J]. Biomass and Bioenergy, 1996, 10(6): 367-375.
    [10]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术, 2003, 11(l): 42-55.
    [11]戈进杰.生物降解高分子材料及其应用[M].化学工业出版社, 2002,139-260.
    [12]邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术, 2006, 14(1): 52-59.
    [13] Anvar U, Buranov, Mazza G. Lignin in straw of herbaceous crops[J]. Industrial crops and products, 2008, 28(3): 237-259.
    [14] Takuya H., Tsushi A., Hiroaki K.. A Gasification of coal in the thermal argonplasma[J]. Jounral of chemical engineering of Japan, 1985, 18(5): 414-419.
    [15] Gorsdidier P., Matons D., Gauvin W.. Gasification of peat in a steam plasma reactor. Jounral of chemical engineering, 1985, 63: 93-98. [ 16 ] Sakai, Yasuw. Enhancement of ethanol formation by immobilized yeast containing iron powder or ba-ferrite due to eddy current or hysteresis[J]. Jounral of Fermentation and Bioengineering(JAP), 1994, 77(2): 169-172.
    [17] Moersi Mauro. Ethanol production by immobilized yeast in a three phase fluidized bed bioreaetor. Chemistry Industry(Milan), 1993, 75(3): 193-200.
    [18] Yuan Chuanmin, Yan Jieyong, Ren Zhengwei. Influence of catalyst type and regeneration on upgrading of crude bio-oil through catalytical thermal cracking[J]. Chinese Journal of Process Engineering, 2004, 4(1): 53-58.
    [19]白鲁刚,颜涌捷.废弃生物质的开发利用.新能源, 2000, 22(4): 34-38.
    [20]张素萍,颜涌捷,任铮伟,等.生物质快速裂解产物的研究.华东理工大学学报, 2001, 27(6): 666-668.
    [21]郭晓亚,颜涌捷,李庭珠,等.生物质油精制前后热稳定性和热分解动力学研究.华东理工大学学报, 2004, 30(3): 270-274.
    [22] Yuan Chuanmin, Yan Jieyong, Ren Zhengwei, et al. Kinetics of sawdust hydrolysis with dilute hydrochloric acid and ferrous chloride[J]. Chinese Journal of Process Engineering, 2004, 4(1): 64-68.
    [23]戴向荣,蒋立科,罗曼.发展农村生物质能的设想与建议[J].世界农业, 2006(7): 52-55.
    [24] Geller H., Schaeffer R., Szklo A., et al. Policies for advancing energy efficiency and renewable energy use in Brazil[J]. Energy Policy, 2004, 32(12): 1437-1450.
    [25]梁宝芬.美国生物质能等可在再能源发电考查报告[J].新能源, 1994, 16(10): 1- 7.
    [26] Doe research and development Portfolio. Enel. gyresourees. Vol. 1, 2000. 2.
    [27]李海滨,吴创之,陈勇.我国垃圾处理的技术出路[J].中国科技成果, 2002, (15): 19-20.
    [28]张刨钊,郭凤华.面向21世纪的美国生物质能[J].能源工程, 1999, (2): 9-11.
    [29] Graham R. L., Downing M., Walsh M. E.. A framework to assess regional environmental impacts of dedicated energy crop production[J]. Environmental Management, 1996, 20 (4): 475- 485.
    [30]郭廷杰.美日利用纤维素生物质原料制燃料乙醇的技术开发[J].能源技术, 2004, 25(2): 61-63.
    [31]曲音波,高培基.开展生物质转化为酒精研究实现液态燃料可持续供应[C].发酵工程学科的进展一第二次全国发酵工程学术讨论会,北京:中国轻工业出版社, 2002: 34-39.
    [32]姚向君,王革华,田宜水.国外生物质能的政策与实践[M].北京:化学工业出版社, 2006.
    [33]吴旭刚,王述祥,李滨.生物质液化燃油地发展及其在我国应用的探讨[J] .林业机械设备, 2006, (11): 67-89.
    [34] Randerson P. F.,董宏林.世界若干国家生物质能源利用及有关问题研究[J].宁夏农林科技, 1999(5): 7.
    [35]倪健民.国家能源安全报告[M].北京:人民出版社, 2005: 87-90.
    [36]张纪庄.生物质能利用方式的比较[J].能源工程, 2003, 4(2): 23-25.
    [37]祝学范,杨克美.木质能源的地位及开发利用前景[J].农村源, 2001, (6): 30-32.
    [38]丁素珍,王孟.生物质能的开发与利用[J].农业工程学报, 1993, 9(4): 51-57.
    [39]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003: 10-11.
    [40]颜涌杰,任争伟.生物质液体燃料的现状和发展[J].太阳能学报, 2000, (21): 140-144.
    [41]刘石彩,蒋春,陶渊博,等.环保型生物质成型炭制造技术研究[J].广州: 2002中国生物质能研讨会, 2002, 10: 1-18.
    [42]中华人民共和国国家发展计划委员会基础产业发展司编.中国能源与可再生能源1999白皮书.中国计划出版社, 2000: 4.
    [43]黄保圣.我国植物生物质能源开发展望[J].新能源, 2003, (1): 20- 23.
    [44]冀星,郗小林.我国生物柴油产业发展展望[J].中国能源, 2002, (5) : 16- 18.
    [45]陶邦彦,徐烘海,杭鹏志,等.生物质、固废弃物的气化、热解、焚烧技术及其装备[ J].动力工程, 2002, 22(5): 1990-1994.
    [46]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业, 2002, (2): 75- 80.
    [47]邓可蕴,张鲁江,贺亮.中国农村地区能源形势分析[J].农业工程学报, 1998, 14(2): 19- 25.
    [48]周凤起,周大地.中国长期能源战略[M].北京:中国计划出版社, 1999.
    [49]孙振钧,袁振宏,张夫道,等.农业废弃物资源化与农村生物质资源战略研究报告[R].国家中长期科学和技术发展规划战略研究, 2004.
    [50]胡英著.近代化工热力学.上海:上海科技文献出版社, 1994: 133.
    [51] Modell M.. Fundamental of thermochemical biomass conversion[J]. Elsevier. Amsterdam, 1995: 95-97.
    [52] Townsend S. H., Abraham M. A., Huppert G. L., et al. Solvent effects during reactions in supercritical water[J]. Industry & Engineering Chemistry Research, 1988, 27, 143-149.
    [53] Penninger M. L.. ACS Symp. Ser. 1989, 406, 242.
    [54] Klein M. T., Torry L. A., Wu B. C., et al. Hydrolysis in supercritical water: Solvent effects as a probe of the reaction mechanism[J]. Supercritical Fluids, 1990, 3: 222-227.
    [55] Yan Qiuhui, Guo Liejin, Lu Youjun. Thermodynamic analysis of hydrogenproduction from biomass gasification in supercritical water[J]. Energy Conversion & Management, 2006, 47: 1515-1528.
    [56] Marcelo S. Z., Victor R. V., Eugenia A. M.. Viscosity of pure supercritical fluids[J]. Supercritical Fluid, 2005, 36: 106-117.
    [57] Fangrui M., Davis C. L., Hanna M. A.. Biodiesel production: a review[J]. Bioresource Technology, 1999, 70(1): 13-15.
    [58]陈维.超临界流体萃取的原理和应用[M].北京:化学工业出版社, 1998: 176-184.
    [59]朱自强.超临界流体技术:原理和应用[M].北京:化学工业出版社, 2000: 235-288.
    [60]郭璇,贺华阳,王涛,等.超临界流体技术制备生物柴油[J].现代化工, 2003, 23(21): 15-18.
    [61]赵保国,刘玉存.超临界水的性质与氧化反应原理[J].山西化工, 2007, 27(4): 13-17.
    [62]王攀,漆新华,王春英,等.纤维素超临界水水解糖化研究进展[J],天津化工, 2007, 21(6): 1-3.
    [63] Jon Donovan M., Peter Molton M., Thomas demmitt F.. effect of pressure, temepratuer, pH and carbon monoxide on oil yields rom cellulose liquefaction[J]. Fuel, 1981(60): 98-902
    [64] Sasaki S. H., Fang Z., Fukush I. A. Y., et al. Dissolution and Hydrolysis of cellulose in sub-and supercritical water[J]. Industry & Engineering Chemistry Research, 2000, 39(8): 2883-2890.
    [65] Mitsuru S., Tadafumi A., Kunio A.. Fractionation of sugarcane bagasse by hydrothermal treatment[J]. Bioresource Technology, 2003, 86: 301–304.
    [66] Adschiri T., Hirose S., Malaluan R., Arai K.. Cellulose hydrolysis in supercritical water to recover chemicals [J]. Chemistry Engineering Japan, 1993, (26): 676.
    [67] Malaluan R. M.. A Study on cellulose decomposition in subcritical and supercritical water. Ph.D. Dissertation, Tohoku University, Sendai, Japan, 1995.
    [68] Buhler W., Dinjuse, Ederer H. J., et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near and supercritical water[J]. Supercritical Fluids, 2002, 22(1): 37-53.
    [69] Krusea, Gawlika. Biomass conversion in water at 330-410℃and 30-50 MPa identification of key compounds for indicating different chemical reaction pathways[J]. Industry & Engineering Chemistry Research, 2003, 42(2): 267-279.
    [70] Adschiri T. M., Hirose S., Malalunr M., et al. Uncatalytic conversion of cellulosein subcritical and supercritical water[J]. Journal of Chemistry Engineering Japan, 1993, 26(6): 676-677.
    [71]朱道飞,王华,包桂蓉.纤维素亚临界和超临界水液化实验研究[J].研究与探讨, 2004, 5: 8-10.
    [72]王海雷.生物质超临界液化的实验研究[D].大连理工大学安全技术及工程专业硕士论文.
    [73] Larsson S.. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enzyme & Microbial Technology, 1999, 24: 151-159.
    [74] Chuang I. S., Lee Y. Y.. Ethanol fermentation of crude acid hydrolyzate of cellulose using high level yeast inocula[J]. Biotechnology & Bioengineering, 1985, 27(3): 308-315.
    [75] Zaldivar J., Ingfram L. O.. Effect of organic acid on the growth and fermentation of ethanologenic Escherichia coli L Y01[J]. Biotechnology & Bioengineering, 1999, 66(4): 203-210.
    [76] Zaldivar J.. Effects of selected Aldehydes on the growth and fermentation of ethanologenic Escherichia coli[J]. Biotechnology & Bioengineering, 1999, 65: 24-33.
    [77] Yang B., Wyman C. E.. Effect of xylan and ligin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology & Bioengineering, 2004, 86: 88-95.
    [78]陈洪章.纤维素生物技术[J].化学工业出版社, 2005: 68-75.
    [79]陈明.利用玉米秸秆制取燃料乙醇的关键技术研究[D].浙江大学生物化工学院, 2007.
    [80]刘志恒,主编,现代微生物学.科学出版社,北京, 2002.7.
    [81]陈晓红.碘量法测定葡萄糖含量微型实验研究[J].光谱实验室, 2006, 23(6): 1265-1266.
    [82] Nakata T., Miyafuji H., Saka S.. Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis[J]. Applied Biochemistry & Biotechnology, 2006, 130(1-3): 476.
    [83] Sasaki M., Adschiri T., Arai K.. Production of cellulose II from native cellulose by near- and supercritical water solubilization[J]. Agriculture & Food Chemistry, 2003, 51(19): 5376.
    [84]曹洪涛.生物质在亚/超临界水条件下液化研究[D].湖南大学环境工程学院. 2008, 7.
    [85]潘进权,刘耘.酸解纤维素酒精发酵的毒性问题[J].生物技术, 2002, 12(l): 45-47.
    [86]洪剑辉.应用于纤维素同步糖化发酵(SSF)产酒精的重组酿酒酵母的构建[D].无锡:江南大学, 2006: 56-59.
    [87]陈一夫.生物质发电设备租赁市场分析(一)(N).中国新能源发电网, 2009-09-23.
    [88]庞凤梅,李玉浸,杨殿林,等.农作物秸秆沼气发酵与直接利用效益比较[J].中国沼气, 2008, (26): 34-37.
    [89]吕忠志,张沈生.农村秸秆气化项目的经济性分析[J].现代农业科学, 2008, 15(8): 86-87.
    [90]秸秆制乙醇进入中试成本低廉冲击玉米乙醇[EB/OL]. http: //finance.people.com.cn/GB/67604/68182/68185/4771869.html, 2006-02-16.
    [91]陈冬冬,高旺盛,陈源泉.中国农作物秸秆资源化利用的生态效应和技术选择分析[J].中国农学通报, 2007, 23(10): 143-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700