能源植物细胞壁成分与稀酸处理降解转化关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对全球气候变暖和能源危机的关注,发展非石油燃料成为社会的普遍认识。纤维乙醇能够减少温室气体的排放并且不会产生“与人争粮”的问题,因此受到广泛的关注。
     木质纤维素是植物体的主要构成物质,由纤维素、半纤维素、木质素、果胶质等生物高分子所组成。它是生产纤维乙醇的主要原料,而且它自身成分结构特点严重阻碍了生物质的降解转化。本课题通过稀硫酸处理植物秸秆来研究细胞壁成分对生物质降解转化的影响。
     芒草材料间的纤维素和半纤维素含量差异较大,木质素含量变化相对较小。水稻的材料间纤维素含量差异较小,但是半纤维素、木质素含量差异较大。芒草的三大细胞壁成分含量都比水稻高。在稀酸预处理中,随着H2SO4浓度的提高,芒草和水稻的总糖产率也在提高。芒草的预处理五碳糖产率比水稻高,而水稻的预处理六碳糖产率比芒草高。芒草和水稻材料间的降解差异性不会随着酸浓度的改变而改变。晶体状纤维素、木质素不利于酶解产糖,而半纤维素、酸溶性木质素和糖醛酸有利于酶解产糖。酸碱组合处理结果表明,酶解产糖率高的材料在预处理中相应的五碳糖产率高,即半纤维素易于降解,而酶解产糖率低的材料则相反。
     电镜观察表明,稀酸处理后秸秆表面比较光洁而且纤维素原纤保存完整。水稻和芒草的精细分析结果表明,酶解产糖率高的材料的纤维素结晶度较低、半纤维素组成单糖中木糖含量较高。在酸和碱处理中材料间的降解差异趋势一致,即酸处理中产糖率高的材料在碱处理中的产糖率也高。
Concerns about global climate and energy supply lead to seeking a non-petroleum-based fuels. Use of cellulosic-ethanol offers several benefits towards reduction of the greenhouse gas emissions and preventing of the competition with food supplies.
     Ligno-cellulosic biomass is a natural complex primarily consisting of three biopolymers:cellulose, hemicelluloses and lignin. Biomass recalcitrance is the largest obstacle to emerging cellulosic ethanol biorefineries. The purpose of this study was to identify Miscanthus and rice cell wall composition that influence the effectiveness with a dilute acid pretreatment process.
     The results showed that cellulose and hemicelluloses contents were varied among Miscanthus tested samples, with a little change in lignin. Compared to Miscanthus, rice is greatly varied in the hemicellulose and lignin contents. With increasing H2SO4 concentrations, total sugar yields were raised in both Miscanthus and rice. Particularly, pentose released from Miscanthus is more than one in rice, and hexose in rice is more than in Miscanthus's. Pretreatment by different acid concentrations, the difference of degradation in the Miscanthus and rice were not much changed. Crystalline cellulose and lignin have a negative effect on the enzymatic hydrolysis. The hemicelluloses, acid soluble lignin and uronic acid contents have a positive effect on the enzymatic hydrolysis. The degradation of the combined acid and alkali treatments showed that hemicelluloses are the crucial factors for biomass degradation in Miscanthus. The results of scanning electronic microscopy showed that major microfibrous cellulose structures remain after acid treatment.
     Materials which have high rate of enzymatic hydrolysis also have a lower degree of crystallinity, and more xylose. The difference of degradation in the Miscanthus and rice by acid was consistent with pretreatment of alkali.
引文
1.韩业君,陈洪章.植物细胞壁蛋白与木质纤维素酶解.化学进展,2007,19:1153-1158
    2.蒋应梯,许炯.竹纤维素分子聚合度的粘度测定法及其应用.林产化工通讯,2005,39:24-27
    3.李高扬,李建龙,王艳等.优良能源植物筛选及评价指标探讨.可再生能源,2007,25:84-89
    4.李军,吴平治,李美茹等.能源植物的研究进展及其发展趋势.自然杂志,2007,29:21-25
    5.林仁权,胡文兰,陈国亮.重铬酸钾氧化分光光度法测定酒中乙醇含量.浙江预防医学,2006,18:78-79
    6.彭良才.论中国生物能源发展的根本出路.华中农业大学学报(社科),2011,(2):1-6
    7.石元春.非粮生物质新能源最适合中国国情.山西能源与节能,2010,1-3
    8.田春龙,郭斌,刘春朝.能源植物研究现状和展望.生物加工过程,2005,3:14-19
    9.田宜水.中国第二代生物燃料资源发展潜力分析.中国能源,2010,32:17-20
    10.王伟波,张全发.能源植物规模化种植理论与技术研究进展.生命科学,2010,22:1271-1276
    11.王亚静,毕于运,唐华俊.中国能源作物制备液体生物燃料现状及发展趋势.可再生能源,2009,27:100-105
    12.吴国江,刘杰,娄治平等.能源植物的研究现状及发展建议.中国科学院院刊,2006,21:53-57
    13.谢光辉,卓岳,赵亚丽等.欧美根茎能源植物研究现状及其在我国北方的资源潜力.中国农业大学学报,2008,13:11-18
    14. Alvira, P., Tomas-Pejo, E., Ballesteros, M., et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review. Bioresource Technol,2010,101:4851-4861
    15. Anderson, W., and Akin, D. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J. Ind. Microbiol. Biotechnol,2008, 35:355-366
    16. Arioli, T., Peng, L., Betzner, A.S., et al. Molecular Analysis of Cellulose Biosynthesis in Arabidopsis. Science,1998,279:717-720
    17. Atalla, R.H., Hackney, J.M., Uhlin, I., et al. Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol,1993,15:109-112
    18. Balat, M., Balat, H., and Oz, C. Progress in bioethanol processing. Prog. Energy Combust. Sci,2008,34:551-573
    19. Billa, E., Tollier, M.-T., and Monties, B. Characterisation of the Monomeric Composition of in situ Wheat Straw Lignins by Alkaline Nitrobenzene Oxidation: Effect of Temperature and Reaction Time. J Sci Food Agr,1996,72:250-256
    20. Binod, P., Sindhu, R., Singhania, R.R., et al. Bioethanol production from rice straw: An overview. Bioresource Technol,2010,101:4767-4774
    21. Buranov, A.U., and Mazza, G. Lignin in straw of herbaceous crops. Ind Crop Prod, 2008,28:237-259
    22. Chen, F., and Dixon, R.A. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech,2007,25:759-761
    23. Davin, L.B., and Lewis, N.G. Lignin primary structures and dirigent sites. Curr Opin in Biotechnol,2005,16:407-415
    24. De la Luz Reus Medina, M., and Kumar, V. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients. Int. J. Pharm,2007,337:202-209
    25. Ebringerova, A., Hromadkova, Z., and Heinze, T. Hemicellulose. Adv Polym Sci, 2005,186:1-67
    26. Gray, K.A., Zhao, L., and Emptage, M. Bioethanol. Curr Opin Chem Biol,2006,10: 141-146
    27. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., et al. Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol,2006,24:549-556
    28. Heaton, E.A., Flavell, R.B., Mascia, P.N., et al. Herbaceous energy crop development: recent progress and future prospects. Curr Opin in Biotechnol,2008,19:202-209
    29. Himmel, M.E., Ding, S.-Y., Johnson, D.K., et al. Biomass Recalcitrance:Engineering Plants and Enzymes for Biofuels Production. Science,2007,315:804-807
    30. Ishizawa, C., Jeoh, T., Adney, W., et al. Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose,2009,16:677-686
    31.Iwata, T., Indrarti, L., and Azuma, J.-I. Affinity of Hemicellulose for Cellulose Produced by Acetobacter Xylinum. Cellulose,1998,5:215-228
    32. Jahn, C.E., Mckay, J.K., Mauleon, R., et al. Genetic Variation in Biomass Traits among 20 Diverse Rice Varieties. Plant Physiol,2011,155:157-168
    33. Lapierre, C., Pollet, B., and Rolando, C. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermediat,1995, 21:397-412
    34. Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O., et al. Miscanthus:European experience with a novel energy crop. Biomass Bioenerg,2000,19:209-227
    35. Lewandowski, I., Scurlock, J.M.O., Lindvall, E., et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg,2003,25:335-361
    36. Linde, M., Jakobsson, E.-L., Galbe, M., et al. Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenerg,2008,32:326-332
    37. Liu, C.G., and Wyman, C.E. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresource Technol,2005,96:1978-1985
    38. Mosier, N., Wyman, C., Dale, B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol,2005,96:673-686
    39. Murnen, H.K., Balan, V., Chundawat, S.P.S., et al. Optimization of Ammonia Fiber Expansion (AFEX) Pretreatment and Enzymatic Hydrolysis of Miscanthus x giganteus to Fermentable Sugars. Biotechnol Progr,2007,23:846-850
    40. Ohgren, K., Bura, R., Saddler, J., et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technol,2007,98: 2503-2510
    41. Ohgren, K., Bura, R., Saddler, J., et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technol,2007,98: 2503-2510
    42. Ordaz-Ortiz, J.J., Marcus, S.E., and Knox, J.P. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma. Mol Plant,2009,2:910-921
    43. Peng, L., and Gutterson, N. Energy Crop and Biotechnology for Biofuel Production. J Integr Plant Biol,2011,53:253-256
    44. Peng, L., Hocart, C.H., Redmond, J.W., et al. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta,2000,211:406-414.
    45. Peng, L., Kawagoe, Y., Hogan, P., et al. Sitosterol-β-glucoside as Primer for Cellulose Synthesis in Plants. Science,2002,295:147-150
    46. Peng, L., Xiang, F., Roberts, E., et al. The Experimental Herbicide CGA 325'615 Inhibits Synthesis of Crystalline Cellulose and Causes Accumulation of Non-Crystalline β-1,4-Glucan Associated with CesA Protein. Plant Physiol,2001, 126:981-992
    47. Sφrensen, I., Domozych, D., and Willats, W.G.T. How Have Plant Cell Walls Evolved? Plant Physiol,2010,153:366-372
    48. Sagar, A.D., and Kartha, S. Bioenergy and Sustainable Development? Annu Rev Env Resour,2007,32:131-167
    49. Saha, B.C. Hemicellulose bioconversion. J Ind Microbiol Biot,2003,30:279-291
    50. Scheller, H.V., and Ulvskov, P. Hemicelluloses. Annu Revi Plant Phys,2010,61: 263-289
    51. Segal, L., Creely, J.J., Martin, A.E., et al. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J,1959,29:786-794
    52. Shi, J., Chinn, M.S., and Sharma-Shivappa, R.R. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresource Technol,2008,99:6556-6564
    53. Singh, A., Pant, D., Korres, N.E., et al. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass:Challenges and perspectives. Bioresource Technol,2010,101:5003-5012
    54. Sticklen, M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin in Biotechnol,2006,17:315-319
    55. Sun, R., Lawther, J.M., and Banks, W.B. The effect of alkaline nitrobenzene oxidation conditions on the yield and components of phenolic monomers in wheat straw lignin and compared to cupric(Ⅱ) oxidation. Ind Crop Prod,1995,4:241-254
    56. Sun, R., Sun, X.F., Wang, S.Q., et al. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind Crop Prod,2002,15:179-188
    57. Sun, Y., and Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol,2002,83:1-11
    58. Templeton, D., Sluiter, A., Hayward, T., et al. Assessing corn stover composition and sources of variability via NIRS. Cellulose,2009,16:621-639
    59. Teymouri, F., Laureano-Perez, L., Alizadeh, H., et al. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technol,2005,96:2014-2018
    60. Ucar, G. Pretreatment of poplar by acid and alkali for enzymatic hydrolysis. Wood Sci Technol,1990,24:171-180
    61.Uhlin, K.I., Atalla, R.H., and Thompson, N.S. Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose,1995,2:129-144
    62. Varvel, G.E., Vogel, K.P., Mitchell, R.B., et al. Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenerg,2008,32:18-21.
    63. Venturi, P., and Venturi, G. Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenerg,2003,25:235-255
    64. Wang, L., Guo, K., Li, Y., et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol,2010,10:282
    65. Whitney, S.E.C., Gothard, M.G.E., Mitchell, J.T., et al. Roles of Cellulose and Xyloglucan in Determining the Mechanical Properties of Primary Plant Cell Walls. Plant Physiol,1999,121:657-664
    66. Wu, L., Arakane, M., Ike, M., et al. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresource Technol,2011,102:4793-4799
    67. Xie, G., and Peng, L. Genetic Engineering of Energy Crops:A Strategy for Biofuel Production in ChinaFree Access. J Integr Plant Biol,2011,53:143-150
    68. Xu, F., Sun, R.-C., Sun, J.-X., et al. Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Analytica Chimica Acta,2005,552:207-217
    69. Yoshida, M., Liu, Y., Uchida, S., et al. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotech Bioch,2008,72:805-810
    70. Yu, H., Liu, R., Shen, D., et al. Arrangement of cellulose microfibrils in the wheat straw cell wall. Carbohyd Polym,2008,72:122-127
    71. Zhu, L., O'Dwyer, J.P., Chang, V.S., et al. Structural features affecting biomass enzymatic digestibility. Bioresource Technol,2008,99:3817-3828
    72. Zhu, S., Wu, Y., Yu, Z., et al. Comparison of Three Microwave/Chemical Pretreatment Processes for Enzymatic Hydrolysis of Rice Straw. Biosyst Eng,2006, 93:279-283
    73. Zhu, Z., Sathitsuksanoh, N., Vinzant, T., et al. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng,2009,103:715-724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700