能源植物细胞壁结构与碱处理降解转化关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和温室效应日益加剧,生物能源作为一种清洁的可再生能源,成为化石燃料的理想替代能源。木质纤维素作为植物细胞壁的主要成分,是地球上最丰富的生物质资源,木质纤维素转化生物乙醇具有广阔的利用前景,所以,细胞壁成分和结构的研究具有重要的意义。本研究选取芒草(C4植物)和水稻(C3植物)为材料,通过NaOH预处理,分析细胞壁成分的变化对预处理和酶解产糖效率的影响。
     测定纤维素、半纤维素、木质素、果胶质,四者总和为细胞壁总成分。五节芒细胞壁中的木质素(25.42%-32.14%)显著变化,纤维素和半纤维素没有显著变化;南荻细胞壁中的半纤维素(25.40%-30.00%)显著变化,木质素(31.36%-33.91%)小幅度变化,纤维素没有显著变化,水稻细胞壁中的半纤维素(27.97-19.66%)显著变化,纤维素和木质素没有显著变化。
     随NaOH浓度的提高,五节芒预处理液六碳糖、五碳糖、酶解液六碳糖含量大幅增加,而酶解液五碳糖的含量在1.00%NaOH达到最高值;随NaOH浓度的提高,南荻预处理液中五碳糖大幅增加,而预处理液中六碳糖小幅增加,酶解液中六碳糖和五碳糖增长明显;随NaOH浓度的提高,水稻预处理液中六碳糖含量在0.50%-1.00%NaOH增长幅度很大,预处理液中的五碳糖呈梯度升高,酶解液中的六碳糖稳定增加,酶解液中五碳糖在1.00% NaOH达到最高。
     通过分析胞壁结构和碱处理降解转化效率可以发现,五节芒的产糖率主要受木质素影响,木质素越高,产糖率越低;南荻随木质素升高产糖率降低,但半纤维素升高会显著提升产糖效率,半纤维素和木质素同样影响南荻产糖效率,水稻产糖效率主要受半纤维素影响,半纤维素升高,产糖效率升高。
     通过测定实验材料的精细成分发现,木质素S单体覆盖在纤维素表面,是降低酶解效率的主要屏障;而南荻XM4的非晶体纤维素为7.30%,显著提高了酶解效率,说明非晶体纤维素会促进纤维素的水解,提高酶解效率。
Concerns about energy crisis and globe warming have been seriously raised over the world. Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world. Lignocellulose is the most abundant renewable biomass on the earth and is the major component of the plant cell walls. Understanding of cell wall molecular structure is important for Biomass pretreatment and Bioethanol production. In this study, Miscanthus (C4) and Rice (C3) were used:o analyze their cell wall composition and digestibility upon NaOH pretreatment and subsequent enzyme degradation.
     The plant cell walls are composed of cellulose, hemicelluloses, lignins and pectins. The results showed that total lignin contents were most varied among the tested samples of miscanthus. M.floridulus samples were not much altered in the contents of the hemicelluloses and cellulose, whereas M.lutarioriparius showed a little change in hemicelluloses. As a comaprison, rice samples are greatly changed only in the hemicellulose contents.
     With the increased concentrations of NaOH, most samples (Hexose of pretreatment, Pentose of pretreatment & Hexose of enzymolysis) in Miscanthus appeared to have a significantly elvated degestibility of biomass. One sample (Pentose of enzymolysis) can reach to the highest activity at 1% NaOH among the M.floridulus, and two samples (Hexose of enzymolysis and Pentose of enzymolysis) showed much higher biomass degradation than others in M.lutarioriparius. Only three rice samples (Pentose of pretreatment, Pentose of pretreatment & Pentose of enzymolysis) showed high degradation efficiency.
     In addition, we analysed the relationship between the plant cell wall composition and the efficiency of biomass pretreatment and enzymolysis. It is characterized that lignins are the major factors for biomass degradation in M.floridulus, and hemicelluloses and lignins both played an important role in M.lutarioriparius. As a difference, hemicelluloses are the crucial factors for biomass degradation in rice.
     In Miscanthus, the S monomer of lignins is the key factor inhibiting enzyme degradation, and the non-crystalline cellulose could result in an increased efficiency of the biomass digestion.
引文
1.蒋应梯,许炯.竹纤维素分子聚合度的粘度测定法及其应用.林产化工通讯,2005,39(3):24-27
    2.林仁权,胡文兰.重铬酸钾氧化分光光度法测定酒中乙醇含量.浙江预防医学,2006,3:78-79
    3.石元春.发展生物质产业.中国农业科技导报,2000,68(1):1-5
    4.颜季琼.高等植物细胞壁的结构和功能(一).生物学通报,1999,(01)
    5.杨涛.水稻秸秆纤维素发酵转化燃料乙醇的研究.[中国博士学位论文全文数据库].2008
    6.尹增芳,樊汝汶.植物细胞壁的研究进展.植物研究,1999,19(4):407-414
    7.赵庆新,袁生.植物细胞壁研究进展.生物学通报,2007,42(7):8-9
    8. Arioli T Peng L C, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science,1998,279(5351):717-720
    9. Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Re,2005 29(4):719-739
    10. Bacic A, Harris P J, Stone B A. Structure and function of plant cell walls. The biochemistry of plants,1988,14:297-372
    11. Bak J S, Ko J K, Han Y H, Lee B C, Choi I G, Kim K H. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 2009,100(3):1285-1290
    12. Barnett J R, Bonham V A. Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev Camb Philos Soc,2004,79(2):461-472
    13. Barr B K, Hsieh Y L, Ganem B, Wilson D B. Identification of two functionally different classes of exocellulases. Biochemistry,1996,35(2):586-592
    14. Baucher M, Monties B, Montagu M V, Boerjan W. Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Sciences,1998,17:125-197
    15. Baydoun E A, Waldron K W, Brett C T. The interaction of xylosyltransferase and glucuronyltransferase involved in glucuronoxylan synthesis in pea (Pisum-sativum) epicoty s. Biochem J,1989,257:853-858
    16. Billa Evaggeli, Marie-Therese Tollier, Bernard Monties. Characterisation of the Monomeric Composition ofin situWheat Straw Lignins by Alkaline Nitrobenzene Oxidation:Effect of Temperature and Reaction Time. Science of Food and Agriculture,1999,72(2):250-256
    17. Binod P, Sindhu R, Singhania R R, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran R K,Pandey A. Bioethanol production from rice straw:An overview. Bioresour Technology,2009,101(13):4767-4774
    18. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol,2003,54: 519-546
    19. Brown Jr R M, Saxena I M. Cellulose biosynthesis:A model for understanding the assembly of biopolymers. Plant Physiology and Biochemistry,2000,38(1-2):57-67
    20. Cosgrove D J. Expansive growth of plant cell walls. Plant Physiol Biochem,2000, 38(1-2):109-124
    21. Cosgrove D J. Wall structure and wall loosening. A look backwards and forwards. Plant Physiol,2001,125(1):131-134
    22. Davin L B, Lewis N G. Lignin primary structures and dirigent sites. Curr Opin Biotechnol,2005,16(4):407-415
    23. Delmer D, Holland N, Holland D, Peng L, Kawagoe Y. Genes and proteinsinvolved in cellulose synthesis in plants. Israel J Plant Sci,2000,48:165-171
    24. Ding S Y, Himmel M E. The maize primary cell wall microfibril:a new model derived from direct visualization. JAgric Food Chem,2006,54(3):597-606
    25. Doblin M S, Kurek I, Jacob-Wilk D, Delmer D P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol,2002,43(12):1407-1420
    26. Donaldson L A. Lignification and lignin topochemistry-an ultrastructural view. Phytochemistry,2001,57(6):859-873.
    27. Duguid K B, Montross M D, Radtke C W, Crofcheck C L, Wendt L M, Shearer S A. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour Technol,2009,100(21):5189-5195
    28. Himmel M E. Biomass Recalacitrance:Deconstructing the Plant Cell Wall for Bioenergy. Blackwell Publishing Ltd.2008
    29. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science,2008,319(5867):1235-1238
    30. Fenge D, Shao L X. A chemical and ultrastructural study of the Bamboo species Phyllostachys makinoi Hay. Wood Science and Technology,1984,18(2):103-112
    31. Freudenberg K. Lignin:Its Constitution and Formation from p-Hydroxycinnamyl Alcohols:Lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure. Science,1965,148(3670):595-600
    32. Fujino T, Sone Y, Mitsuishi Y, Itoh T. Characterization of cross-links between cellulose microfibrils, and their occurrence during elongation growth in pea epicotyl. Plant Cell Physiol,2000,41(4):486-494.
    33. Ha Marie-Ann, David C A, Boyd W E, Huxham I M, Jardine W G, Vietor R J, Daniele Reis, Brigitte Vian, Michael C Jarvis. Fine structure in cellulose microfibrils: NMR ev.dence from onion and quince. The Plant Journal,1998,16(2):183-190
    34. Harris P J. Primary and secondary plant cell walls:A comparative overview. New Zealand Journal of Forestry Science,2006,36:36-53
    35. Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:production and role from in lignin degradation. FEMS Microbiology Reviews,1994,13(2-3): 125-135
    36. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayana S. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol,009,100(10):2706-2711
    37. Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D. Biorrass recalcitrance:engineering plants and enzymes for biofuels production. Science 2007,315(5813):804-807
    38. Iiyama K, Lam T, Stone B A. Covalent Cross-Links in the Cell Wall. Plant Physiol, 1994,104(2):315-320
    39. Jina S, Chen H. Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochemical Engineering Journal,2006,30(3):225-230
    40. Karpens:ein-Machan M. Sustainable Cultivation Concepts for Domestic Energy Production from Biomass. Critical Reviews in Plant Sciences,2001,20(1):1-14
    41. Keegsta K, Talmadge K W, Bauer W D, Albersheim P. The Structure of Plant Cell Walls:Ⅲ. A Model of the Walls of Suspension-cultured Sycamore Cells Based on the Interconnections of the Macromolecular Components. Plant Physiol,1973,51(1): 188-197
    42. Kenrick P, Crane P R. The origin and early evolution of plants on land. Nature,1997,389:33-39
    43. Kim S, Dale B E. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy,2004,26(4):361-375
    44. Lane D R., Wiedemeier A, Peng L, Hofte H, Vernhettes S, Desprez T, Hocart C H., Birch R J, Baskin T I., Burn J E, Arioli T, Betzner A S, Williamson R E. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis.Plant Physiol,2001,126(1):278-288
    45. Lapierre C, Pollet B, Rolando C. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Research on Chemical Intermediates,1995,21(3-5):397-412
    46. Lau M W, Gunawan C, Dale B E. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass:a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol Biofuels,,2009,2:30
    47. Lerouxel O, Cavalier D M, Liepman A H, Keegstra K. Biosynthesis of plant cell wall polysaccharides-a complex process. Curr Opin Plant Biol,2006,9(6):621-630
    48. Lewandowski, Jonathan M O, Scurlock, Eva L, Myrsini C. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy,2003,25(4):335-361
    49. Li J B, Goran Gellerstedt, Kai Toven. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol, 2009,100(9):2556-2561
    50. Lynch M A, Staehelin L A. Domain-specific and cell type-specific localization of two types of cell wall matrix polysaccharides in the clover root tip. J Cell Biol,1992, 118(2):467-479
    51. Ma H, Liu W W, Chen X, Wu Y J, Yu Z L. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour Technol,2009,100(3):1279-1284
    52. Mantanis G I., Young R A, Rowell R M. Swelling of Wood. Part Ⅱ. Swelling in Organic Liquids. Holzforschung-International Journal of the Biology, Chemistry. Physics and Technology of Wood,1994,48(6):480-490
    53. Mantanis G I., Young R A, Rowell R M. Swelling of compressed cellulose fiber webs in organic liquids. Cellulose,1995,2(1):1-22
    54. Maria de la Luz Reus Medina, Kumar V. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose Ⅱ excipients. IntJPharm,2007,337(1-2):202-209
    55. Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass.Bioresour Technol,2005,96(6):673-686
    56. Mueller S C, Brown R M, Scott T K. Cellulosic microfibrils:nascent stages of synthesis in a higher plant cell. Science,1976,194(4268):949-51
    57. Nebenfunr A, Gallagher L A, Dunahay T G, Frohlick J A, Mazurkiewicz A M, Meehl J B, Staehelin L A. Stop-and-Go Movements of Plant Golgi Stacks Are Mediated by the Acto-Myosin System. Plant Physiology,1999,121:1127-1141
    58. Nidetzky B, Steiner W, Hayn M., Claeyssens, M. Cellulose hydrolysis by the cellulases from Trichoderma reesei:a new model for synergistic interaction. Biochem Journ,1994,298(3):705-710
    59. Olofssor K, Bertilsson M, Liden G. A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels, 2008,1(1):7
    60. Peng L C, Hocart C H, Redmond J W, Williamson R E. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta,2000,211(3):406-414
    61. Peng L C, Xiang F, Roberts E, Kawagoe Y, Greve L C, Kreuz K, Delmer D P. The experimental herbicide CGA 325'615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline beta-1,4-glucan associated with CesA protein. Plant Physiol,2001,126(3):981-992
    62. Peng L C, Kawagoe Y, Hogan P, Delmer, D P. Sitosterol-β-glucoside as Primer for Cellulose Synthesis in Plants. Science,2002,295:147-150
    63. Peng L C, Gutterson N. Energy crop and biotechnology for biofuel production. J Integr Plant Biol,2010,53(3):253-256
    64. Popper Z A. Evolution and diversity of green plant cell walls" Current Opinion in Plant Biology,2008,11(3):286-092
    65. Price L, Bullard M., Lyons H, Anthony S, Nixon P. Identifying the yield potential of Miscanthus x giganteus:an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass and Bioenergy,2004,26(1):3-13
    66. Ridley B L, O'Neill M A, Mohnen D. Pectins:structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry,2001,57(6):929-967
    67. Saha B C, Iten L B, Cotta M A, Wu Y V. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol.Biotechnol Prog,2005,21(3):816-22
    68. Sarkanen S, Teller D C, Stevens C R, McCarthy J L. Lignin.20. Associative interactions between kraft lignin components. Macromolecules,1984,17:2588-2597
    69. Scheller H V, Ulvskov P. Hemicelluloses. Annu Rev Plant Bio,2010,61:263-289
    70. Segal L, Creely J J, Martin Jr A E, Conrad C M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal,1959,29(10):786-794
    71. Selvendran R R. The plant cell wall as a source of dietary fiber:chemistry and structure. Am JClin Nutr,1984,39(2):320-337
    72. Somerville C, Bauer B, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H. Toward a Systems Approach to Understanding Plant Cell Walls. Science,2004,306(5705):2206-2211
    73. Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae. Annals of Microbiology,2008,58(2):219-225
    74. Sun R, Lawther J M, Banks W B. The effect of alkaline nitrobenzene oxidation conditions on the yield and components of phenolic monomers in wheat straw lignin and compared to cupric (Ⅱ) oxidation. Industrial Crops and Products,1995,4(4): 241-254
    75. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresour Technol,2002,83(1):1-11
    76. Tucka G, Glendining M J, Smith P, House Jo I, Wattenbach M. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy,2006,30(3):183-197
    77. Urbanowicz B R, Rayon C, Carpita N C. Topology of the maize mixed linkage (1->3), (1->4)-beta-d-glucan synthase at the Golgi membrane. Plant Physiol,2004,134(2): 758-768
    78. Vance C P, Kirk T K, Sherwood R T. Lignification as a Mechanism of Disease Resistance. Ann Revof Phytopathology,1980,18:259-288
    79. Venturi P, Venturib G. Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy,2003,25(3):235-255
    80. Vincent J F. From cellulose to cell. Jou Exp Biol,1999,202(23):3263-3268
    81. Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C, Peng L C. Expression profiling and integrative analysis reveals CESA/CSL predominant roles in cell wall biosynthesis in rice. BMC Plant Biology,2010,10:282
    82. Whetten R W, MacKay J J, Sederoff R R. Recent Advances in Understanding Lignin Biosynthesis. Annu Rev Plant Physiol Plant Mol Bil,1998,49:585-609
    83. Willats W G. T, Steele-King C G, McCartney L, Orfila C, Marcus S E, Knox J P. Making and using antibody probes to study plant cell walls. Plant Physiology and Biochemistry,2000,38(1-2):27-36
    84. William G T, Willats L M, William M, Knox J P. Pectin:cell biology and prospects for functional analysis. Plant Molecular Biology,2001,47:9-27
    85. Wyman C E. Ethanol from lignocellulosic biomass:Technology, economics, and opportunities. Bioresource Technology,1994,50(1):3-15
    86. Xie G S, Peng L C. Genetic Engineering of Energy Crops:A Strategy for Biofuel Production in China. Journal of Integrative Plant Biology,2011,53(2):143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700