西农萨能奶山羊经济性状的DNA分子标记及5个山羊品种DNA多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用了PCR-RFLP、PCR-SSCP、RMAPD、DNA序列分析和微卫星等标记技术分析了西农萨能奶山羊CSN1S2基因、CSN3基因、IGFBP3基因、POU1F1基因、GH基因、FSHR基因的基因座多态及其与经济性状(产奶量、产羔数、初生重、成年体重和体尺指标)的相关性,为奶山羊的改良、开发和利用提供DNA水平的理论依据;同时,还利用PCR-RFLP和PCR-SSCP方法分别检测了西农萨能奶山羊、关中奶山羊、陕南白山羊、安哥拉山羊和布尔山羊5个山羊品种共计175个个体的10个基因座的遗传多态性,为山羊品种资源保护和畜牧业的发展提供资料。本论文通过上述研究首次取得了以下结果:
    西农萨能奶山羊的PCR-RFLP研究
    1.1.1 CSN1S2基因:①群体等位基因F/N的频率为0.087/0.913且处于Hardy-Wenberg平衡状态;②西农萨能羊CSN1S2基因座F等位基因与高产奶量呈负相关,如FF基因型个体在平均产奶量、第二胎产奶量上显著或极显著地低于NN型个体(P<0.05,P<0.01);③作者首次发现CSN1S2基因对产羔数有显著影响(P <0.05),该基因的产羔效应是由与之连锁FecB基因产生的;FF、NF基因型个体第一胎产羔数较NN型多(P <0.05);在第四胎产羔数上,NN基因型个体产羔数较NF型和FF型多(P <0.01);④在初生重、体高指标上,NF、FF基因型和NN型间差异显著(P <0.05)。
    1.1.2 CSN3基因:①CSN3-HaeIII基因座未发现多态性。②CSN3-HindIII和CSN3-TaqI基因位点对产奶量没有显著影响(P >0.05)。③作者第一次证实CSN3、CSN1S2等酪蛋白基因与控制羊产羔数的主效基因FecB连锁,而且它们之间遗传距离很小;CSN3-TaqI位点与FecB位点一样对产羔数有显著影响:AB和BB基因型第一、二胎产羔数均值差异显著或极显著(P <0.05和P <0.01);CSN3、CSN1S2等酪蛋白基因可作为产羔性状分子标记的有效侯选基因④CSN3基因对初生重和成年体重等指标上有显著差异(P<0.05,P<0.01)。
    1.1.3 IGFBP3基因:①利用HaeIII、Alw26I、TaqI分析西农萨能羊IGFBP3基因多态性,结果表明均为单态。作者认为山羊IGFBP3基因第299→302位序列没有丢失酶切位点是导致了山羊未出现HaeIII酶切多态性的根本原因。②IGFBP3
    
    
    基因经酶切后表现明显的山羊、绵羊、水牛和普通牛等的物种间多态性。
    1.1.4 POU1F1基因:69只西农萨能奶山羊和62只关中奶山羊POU1F1基因的HinfI酶切结果表明,在2个山羊品种种未发现多态性。
    2 西农萨能羊SNP位点多态的PCR-SSCP检测及与经济性状的相关分析
    ①PCR-SSCP检测表明FSHRexon10基因座无基因多态性;GHexonII基因座处于Hardy-Weinberg平衡态状态,GHexonV基因座存在BB型、AC型、AB型和BC型,处于Hardy-Weinberg非平衡态状态。②GHexonII位点与产奶量不相关(P<0.05);GHexonV位点与产奶量相关,如不同基因型在第三、四、五、六、七胎产奶量和平均产奶量上存在显著差异(P <0.1,P <0.05,P <0.01)。③GHexonII基因座AB型个体第五胎产羔数显著多于BB型个体(P<0.01),BB型个体第七胎产羔数优于AB型(P <0.05);GHexonV基因座BC型个体第三胎产羔数分别比AB、AC型个体多0.250只(P <0.1)。④GHexonII和GHexonV 基因位点对体尺指标没有影响(P >.05)。⑤与牛杂合子类型序列进行DNA序列分析,西农萨能奶山羊FSHRexon10基因座杂合子序列第54位(A→G)的转换导致了Gln→His的氨基酸的变化。⑥经DNA序列分析表明:GHexonV基因座存在SNP位点,其分子机理是该基因座位存在11个位点的转换或者颠换等遗传变化。
    微卫星标记
    利用2对微卫星引物对萨能羊进行微卫星分析,结果未发现多态性。
    4. RMAPD与西农萨能奶山羊经济性状的相关性研究
    ①RMAPD(随机微卫星引物扩增多态DNA)标记是一种新型的分子标记。②RMAPD与西农萨能奶山羊经济性状存在一定的相关性:HEL1-2+F09标记、MFW20-1+F09、HEL1-1+F09标记对产奶、产羔性状和初生重、体高等体尺指标均有显著影响(P<0.05)。
    5 5山羊品种遗传多态性的PCR-RFLP检测
    ①CSN1S2、CSN3-HindIII、CSN3-TaqI、CSN3-HaeIII、IGFBP3-HaeIII和β-1g等6个基因座的PCR-RFLP检测结果表明:CSN3-HaeIII和IGFBP3-HaeIII基因座未表现多态性,而CSN3-HinfI基因座的A等位基因为稀有基因仅在关中奶山羊中低频率表现;②对6个乳蛋白基因座进行数据分析,得到结果:关中奶山羊的遗传多样性最高,其次是西农萨能奶山羊,陕南白山羊和布尔山羊的遗传多态性最低;
    6 5山羊品种遗传多态性的PCR-SSCP检测
    
    GHexonII、GHexonV 和FSHRexon10以及CSN3exonIV等4个基因座位的PCR-SSCP检测结果表明:5个山羊品种PIC均值在0.1805-0.3281之间,其中西农萨能奶山羊遗传多态性最丰富,其PIC值最高达到0.3281,其次是关中奶山羊(PIC=0.3000),最低的是安哥拉山羊和布尔山羊(PIC分别为0.1805和0.1875);
DNA molecular marker technology , such as PCR-RFLP, PCR-SSCP, RMAPD (Random-microsatellite amplified polymorphic DNA), DNA sequence analysis, microsatellite marker, were applied to evaluate the effects of genotypes of six candidates genes (CSN1S2 gene, CSN3 gene, GH gene, IGFBP3 gene, POU1F1 gene, FSHR gene) in Xinong Saanen Dairy goat; And PCR-RFLP and PCR-SSCP was used to detect genetic diversity of five goat breeds (including Xinong Saanen dairy goat, Guanzhong dairy goat, Shaanan White goat, Angora goat and Boer goat) . The main goal were to construct the foundation of making good use of economic traits (milk performance, litter sizes and body sizes) in Xinong Saanen dairy goat and protecting breed resources, so that molecular theory about breeding in Xinong Saanen dairy goat and constructing useful database in five goat breeds were provided primary. The results were as follows:
    1. Research on PCR-RFLP in Xinong Saanen dairy goat
    CSN1S2 gene: (1) In 69 Xinong Saanen dairy goats population which was at Hardy-weinberg equilibrium, the frequencies of allele F/N for CSN1S2 gene loci were 0.087/0.913; (2) Allele F was always bound with lower milk yield, such as genotype FF individuals showed lower milk yield than that of genotype NN in average milk yield and 2nd milk lactation (P<0.05, P<0.01). (3) CSN1S2 gene locked with FecB gene affected litter sizes because different genotypes for CSN1S2 gene loci had significant difference in 1st litter sizes and 4th litter sizes (P<0.05,P<0.01). Besides, there was also significant difference among genotypes in body sizes (P<0.05).
     CSN3 gene: No polymorphisms for CSN3-HaeIII gene loci was detected; The locus of CSN3-HindIII and CSN3-TaqI had no significant effect on milk performance; It was verified firstly in this trial that CSN3, CSN1S2, CSN1S1 and CSN2 gene locks with FecB gene because litter sizes of CSN3-TaqI gene loci had significant difference among different genotypes in 1st litter sizes and 2nd litter sizes(P<0.05, P<0.01). Hence CSN3, CSN1S2, CSN1S1 and CSN2 genes can be regarded as candidate genes for effective molecular marker about litter sizes.By the way, the polymorphic loci also affect some body sizes (P<0.05).
    IGFBP3 gene: The results about restriction nucleauase HaeIII、Alw26 and TaqI digesting IGFBP3 gene demonstrated singular genotype. With DNA sequence analysis for DNA sequence FSHRexon10 of from bovine heterozygote and Xinong Saanen goat , no changes in HaeIII restiction cleavage site (form 299th to 302nd ) resulted in no polymorphism of IGFBP3 gene. While obvious
    
    
    polymorphisms of IGFBP3 gene digested with HaeIII appeared among goat, sheep, buffalo and bovine.
    POU1F1 gene: In Sixty-nine individuals of Xinong Saanen dairy goat and sixty-two individuals of Guanzhong dairy goat populations, there were no polymorphism at HinfI cleavage site in POU1F1 gene.
    2. The polymorphisms of SNP loci detected by PCR-SSCP in Xinong Saanen dairy goat and its relationship with economic traits
     No polymorphism was discovered in FSHRexon10 gene loci; while GHexonII gene showed polymorphism in Xinong Saanen dairy goat population which was at Hardy-weinberg didn’t associated with milk yield (P<0.05), and GHexonV gene concluded genotype AB,AC, BB, BC which showed significantly difference in milk performance in 3rd milk yield , 4th milk yield , 5th milk yield , 6th milk yield and 7th milk yield and average milk yield . Moreover, the different genotypes in GHexonII and GHexonV gene loci affected significantly litter sizes in 3rd litters sizes, 5th litter sizes and 7th litter sizes. To analyze SNPs of GHexonV gene by DNA sequence analysis in this population, there was transition or transversion in 11 places. As far as difference between goat and bovine in FSHRexon10 was considered, the result of DNA sequence analysis showed amino acid change for Gln→His appears in 54th loci for goat.
    3. Microsatellite Marker
    In this trial, two anonymous microsatellite primer from fish were amplified in Xinong Saanen goat genomic DNA and no polymorphism was detected.
    4. RMAPD
引文
[1] 内蒙古农牧学院主编. 家畜育种学 [M]. 北京: 中国农业出版社, 1999.
    [2] 郑丕留. 中国羊品种志[M]. 上海科技出版社, 1988.
    [3] 李建文. 关中奶山羊[J]. 中国养羊, 1995: 5-8.
    [4] 王武强. 浅谈我省地方畜禽品种资源保护及开发利用[J]. 家畜生态, 2002, 23(1): 56-59.
    [5] 孙金梅, 常 洪, 野泽.谦, 等. 陕南白山羊抽样遗传检测报告[J]. 西北农业大学学报, 1997, 25(6):6-10.
    [6] 权富生, 李艳芳. 中国安哥拉山羊德发展现状、存在问题基对策[J].草食家畜(季刊), 2001, 4:11-15.
    [7] 李祥龙,刘铮铸,巩元芳,等. 布尔山羊在我国各地引种适应性研究[J].内蒙古畜牧科学,2002,1:8-9.
    [8] 张雅丽. 陕西畜牧业发展思路及对策[J]. 陕西农业科学,2002(1):23-25.
    [9] 孙喜武. 当前我国畜牧业发展情况[J]. 中国禽业导刊,2004,1:20.
    [10] 农业部畜牧兽医局畜牧处. 2003年中国畜牧业生产状况回顾[J]. 中国禽业导刊,2004,21(3):27.
    [11] 赵有璋. 世界畜牧业生产概况及其发展趋势[J]. 国外畜牧学―草原与牧草,1997,78(3):1-8.
    [12] 李 军, 倪建平, 张忠明. 入世后我国畜牧业形势与可持续发展德思路与对策[J]. 上海农业学报, 2004, 20(1): 111-115.
    [13] 陈耀春. 中国羊业现状和未来[J]. 农业产业化,2003,16-19.
    [14] 周光明. 西南地区羊品种资源的合理利用[J]. 农业养殖技术,2003:16:42.
    [15] 吴志勇,杜志明,华东地区羊品种资源的合理利用[J]. 农业养殖技术,2003,16:41.
    [16] 周 琪. 全面实施以奶兴牧战略,推进畜牧经济发展[J]. 中国乳业, 2003, 11: 14-16.
    [17] 陈 宏. 五个畜种和一个鱼的DNA指纹、RAPD标记的研究和线粒体(mtDNA)限制性分析[J].黄牛杂志, 1997, 23(3):1-2.
    [18] 李祥龙, 张亚平, 陈圣偶, 等. 山羊品种间线粒体DNA 限制性片段长度多态性研究[J]. 动物学研究, 1997, 18 (4): 421-428.
    [19] 贾永红, 史宪伟, 简松承, 等. 贵州四个山羊品种mtDNA 多态性及起源分化研究[J]. 动物学研究, 1999, 20 (2) : 88 - 92.
    [20] 李详龙,张亚平,陈圣偶,等. 山羊mtDNA多态及其起源分化研究[J] .畜牧兽医学报,1999, 30(4): 313-319.
    [21]常 洪, Nozaw a K,刘小林, 等. 黄河中下游流域固有山羊亲缘系统的研究[J]. 中国农业科学, 2000, 33(3): 79-87.
    [22] 李祥龙, 田庆义, 孙乃权, 等. 青龙本地山羊随机扩增多态DNA与体重尺相关性研究[J]. 黑龙江畜牧兽医, 1999, 9: 3-4.
    [23] 李详龙,田庆义,马国强,等. 布尔山羊杂交后代及其亲本随机扩增多态DNA研究[J]. 遗传,2000,22(2):75-77.
    [24] 王 杰, 沈富军, 欧阳熙, 等. 安哥拉山羊及其杂种羊DNA 指纹图谱分析[J]. 西南民族学院学报(自然科学版), 2000 ,26(2):180~184.
    [25] 曹少先.应用了RAPD和AFLP分析了布尔山羊和江苏本地山羊的遗传多样性及其与生长发育和繁殖的关系[D]. 江苏南京:南京农业大学硕士毕业论文,2000.
    [26] 刘长国.陕西境内5个山羊品种遗传变异的RAPD研究[D]. 陕西杨陵:西北农林科技大学硕士学位论文,2000.
    [27] 李祥龙,张亚平,陈圣偶,等. 我国主要地方山羊品种遗传扩增多态DNA研究[J]. 畜牧兽医
    
    
    学报,2000,31(5):416-422.
    [28] 王 杰, 徐金瑞, 白文林, 等. 四川几个山羊品种(群体)与岩羊RAPD分析[J]. 畜牧兽医学报,2003,23(5):434-437.
    [29] 李瑞彪. 西农萨能奶山羊部分经济性状的分子标记研究[J]. 陕西杨陵:西北农林科技大学硕士学位论文,2003.
    [30] 赵艳红. 利用微卫星标记分析部分山羊品种的遗传多样性[D]. 内蒙古呼市:内蒙古农业大学硕士学位论文,2003.
    [31] 孙允东. 山东地方山羊遗传多样性研究[D]. 山东:山东农业大学硕士学位论文,2003.
    [32] 耿社民, 常 洪, 秦国庆, 等. 绒山羊结构基因标记座位与经济性状关系研究[J]. 畜牧兽医学报, 2003, 34(1): 24-27.
    [33] 陈 宏,李瑞彪,雷初朝,等. 西农萨能奶山羊β-lg和CSN3基因与产奶性能关系研究[C]. 中国动物遗传育种研究进展(陈瑶生主编:第十二次全国动物遗传育种学术会议论文集):2003,258-262.
    [34] 张 勤. 基因组学时代的数量遗传学[A]. 第11次全国动物遗传育种学术会议论文集,2001,151-157.
    [35] 晏兆莉. DNA 指纹技术在安哥拉山羊、山谷型藏山羊、建昌黑山羊及杂种羊遗传分析中的应用初探[D]. 西南民族学院硕士学位论文,1996.
    [36] 王 杰, 沈富军, 欧阳熙, 等. 安哥拉山羊及其杂种羊父权认定的DNA指纹图分析[J]. 西南民族学院学报(自然科学版), 2000, 26(2): 185~187.
    [37] 祝梅香, 等. 北京地区荷斯坦牛乳蛋白遗传标记应用研究[J]. 中国农业大学学报, 2000, 5(5): 74-80
    [38] 林福玉, 等.中国荷斯坦牛k-cn酪蛋白基因多态性与产乳量的相关分析[J]. 中国畜牧杂志, 1999, 35(1): 8-9.
    [39] 毛永江,钟光辉,郑玉才,等. 中国牦牛乳蛋白遗传多态性及其与泌乳性能相关性研究[J]. 中国农业科学,2004,37(2):291-295.
    [40] 赵春江. 牛乳蛋白基因多态性分子遗传学基础的研究[D]. 中国农业大学博士毕业论文, 1998.
    [41] 单雪松,张 沅,李 宁. 奶牛位卫星基因座与产奶性能的研究[J]. 遗传学报,2002,29(5):430—433.
    [42] 雷雪芹. 牛、羊多胎的DNA分子标记研究[D]. 陕西杨凌:西北农林科技大学博士学位论文,2002.
    [43] 魏伍川, 许尚忠. 牛FSHR基因5′端侧翼序列的分析和多态性研究[J]. 畜牧兽医学报, 2002, 33(5), 417-423.
    [44] 魏伍川, 余晓天, 许尚忠. 小尾寒羊促卵泡素受体基因5′端序列的TaqI酶切多态性分析[J]. 草食家畜(季刊),2003,118(1):58-60. 
    [45] 魏伍川, 许尚忠,张英汉,等. 牛促卵泡素受体基因多态性的频率差异研究[J]. 湛江师范学院,2003,24:3.
    [46] 雷雪芹, 陈 宏, 袁志发, 等. 牛FSHR基因第10外显子单核苷酸多态性及其与双胎性状的关系[J]. 中国生物化学与分子生物学报, 2004, 20(1): 34-37.
    [47] 王桂芝,王建民,韩海霞. 不同绵羊品种Hb和Tf多态型产羔数的比较研究[J]. 中国草食动物(专辑)(2001~2002 年全国养羊生产与学术研讨会议论文集),2002,88-89.
    [48] 郭满才. 群体遗传变异的信息学模型研究[D]. 陕西杨凌: 西北农林科技大学博士学位论文, 2002.
    [49] 柳淑芳, 闫艳春, 杜立新. FecB 基因及BMPR-IB 基因的突变特性与生物学意义[J]. 遗传, 2003, 25 (1): 93-96.
    
    [50] 孙维斌, 陈宏, 雷雪芹,雷初朝, 张英汉,李瑞彪,昝林森,胡沈荣. IGFBP3基因多态性与秦川牛部分屠宰性状的相关性. 遗传, 2003, 25(5): 511-516
    [51] Botstein D, et al.construction of a genetic linkage map in man using restriction fragment length polymorphism [J].Hum Genet,1980, 32: 314-331.
    [52] Mullis K, et al. specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction [J].Methods Enzgmol, 1985, 155: 338-350.
    [53] Lander E S, Botsten D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics, 1989, 121:185-199.
    [54] Hartmut R K, Ian K M , Ack I E, et al. Fish species identification in canned tuna by PCR-SSCP validation by a collaborative study and investigation of intra species variability of the DNA patterns[J].Food Chemistry,1999,64: 263-268.
    [55] Jeffreys A, et al. Hyper variable minisatellite region in human DNA[J]. Nature, 1985, 314: 67-73.
    [56] Skinner D M, et al. The sequence of a hermit crab satellite DNA is (TAGG) n- (ATCC)n[J].Biochemistry, 1984,13:3930-3937.
    [57] Schafer M, et al, Three random loci in human genome with base pair change polymorphisms [J].Cytogenet cell genet, 1982,32 : 314-315.
    [58] Epplen T T, et al. A simple repeated GATA/GACA sequence in animal genome [J]. Heredity, 1988, 79: 409-416.
    [59] Nakamura Y, et al. Variable number of tandem repeat markers for human gene maping[J].Science, 1987, 235: 1616-1622.
    [60] Vassar G,et al, A sequence in 13 phages detects hypyer variable minisatellites I human and animal DNA [J]. Science, 1987, 235: 683-684.
    [61] Orita M K, Suzuki Y K, et al. Rapid and sensitive detection of mutations and DNA polymorphisms using the polymerase chain reaction[J]. Genomics, 1989, 5: 8741.
    [62] Willians J G, et al, DNA polymorphisms amplified by arbitrary primers are useful genetic markers [J]. Nucl Acid Res, 1990, 18: 6513-6535.
    [63] Zabeau M G, Vos P, et al. European patent 0535858, AI:1993-03-31.
    [64] Guptu M, chyi Y S. Amplification of DNA markers from evolutionary diverse genome using single primers of simple-sequence repeats[J].Theor Appl Genet,1994, 89: 998-1006.
    [65] Ziethiewisz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeats (SSR) anchored polymerase chain reaction amplification [J]. Genomics, 1994, 20: 176-183.
    [66] Martinez A Z, Delgado J V, Rodero A, et al. Genetic structure of the Iberian pig breed using microsatellites [J].Anim Genet, 2000, 31: 295-301.
    [67] Welsh J, Chada K, Dalal S S, et al. Arbitrarily primed PCR finger printing of RNA[J].Nucleic Acid Res , 1992, 20: 4965-4970.
    [68] Caetano A. DNA amplification finger printing using very short arbitrary oligonucleotide primers[J]. Biotechnology, 1991, 9: 553-557.
    [69] Yiping zhang, John R, Stommel. Development of SCAR and CAPs markers linked to the beta-gene in tomato [J]. Crop science, 2001, 41: 1602-1607.
    [70] Paran I, Michelmore R W. Development of PCR-based markers linked to downy mildew resistance in lettuce [J]. Theor Appl Genet, 1993, 85(3): 985-993.
    [71] Primmer C R, Borge T, Lindell J and Saetre G. P. Single2nucleotide polymorphism characterization in species with limited available sequence information: hiGH nucleotide diversity revealed in the avian genome. Molecular Ecology,2002, 11:603 - 612.
    [72] Hatey F,Tosser-klopp G, Clouscard martinaco C, et al. Expressed sequence tags for genes: a review
    
    
    [J].Genet Sel Evol, 1998, 30(5): 521-541.
    [73] Etscheid M, Riesner D. TGGE and DGGE. In: Karp A, Issac P. G. and Ingram D S (eds), Molecular Tools f or Screening Biodiversity. Chapman & Hall ,London , 1998, 133 - 156.
    [74] Alfons Ginel, Heinz Sedler. Plant transposable enements and gene tagging [J].Plant Mol Biol, 1992,19:39-49.
    [75] Vora G J, Meador C E, Stenger DA, et al. Nucleic acid amplification strategies for DNA microarray-based pathogen detection[J].Appl Environ Microbiol. 2004,70(5): 3047-3054.
    [76] Noumi T K,Mosher M E K,et al. A phenylalanine for serine substitution in the Bsubunit of Escherich iacoli F12ATPase affects dependence of its acticity on divalenti cation [J]. Biol Chem 1984, 259: 10007.
    [77] Orita M K, Iwahana H K, et al.Detection of polymorphisms of human DNA by gel electrophoresis as singe-strand conformation polymorph ism s[J].Proc Nat1 Acad Sci USA:1989,86:27701.
    [78]  Hoshino S K, Kimara A S K, et al.Polymerase chain reaction single strand conformation polymorph ismanalysis of polymorph ism in DPA1 and DPB1 genes Pasingle Keconomical and rapid method for histo compatibility testing[J].Hum Immuno, 1992, 33: 981.
    [79] Lander E S. The new genomics:global views of biology[J].Science,1996, 274,536-539.
    [80] Brookes A J. The essence of SNPs[J].Gene, 1999,234:177 -186.
    [81]Wang D G, Fan J B, Siao C J, et al。Larger scale identification, mapping,and genotyping of single2nucleotide polymorphism in the human genome[J].Science,1998,280: 1077 - 1082.
    [82]. Syvanen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms [J]. Nature Review Genetics, 2001, 2 :930 - 942.
    [83] Rafalski J A. Application of single nucleotide polymorphisms in crop genetics [J].Current Opinion in Plant Biology, 2002a,5 :94 - 100.
    [84].Rafalski J A.Novel genetic mapping tools in plants :SNP and LD2based approaches[J].Plant Science, 2002b,162 : 329- 333.
    [85] See D, Kanazin V, Talbert H , Blake T. Electrophoresis detection of single nucleotide polymorphisms [J]. Biotechniques, 2000, 28 : 710 - 716.
    [86] Cronin M A. Rapid communication: a unique Sac II restriction fragment length polymorphism in mitochndrial DNA of sheep and goat[J].Journal of animal science, 1994, 72(3): 796.
    [87] Chen hong, F Leibenguth, Zhu bicai. DNA Fingerprinting in five farm animal species using microsatellite probe (GTG)5[J].Animal biotechnology bulletin, 2002, 8(1): 67-72.
    [88]? Mannen H, Morimoto ML, Oyamat K, et al. Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle[J]. J Anim Sci. 2003, 81 (1) : 68-73.
    [89] Gortari M D, et al. A second-generation linkage map of the sheep genome[J].Mammallian Genome,1998,9(3):204-209.
    [90] Grosclaude F, et al.A Mendelian polymorphism underling quantitative variations of goat alpha S1 casein[J].Gent Sel Evol,1987,19:399-412.
    [91] Vaiman D, et al. A genetic linkage map of the male goat genome[J].Genetics,1996,144:279-305.
    [92] Pinton P, Schibler L, Cribiu E, et al. Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats [J].Mamm Genome,2000, 11(4):306-315.
    [93] Lin M, Lou XY, Chang M, et al. A general statistical framework for mapping quantitative trait loci in nonmodel systems: issue for characterizing linkage phases[J]. Genetics. 2003 , 165 (2):901-13.
    [94] Liu P, Zhu J, Lu Y. Marker-assisted selection in segregating generations of self-fertilizing crops[J]. Theor Appl Genet. 2004(inprint).
    
    [95] Usha A P, Simpson S P, Williams J L.Probability of random sire exclusion using microsatellite markers for parentage of vertificaiong[J].Animal Genetics,1995,26(3):155-156.
    [96] Nybom H, Esselink GD, Werlemark G, et al. Microsatellite DNA marker inheritance indicates preferential pairing between two hiGHly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. Sect. Caninae DC[J]. Heredity. 2004, 92 (3):139-50.
    [97] Kitts D D,Yuan Y V. Caseinohoshpopetides and calcium bioavailability[J].Trend Food Sci and Tech, 1992, 3: 31-35.
    [98] Bobe G,et al.Effect of milk protein genotypes on milk protein composition and its genetic parameter estimates[J].Dairy sci,1999,82:2797-2804.
    [99] Lunden A, et al.Markerd effect of b-lactoglobumin polymorphism on the ratio of casein to total protein in milk[J].J dairy sci,1997,80:2996-3005.
    [100] Mao L J,et al. Effects of polymorphic milk protein genes on milk yield and composition traits in Hostein cattle[J].Animal science,1992,42(1):107.
    [101] Lkonen T L, et al. Association between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows[J].J dairy sci,2000,84:507-514.
    [102] Han S K,et al.Biochemical,molecular and physiological characterization of a new beta-casein variant detected in Korean cattle[J].J Anim genet,2000,31(1):49-51.
    [103] Cowan C M, Dentine M R, Ax R L, et al. Structural variation around prolactin gene linked to quantitative traits in an elite Holstein sire family. Theor Appl Genet, 1990, 79: 577-582.
    [104] Udina I G,et al. Polymorphisms of bovine prolactin gene, mireosatellite, PCR-RFLP[J].Genetics,2001,37(4):511-516.
    [105]Michael W,et al.Mitochondrial evolution[j].Science,1999,283(5):1476-1481
    [106] M S Ashwell, et al. Detection of putative loci affecting milk production and composition,health,and type traits in a US Holstein population[J]. J Dairy Sci,1998,81:3309-3314.
    [107] Plante Y P, et al.Detection of quantitative trait loci affecting milk production traits on 10 chromosome in Holstein cattle[j].j dairy sci,2001,84:1516-1524.
    [108] Di Stasio L, Saratore S, Alberta A. Lack of association of GHI and POU1F1 gene variation and meat production traits in Piedmontese cattle[J].Animal Genetics,2002,33:61-64.
    [109] Malveiro E, Pereira M, Marques P X, et al.Polymorphisms at the five exons of the growth hormone gene in the algarvia goat: possible association with milk traits[J].Small Ruminant Research ,2001, 41:163-170.
    [110] Boutinaud M, Rousseau C, Keisler DH, et al. Growth hormone and milking frequency act differently on goat mammary gland in late lactation[J].J Dairy Sci,2003 ,86(2): 509-20.
    [111]Reichenmiller KM, Mattern C, Ranke MB, et al. IGFs, IGFBPs, IGF-Binding Sites and Biochemical Markers of Bone Metabolism during Differentiation in Human Pulp Fibroblasts[J].Horm Res,2004, 62(1):33-39.
    [112] Chung E R, Kim W T ,Kim Y S ,Hwang S W,Lee C S. PCR-SSCP genotype effects of growth prolactin and insulin-like growth factor-1 genes on milk yield in Korean cattle ( Hanwoo ) [C] .Asian2Australian Journal of Animal Science , 2000, Supplement :223.
    [113] Sharif S ,Mallard B A ,Wikie B N , et al . Association of the bovine MHC DRB3 alleles with occurrence of disease and milk somaticcell score in Canadian dairy cattle[J]. Animal Genetics ,1998 ,29 :185-193.
    [114] Hines H C ,Allaire F R ,Michelle M , et al. Association of BoLA with milk fat percentage
    
    
    differences[J]. J Dairy Sci , 1986 , 69 :3148-3150.
    [115] Batra T R ,Lee A J ,Gavora J S , et al. Class I alleles of the bovine MHC system and their association with economic traits[J].J DairySci,1989,72:2115-2124.
    [116] Sharif S ,Mallard B A ,Wikie B N , et al . Association of bovine major histocompatibility complex DBR3 (BoLA2DRB3) with production traits in Canadian dairy cattle[J]. Animal Genetics,1999,30:157-160.
    [117] Salemi S, Besson A, Eble A, et al. New N-terminal located mutation (Q4ter) within the POU1F1-gene (PIT-1) causes recessive combined pituitary hormone deficiency and variable phenotype[J]. Growth Horm IGF Res. 2003 , 13 (5): 264-268.
    [118] Tu T P, Sun S H, Walhal S, et al. Cloning of the full length PIT-1(POU1F1) cDNA and a novel alternative Pit-1 transcription,and functional studies of their encoded proteins[J].Animal Biotechnology,2001,12(1):1-19.
    [119] Renaville R, Gengler N, Vrench E, et al. Pit-1 gene polymorphism, milk yield and conformation traits for Italian Holstein Friesian bull[J].J Dairy Sci,1997,80:3431-3438.
    [120] Van Arendonk J A M, Bovenhnis H. Detection and exploitation marker liked to quantitative traits in farm animals [A].Proceeding of the 5th world congress on genetics applied to livestock production[C].1994,21:193-200.
    [121] Souza C J, Baird D T. The Booroola (FecB) mutation is associated with smaller adrenal glands in young adult ewes[J].Reprod Biomed Online, 2004, 8(4): 414-418..
    [122] Marsters P, Kendall NR, Campbell BK. Temporal relationships between FSH receptor, type 1 insulin-like growth factor receptor, and aromatase expression during FSH-induced differentiation of bovine granulosa cells maintained in serum-free culture[J]. Mol Cell Endocrinol. 2003 May 30;203(1-2):117-27.
    [123] Willson T, Wu X Y, Juengel J L, et al. HiGHly prolific Booroola sheep have a mutation in the intra cellular kinase domain of bone morphogenetic protein IB receptor (ALK6) that is expressed in both oocyted and granulose cells[J].Biology of Reproduction,2001,64:1225-1235.
    [124] Fabre S, Pierre A, Pisselet C,et al. The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality[J].J Endocrinol,2003,177(3):435-444.
    [125] L Ramunno, G Cosenza, M Pappalardo, et al. Characterization of two new alleles at the goat CSN1S2-F locus[J]. Animal Genetics, 2001,32:264-268.
    [126] H Chen and Leibenguth F. Studies on multilocus fingerprints RAPD markeers and mitochondrial DNAof a gynogenetic fish(carassius auratus gibelio)[J].Biochem Genet,1995,33:297-306.
    [127] Rando A, Ramunno L, Masina P, et al. Mutations in casein genes[J]. Zootecnica E Nutrizatione animale, 2000, 26: 105-114.
    [128] Ramunno L, Cosenza G, Pappalardo M, et al. Identificaation of the goat CSN1S2F allele by the means of PCR-RFLP method[J]. Animal Genetic, 2000a, 31: 342-343
    [129] M H Yahyaoui, A Angiolillo, F Pilla, et al. Characterization and genotyping of the caprine K-casein variants[J]. J Dairy Sci, 2003,86:2715-2720.
    [130] H Chen and Leibenguth F. Studies on multilocus fingerprints RAPD markeers and mitochondrial DNAof a gynogenetic fish(carassius auratus gibelio)[J].Biochem Genet,1995,33:297-306.
    [131] Yahyaoui M H, Pena R N, Sanchez A, et al. Rapid communication: Polymorphism in the goatβ
    
    
    -lactoglobulin proximal promoter region[J]. J Animal Science, 2000, 78:1100-1101
    [132] Caroli A, Jann O, Budelli E, et al. Genetic polymorphism of goat κ-casein(CSN3) in different breeds and characterization at DNA level. Animal Genetics, 2001,32,226—230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700