制浆造纸废水的生物强化处理及废弃物发酵生物沼气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制浆造纸废水排放量大,色度深,且具有很高的COD和BOD,在这种废水中存在大量的有机污染物,如一些细小纤维、木质素及含氯漂白过程中形成的氯代酚等木质素衍生物,尤其这些氯化有机成分,传统的废水处理方法很难将其去除,积累在环境中,给周围生态造成了严重污染,因此污染问题已经成为制约制浆造纸工业发展的关键。物理和化学方法可用于制浆造纸废水的处理,但成本较高,对有机氯化物的降解能力较差。相对来说,生物法可有效降解制浆造纸废水中的污染物,且成本低,不会造成二次污染,受到人们广泛关注。在以前的研究中,人们多利用白腐菌、厌氧或好氧污泥去处理制浆造纸废水,但随着环保意识的提高,传统的生物处理方法越来越不能满足人们要求,必须在现有基础上进一步强化其对废水的净化功能。同时,制浆造纸工业还产生了大量的造纸污泥和废纤维,这些物质中含有丰富的木质纤维成分,如不能得到有效利用,将会造成资源的极大浪费。基于上述原因,本研究中利用统计实验方法构建优势降解菌群,并用该菌群强化好氧颗粒污泥,提高污泥的制浆造纸废水净化能力。针对废水中含有大量有机氯合物,进行原生质体融合实验,构建可高效降解有机氯化物的重组菌。此外,将制浆造纸废水、造纸污泥和猪粪便进行协同发酵生产生物沼气,从而使制浆造纸工业废弃物作为优良的纤维原料用于生物能源生产。本研究对强化制浆造纸废水的生物处理,提高制浆造纸企业废水处理系统的处理效率,以及造纸工业废弃物的资源化利用具有重要意义。
     围绕上述研究目的,为快速分析制浆造纸废水的品性参数,采用比值-导数光谱建立制浆造纸废水的色度检测方法。利用比值-导数光谱中366nm处的吸收值计算废水的色度,而且检测过程中避免了废水pH值及其中悬浮物的影响,因此,检测前无需调节pH值和去除悬浮物,简化了检测程序,降低了人为因素引起的误差。该方法具有较高的准确度和精密度,色度检测范围在50-390 C.U.之间时,相对误差在±5%以内,可以满足制浆造纸废水的色度测定要求。基于同样的目的,利用化学计算学辅助的光谱方法建立制浆造纸废水COD快速检测方法,分别根据UV-vis光谱(模型1)和相应的导数光谱(模型2)建立了两个较正模型,在0-405 mg/L的检测范围内,两模型的较正系数分别为0.9954(模型1)和0.9963(模型2),验证实验显示,模型2的平均相对误差为4.25%,较模型1(5.00%)低,说明模型2具有更高的准确度。新方法检测过程中无需耗用化学药品,成本低,无污染,耗时短,简化了COD测定步骤,减少了人为操作引入的误差,克服传统测定方法结果重现性对实验人员操作技能的依赖。
     以6株菌Agrobacterium sp.,Bacillus sp.,E. cloacae,Gordonia sp.,Pseudomonas stutzeri.和Pseudomonas putida.为出发菌株用于降解制浆造纸废水的COD,首先通过部分因子设计(FFD)实验,采用6因素两水平实验设计,COD去除率作为响应值,用于鉴别哪一种或哪几种菌对制浆造纸废水的降解有显著性影响,筛选得到4株对废水降解起积极作用的菌株。利用最陡坡度法快速接近废水降解过程中最佳细胞浓度,在FFD和最陡坡度法实验基础上,利用响应面分析(RSM)进一步对制浆造纸废水处理过程中菌体细胞浓度进行优化,并建立可以根据变量预测废水COD去除率的二次模型。研究表明,当各菌在废水中的细胞浓度(OD_(600))分别为:0.35(Agrobacterium sp)、0.38(Bacillus sp.)、0.43(Gordonia sp.)、0.38(P. putid)时,对废水COD的降解效果最优。检证结果显示,COD的去除率为(65.3±0.5)%,与模型预测值66.7%非常接近。利用构建的优势降解菌群强化好氧颗粒污泥,提高其针对制浆造纸废水的降解能力,在厌氧处理的基础上,原始好氧污泥处理后,废水COD由629 mg/L降至203mg/L,废水色度由118 C.U.降至91 C.U.;而强化好氧污泥处理后,废水COD由629mg/L降至146mg/L,废水色度由118 C.U降至72 C.U.。
     以供试菌Pseudomonas putida.和Psathyrella candolleana.为出发菌株进行原生质体融合实验,融合原生质体再生后,根据不同融合子的色泽、质地等菌落形态及其相互间的拮抗现象分离出20株融合菌株,分析鉴定它们针对五氯酚(PCP)的降解特性。同时,根据导数光谱建立测定PCP的新方法,利用该法可以快速鉴定各重组菌的氯代酚的降解能力。结果表明,其中4株重组菌Xz6-1, Xz6-3, Xz6-5和Xz8-2具有显著的PCP降解性能,PCP去除率分别为75.98%、66.12%、28.40%和43.26%,Xz6-1的去除率最高,比亲本Pseudomonas putida(PCP去除率为54.27%)提高了27.71%。利用重组菌XZ6-1和亲本Pseudomonas putida强化好氧颗粒污泥,结果显示,原始污泥的PCP降解率仅为10.69%,而由Pseudomonas putida和XZ6-1强化的颗粒污泥的PCP降解率提升至21.20%和30.03%。
     结合制浆造纸废水、造纸污泥以及猪粪便协同发酵生物沼气,采用2%的发酵物料浓度,选用三因素、两水平全因子FFD实验设计考察影响沼气发酵的主要因素,分析结果显示,C/N、温度T和初始pH值均对生物沼气产率具有显著影响。根据前人的研究成果,确定35℃为发酵温度,通过正交实验验证发酵过程中适中的C/N和pH值,优化后的生物沼气发酵工艺条件为物料浓度为2%,温度为35℃,C/N为25,初始pH值为7.5,此条件下,可以得到368mL CH_4,发酵结束后废水的COD和BOD较原始制浆造纸废水分别降低了28.97%和72.40%。
The pulp and paper industry produces a strongly colored effluent with high levels of biochemical oxygen demand (BOD) and chemical oxygen demand (COD). These effluents contain large amount of organic matter, including fine fibers, lignin and associated bleaching by-products such as chlorophenols and benzodioxins etc, in particular, chlorinated organics, most of them being difficult to eliminate by conventional waste water treatment processes and accumulated in the environment. Therefore, pollution problem caused by the pulp and paper mill effluent has been one of the important environmental problems. Although physical and chemical methods are available for treatment of pulp and paper mill effluent, they are less desirable than biological treatment because of cost-ineffectiveness and residual effects. Biological treatment is known to be effective in reducing the organic load and toxic effects of pulp and paper mill effluent. There are a number of biological methods such as using fungus, anaerobic or aerobic sludge reactor to treat this type of wastewater, have been presented. However, as people increasing awareness of the environment protection, these traditional methods could not meet the people’s needs any more. Meanwhile, pulp and paper mills also produced a lot of waste paper sludge and waste fibers, which contain a large amount of carbohydrate components. It will be a great waste of resources if these materials can’t be utilized reasonably. Based on the above situation, a mixed-culture community was constructed by statistical experimental design in this study for the degradation of pulping effluents, and intensified aerobic granular sludge with this mixed-culture community in order to improve the capability of sludge for degrading pulping effluents. Aim at the problem of organic chlorides in pulping effluents, a protoplast fusion experiment was carried out and a recombinant strain was constructed with an ability of degrading chlorophenols efficiently. In addition, biogas was produced by using the mixture of pulping effluent, waste paper sludge and manure from pig farm. The waste from pulp and paper mills was used as resources. The result of study is significant to enhance the biotreatment of pulping effluents and promote resource utilization of waste from pulp and paper mills.
     According to our research purpose, in order to analyze character parameters of pulping effluents rapidly, a new method is proposed for determination of chroma in pulping effluent by using ratio spectrum–derivative spectrophotometry. A linear regression equation was obtained. The ratio derivative value at 366 nm was used to calculate chroma, which is not affected by pH value and suspended solid in pulping effluent, so the procedure does not require adjusting pH value and removing suspended solid before detection of chroma. The test procedures were simplified and the error caused by human factors was avoided. The method has high precision and accuracy with a relative difference within±5% when the chroma of samples is in the range of 50-390 color unit (C.U.). The new method was satisfactorily applied for determination of chroma in pulping effluent. To the same purpose, a method for the determination of COD in pulping effluent was described based on chemometrics-assisted spectrophotometry method. Two calibration models were established by inducing UV-visible spectroscopy (Model 1) and derivative spectroscopy (Model 2) combined with chemometrics software Smica-P. Correlation coefficients of two models are 0.9954 (Model 1) and 0.9963 (Model 2) respectively when COD of samples is in the range of 0 to 405 mg/L. Confirmatory experiment showed that average relative error of Model 2 (4.25%) was lower than that of Model 1 (5.00%), which indicated predictability of Model 2 was better than that of Model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents, testing time was shortened evidently.
     Statistically based experimental designs were used to construct a mixed-culture community for maximizing COD degradation of pulping effluents by the use of six different strains, i.e., Agrobacterium sp., Bacillus sp., Enterobacter cloacae, Gordonia, Pseudomonas stutzeri, and Pseudomonas putida. Significant effects of single and mixed strains on COD degradation were quantified first by applying a fractional factorial design (FFD) of experiments, and four strains were selected as the main driving factors in the process of biodegradation of effluents. Then the Steepest Ascent method was employed to approach the experimental design space, followed by an application of response surface methodology to further optimize the proportion of cell concentration for different strains in pulping effluent. A quadratic model was found to fit COD removal efficiency. Response surface analysis revealed that the optimum levels of the tested variables for the degradation of COD, and optimized cells concentrations (OD_(600)) of four strains in mixed-culture community were 0.35 Agrobacterium sp., 0.38 Bacillus sp., 0.43 Gordonia sp., and 0.38 P. putid., respectively. In a confirmatory experiment, three tests were performed by using the optimized conditions, and a COD removal efficiency of (65.3±0.5) % was observed, which was in agreement with the prediction. The aerobic granular sludge was intensified with the mixed-culture community constructed in this study. The pulping effluent was treated firstly with anaerobic sludge, and followed by further treatment of aerobic granular sludge and intensified aerobic granular sludge, respectively. COD of pulping effluent was decreased from 629mg/L to 203mg/L and chroma declined to 91C.U. from 118C.U. after treatment by original aerobic granular sludge. By contrast, the efforts of intensified aerobic sludge was better, COD was dropped to 146mg/L from 629mg/L, and chroma declined to 72C.U. from 118C.U.
     A new strain with an ability of degrading chlorophenols efficiently was constructed by protoplast fusion between Pseudomonas putida and Psathyrella candolleana. 20 recombinant strains were screened and used to degrade pentachlorophenol (PCP) synthetic wastewater in order to determine their capabilities of chlorophenol degradation. Also, a new method quantifying PCP was proposed based on derivative spectroscopy, which can detect PCP content in synthetic wastewater within a short time, so chlorophenol biodegradability of recombinant strains could be measured rapidly. The results indicated that the removal efficiency of PCP in synthetic wastewater by 4 recombinant strains viz., Xz 6-1, Xz 6-3, Xz 6-5 and Xz 8-2 were 75.98%, 66.12%, 28.40% and 43.26%, respectively which showed that the removal rate was improved by 27.71% by Xz6-1 as compared with Pseudomonas putida (removal rate of PCP is 54.27%). The aerobic sludge was intensified by Xz6-1 and Pseudomonas putida respectively, so as to improve it’s capabilities of chlorophenol degradation. The results showed that PCP removal rate of original sludge was only 10.69%, but this value was enhanced after intensification. The removal rates of PCP were 30.03% and 21.20% after treatment with the sludge intensified by Xz6-1 and Pseudomonas putida respectively.
     The mixture of pulping effluents, waste paper sludge and pig manure was used to produce biogas by anaerobic fermentation. A moderate feeding concentration of 2% was selected. Significant effects of three factors including carbon-nitrogen ratio (C/N), temperature (T) and initial pH value were quantified by applying FFD experiment. The results showed that three impact factors were significant for biogas production. The temperature was fixed (35℃) based on the research of the predecessor, and further optimized C/N, initial pH value by using the orthogonal experimental design. Finally, the optimal C/N (25) and pH (7.5) were fixed. Biogas production is 368mL under the condition of feeding concentration of 2%, temperature of 35℃, C/N of 25 and pH value of 7.5, COD and BOD of pulping effluent were reduced by 28.97% and 72.40% after anaerobic fermentation.
引文
[1]伍健东.制浆造纸废水的生物处理技术[J].造纸科学与技术,2002,21(1): 34-39.
    [2]葛学贵,太玉明,李大好,等.沸石在环境治理工程中的应用[J].环境科学与技术, 2001, 24(6):21-24.
    [3]李宇庆,陈珍,赵建夫.两相厌氧工艺处理浆粕废水及其动力学研究[J].环境科学与技术, 2005, 28(3):32- 35.
    [4]蒋胜韬,王三秀.制浆造纸废水的综合治理[J].工业水处理, 2009, 29(4):82-84.
    [5]国家环境保护总局.制浆造纸工业水污染物排放标准(征求意见稿)[J],环境保护, 2007, (10B):34-37.
    [6]杜仰民.造纸工业废水治理进展与评述[J].工业水处理, 1997, 17(3):1-5.
    [7]张鑫珩.浅析造纸工业废水的净化治理[J].工业水处理, 1998, 18(2):41-42.
    [8]章进.造纸废水治理与技术[J].浙江造纸, 1998, (4) :15-18.
    [9] Pérez M., Torrades F., Garcia-Hortal J.A., et al. Removal of organic contaminants in paper and pulp treatment effluents by TiO2 photocatalyzed oxidation [J]. J. Photochem. Photobiol. A: Chem. 1997, 109:281-286.
    [10]周德庆.微生物学教程(第二版)[M].北京,高等教育出版社, 2002.
    [11]文应财.废水生物处理法及在污水处理中的应用探讨[J].贵州化工. 2008, 33(1):37-41.
    [12]赵金辉.混凝-水解-好氧活性污泥法处理造纸废水的研究[J].重庆环境科学, 1997, 19(4):39-43.
    [13]陈敏.活性污泥驯化技术与高浓度CTMP废水生物处理的研究[J].环境科学, 1996, 7 (6):47-49.
    [14]颜尚华,陈敏. SBR生物技术处理竹浆造纸黑液的研究[J].环境科学, 1997, 18(3):30-33.
    [15]方士,詹伯君. SBR工艺处理造纸废水试验研究[J].水处理技术, 1999, 25(2):122-124.
    [16]李显康,蔡卫.介绍HCR废水处理新技术的特点[J],广东造纸, 1997, 4:24-25.
    [17]Goronszy M.C.,朱明权, Wutscher K.循环式活性污泥法(CASTTM)在工业废水处理中的应用[J].中国给水排水, 1997, 13 (增刊):7-12.
    [18]Grabas M. Organic matter removal from meat processing wastewater using moving bedbiofilm reactors [J]. Environment Protection Engineering, 2000, 26 (1):55-62.
    [19]Pastorelli G., Andreottola G., Canziani R., et al. Organic carbon and nitrogen removal in moving-bed biofilm reactor [J]. Wat. Sci. Technol, 1997, 35 (6):91-99.
    [20]Loukidou M.X., Zouboulis A.I. Comparision of biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment [J]. Environmental Pollution, 2001 (111):273-281.
    [21]Rusten B., Hem L.J., Odegaard H. Nitrogen removal from dilute wastewater in cold climate using moving bed biofilm reactors [J]. Water Environment Research, 1995, 67 (1):65-74.
    [22]Rusten B, Hem L J, Odegaard H. Nitrification of municipal wastewater in moving bed biofilm reactors[J] .Water Environ. Res, 1995, 67 (1):75-86.
    [23]Fitzsimmons R., Ek M., Eriksson K.E.L. Anaerobic dechlorination/ degradation of chlorinated organic compounds of different molecular masses in bleach plant effluents [J]. Envir Sci Tech, 1990, 24:1744-1748.
    [24]Hakulinen R., Salkinoja-Salonen M. Treatment of pulp and paper industry wastewaters in an anaerobic fluidized bed reactor [J]. Proc Biochem. 1982. 12-22。
    [25]陈元彩,肖锦,詹怀宇,等.含氯漂白废水在厌氧过程中脱氯机理的研究[J].环境科学学报, 2000, 20(6):801-803.
    [26]Stephan B., Norbert S., Martina H. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid [J]. Bioresource Technology, 2009, 100:2902–2909.
    [27]Anne E.S, Daniel H.Z, James S., et al. Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure [J]. Water Research, 2010, 44(12): 3555-3564.
    [28]Wang J.L. Biodegration of phthalic acid ester in soilby indigenous and introduced microorganisms [J]. Chemosphere, 1997, 35(8):1747-1754.
    [29]刘洋,陈双基,刘建国.生物强化技术在废水处理中的应用[J].环境污染治理技术与设备, 2002, 3(5):36- 40.
    [30] Leontievsky A.A., Myasoedova N.M., Golovleva A. Production of ligninolytic enzymes of the white rot fungus Panus tigrinus [J]. Biotechnol, 1994, 32:299-307.
    [31]张甲耀,龚利萍,罗宇煊.嗜碱细菌复合碳源条件下对麦草木质素的降解[J].环境科学, 2002, 23(1):70-73.
    [32]Huynh V.B, Chang H.M, Joice T.W., et al. Dechlorination of choloroorganics by a white- rot fungus [J]. Tappi J, 1985, 68:98-102.
    [33]Yu Z.T., William W. Bioaugmentation with resin-acid-degrading bacteria enhanced resin acid removel in sequencing batch reactor treating pulp mill effluents [J].Water research, 2000, 35(4):883-890.
    [34]Chen Y.C., Lin C.J., Jones G., et al. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design [J]. Journal of Hazardous Materials. 2009, 171:948–953.
    [35]温桂照,陈敏,罗颖.高效优势混合菌降解废水中的氯代芳香族化合物[J].上海环境科学, 2000, 19(8):379-381.
    [36]Marwaha S.S., Grover R., Prakash C., et al. Continuous biobleaching of black liquor from the pulp and paper industry using an imbolized cell system [J] . Journal of Chemical Technology and Biotechnology, 1998, 73 (3):292-296.
    [37]李朝霞,朱建良.固定化白腐菌对造纸废水的生物降解研究[J] .水处理技术, 2005, 31( 12):23-26.
    [38]张书祥,肖亚中,汪怡平,等.白腐真菌漆酶的固定化及其应用研究[J].微生物学通报, 2004, 31( 5):85-88.
    [39]Eaton D.C., Chang H.M., Kirk T.K. Method obtains fungal reduction of the colour of extraction stage kraft bleach effluents [J]. Tappi J, 1982, 65:89-92.
    [40]Barski G., Hebd C.R. Seances. Acid Sci.[M]. Oxford:Blackwell, 1960:1825-1827.
    [41]Okuda Y. Exp cell [M]. New York:Academic Press, 1962:98-107.
    [42]Fereaczy L. Curreat microbial [M]. London:Cambridge University Press, 1980:550-574.
    [43]Ahkong Q.F., Fisher D., Tampion W., et al. Mechanisms of cell fusion [J]. Nature, 1975, 253, 194–195.
    [44]Hollaender A. The method of cell fusion with the electric pulse [M]. New York:Plenum press, 1982, 59-67.
    [45]Grosovsky A.J. Radiation-induce mutations in unirradiated DNA [J]. Proceedings of the National Academy of Science of USA, 1999, 96:5346-5347.
    [46]任柏林,谢水波,唐振平,刘迎九.细胞融合技术及其在构建水处理工程茵中的应用[J].安全与环境学报. 2010, 10(3):20-24.
    [47]Davidson R.L., and Gerald P.S. Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol [J]. Somatic Cell Genetics. 1976, 2(2):165-176.
    [48]夏光敏,陈惠民.小麦与高冰草原生质体融合及再生能力的恢复[J].山东大学学报. 1995. 30(3):325-330.
    [49]Senda M. The cell fusion of plant with the electricpulse [J]. Plant Cell Physical. 1979. 20:1441-1443.
    [50]Zimmermann U. Biochim, Biophys. The method of cell fusion with the electricpulse [J]. Acta.1982, 694:227-277.
    [51]Zimmermann U. Investigative Microtechniques in Medicine and Biology [J]. Biosci Biotech Biochem. 1982, 56:89-97.
    [52]高晓红,曹明丹.电脉冲介导金鱼囊胚细胞融合及其发育能力的研究[J].动物学报. 1990, 36(2):199-204.
    [53]吴孔兴,黄青云,丘家军.禽巴氏杆菌大肠杆菌融合二联弱毒菌株F4的培育[J].华南农业大学学报, 2002, 23 (1):67-70.
    [54]陈五岭,罗雯,姚胜利,等.氦氖激光对链霉菌原生质体种间融合频率的影响[J].光子学报, 1998, 27(5):412-417.
    [55]Kolenc R.J., Inniss W.E., Glick B.R., et al. Transfer and expression of mesophilic plasmid mediated degradative capacity in a psychrotrophic bacterium [J]. Application Environment Microliology.1988, 54(3):638-641.
    [56]Cheng S.P., Cui Y.B. Function determination for biodegradation of monosodium glutamate (MSG) wastewater with fusants between photosynthetic bacteria and yeast [J]. Environmental Science. 1996, 17(3):5-7.
    [57]Wei M.B.,Shao C., Wei L.F. Coke wastewater treatment by fusant bioaugmentation [J]. Industrial Water and Wastewater, 2007, 38(2):33-35.
    [58]Suzuki T., Ichihara Y., Yamada M., et a1. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas [J]. Agricultural and Biological Chemistry. 1973, 37:747-756.
    [59]Liao J.S., Guo Y., Zhuang G. The breed of high efflcient strain with the technique of protoplast fusion to degrade polyvinyl-alcohol [J]. Journal of Food Science andBiotechnology, 2005, 24(2):34-37.
    [60]柏云,张静,冯易君.生物吸附法处理含铀废水研究进展[J].四川环境, 2003, 22(2):9-16.
    [61]许燕滨,江霞.高效含氯有机化合物降解工程菌的构建研究[J].重庆环境科学, 2001, 23(2):46-48.
    [62]GB11903-19891水质色度的测定[S]. 1989.
    [63]HACH Company. HACH DR/2010 spectrophotometer handbook [M]. USA:HACH Company, 1996-2000.
    [64]Method NCASI 253. U.S. Environmental Protection Agency. Analytical methods for the determination of pollutants in pulp and paper industry wastewater[M]. 1993, 125-142.
    [65]陈国宁. TiO_2光催化处理CEH漂白废水研究[D].广西:广西大学, 2005.
    [66]李海明,何北海,陈元彩,等.制浆造纸工业废水色度的检测方法及其应用研究[J].中国造纸, 2006, 25(7):23-27.
    [67]张晓霞,马玉芹,孙敬亮.化学需氧量(COD)测定方法改进及银盐的回收利用[J].长春理工大学学报(自然科学版), 2007, 30(4):4-6.
    [68]韦小玲,龚琦,吕恒毅等.快速无污染测定废水CODcr方法研究[J].广西大学学报(自然科学版), 2006, 31(4):09-314.
    [69]马建疆,苏补拽.分光光度法COD的快速测定[J].内蒙古环境保护, 2006, 18(2):35-36.
    [70]胡江涛,张克荣,郑波等.固相萃取-高效液相色谱测定自来水中氯代酚[J].中国卫生检验杂志, 2005, 15(12):1432-1434.
    [71]周瑞娟,段炼,孙晓杰.离子液体键合固相微萃取涂层用于水样中五氯酚的测定[J].高等学校化学学报, 2010, 31(10):1945-1948.
    [72]周颖,吴显芳,屈卫东,等.水中五氯酚测定方法的研究[J].卫生研究, 2007, 36(3):287-288.
    [73] Mital, K. Biogas systems: principles and applications. New Age International Ltd [M]. 1996, Publishers. New Delhi
    [74] Yadvika, Santosh, Sreekrishnan T., et al. Enhancement of biogas production from solid substrates using different techniques-a review [J]. Bioresource Technology. 2004, 95 (1):1-10.
    [75] Hilkiah A., Ayotamuno M., Eze C., et al. Designs of anaerobic digesters for producing biogas from municipal solid-waste [J]. Applied Energy. 2007, 85 (6):430-438.
    [76]伍峰,周少奇,陈杨梅.造纸污泥资源化研究现状与前景[J]. 2009, 30(7):97-100.
    [77]Marques S., Alves L., Roseiro J.C. Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis[J]. Biomass and bioenergy, 2008, 32:400-406.
    [78]彭林才,陈元彩,付时雨等.造纸污泥同步糖化发酵生产燃料乙醇[J].华南理工大学学报(自然科学版), 2010, 38(8):34-39.
    [79]Lin Y.Q., Wang D.H., Wu S.Q. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge[J]. Journal of Hazardous Materials. 2009, 170:366-373.
    [80]Momoh O.L., Yusuf, Nwaogazie L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth [J]. Biomass and Bioenergy, 2011, 35:1345-1351.
    [81]Puhakka J.A., Alavakeri M., Shieh W.K. Anaerobic treatment of Kraft pulp-mill waste activated-sludge:gas production and solids reduction [J]. Bioresource Technology. 1992, 39:61-68.
    [82]徐新华,宋爽,汪大翬等.工业废水中专项污染物处理手册[M].北京:化学工业出版社, 2000.
    [83]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第3版.北京:中国环境科学出版社, 1989, 93-94.
    [84]Marwaha S. S., Grover R., Prakash C., et al. Continuous biobleaching of black liquor from the pulp and paper industry using an immobilized cell system [J]. Chem. Technol. Biotechnol., 1998, 73, 292–296.
    [85]Sharma C., Mahanty S., Kumar S., et al. Gas chromatographic determination of pollutants in the chlorination and caustic extraction stage effluent from the bleaching of a bamboo pulp [J]. Talanta, 1997, 44, 1911–1918.
    [86]N?rgaard L.and Ridder G. Spectrophotometric determination of mixtures of 2-, 3-, and 4-hydroxybenzaldehydes by flow injection analysis and uv/vis photodiode-array detection [J]. Talanta, 1994, 41(1):59-66.
    [87]Palabiyik I.M., Din?v E., Onur F. Simultaneous spectrophotometric determination ofpseudoephedrine hydrochloride and ibuprofen in a pharmaceutical preparation using ratio spectra derivative spectrophotometry and multivariate calibration techniques [J]. J. Pharma. Biomed. Anal., 2004, 34, 473–483.
    [88]Erk N. Comparative study of the ratio spectra derivative spectrophotometry, derivative spectrophotometry and Vierordt’s applied to the analysis of lisinopril and hydrochlorthiazide in tablets [J]. Spectrosc. Lett. 1998, 31, 633–645.
    [89]杨泉生,聂基兰.双波长分光光度法的原理与应用[M].北京:化学工业出版社. 1992, 158-159.
    [90] Karimi S., Abdulkhani A., Ghazali A.H.B., et al. Color remediation of chemimechanical pulping effluent using combination of enzymatic treatment and Fenton reaction [J]. Desalination, 2009, 249, 870–877.
    [91]Stephenson R.J. and Duff S.J.B. Coagulation and precipitation of a mechanical pulping effluent-I: Removal of carbon, color and turbidity [J]. Water Res., 1996, 30, 781-792.
    [92]Klenin V.I.and Shchegolev S.Y. Principles of optimization of turbidimetric titration of polymer solutionhs [J]. Polymer Science, 1980, 21:2373-2384.
    [93]王兆喜,汪敬武.比浊法在分析科学中的应用研究[J].江西化工, 2002, 4:11-22.
    [94]Gonzalez V.D.G., Gugliotta L.M., Vega J.R., et al. Contamination by larger particles of two almost-uniform latices: analysis by combined dynamic light scattering and turbidimetry [J]. J. Colloid. Interface Sci., 2005, 285:581–589.
    [95]Elicabe G., Frontini G. Determination of the particle size distribution of latex using a combination of elastic light scattering and turbidimetry: A simulation study [J]. J. Colloid. Interface. Sci., 1996, 181:669–672.
    [96]Carlos P.N., Eolte B., Dmitry E., et al. Total fractionation and analysis of organic components of industrial Eucalyptus globulus kraft black liquor[J]. Appita J., 1999, 52:213-217.
    [97]Cardoso M., Oliveira E.D., Passos M.L. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills [J]. Fuel, 2009, 88:756–763.
    [98]Nagarathnamma R., Bajpai P., Bajpai P.K. Studies on decolourization, degradation and detoxification of chlorinated lignin compounds in kraft bleaching effluents byCeriporiopsis subvermispora [J]. Proc. Biochem., 1999, 34:939–948.
    [99] Medalia A. Test for traces of organic matter in water [J]. Anal Chem, 1951, 23: 1318-1320.
    [100]Moraes S.G., Durán N., Freire R. S. Remediation of Kraft E1 and black liquor effluents by biological and chemical processes [J]. Environmental Chemistry Letters, 2006, 4: 87-91.
    [101]Apppleton J.M.H., Tyson J.F., Mounce R.P. The rapid determination of chemical oxygen demand in waste waters and effluents by flow injection analysis [J]. Analytica Chimica Acta, 1986, 179: 267-278.
    [102]Hejzlar J., Kopacek J. Determination of low chemical oxygen demand values in water by the dichromate semi-micro method [J]. Analyst, 1990, 115:1463-1467.
    [103]Liu Y., Ji H.W., Xin H.Z., et al. A new Spectrophotometric Method for Measuring COD of Seawater [J]. Journal of Ocean University of China, 2006, 5(2): 127-131.
    [104]Liu W., Zhang Z.J., Zhang Y.Y. Chemiluminescence micro-flow system for rapid determination of chemical oxygen demand in water [J]. Microchim Acta, 2008, 160: 141-146.
    [105]Abuzaid N.S, Al-Malack M.H, El-Mubarak A.H. Alternative method for determination of the chemical oxygen demand for colloidal polymeric wastewater [J]. Bull. Environ. Contam. Toxicol. 1997, 59: 626-630.
    [106]Claudineia R., Silva C.D.C., Concei??o V.G., et al. Determination of the chemical oxygen demand (COD) using a copper electrode: a clean alternative method [J]. J Solid State Electrochem, 2009, 13: 665-669.
    [107]Dedkov Y.M, Elizarova O.V, Kei'ina S.Y. Dichromate method for the determination of chemical oxygen demand [J]. Journal of Analytical Chemisto, 2000, 55(8): 777-781.
    [108]Massart D.J., Vandegisnte B.M.G., Buydens L.M.C., et al. Handbook of chemometrics and qualimetrics: A and B [M]. Amsterdam: Elsevier, 1997.
    [109]Fang G.Z., Liu N. Determination of eight essential amino acids in mixtures by chemometrics–spectrophotometry without separation [J]. Analytica Chimica Acta, 2001, 445:245–253.
    [110]Ca′mara M.S., Mastandrea C., Goicoechea H.C. Chemometrics-assisted simpleUV-spectroscopic determination of carbamazepine in human serum and comparison with reference methods [J]. Journal of Biochemical and Biophysical Methods, 2005, 64:153–166.
    [111]Culzoni M.J., De-Zan M.M., Robles J.C. Chemometrics-assisted UV-spectroscopic strategies for the determination of theophylline in syrups [J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39:1068–1074.
    [112]Thomas E.V., Haaland D.M. Partial least-squares methods for spectral analyses: II. Application to simulated and glass spectral data [J]. Analytical Chemistry, 1998, 60:1193– 1202.
    [113]Coello J., Maspoch S., Villegas N. Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least-squares calibration [J]. Talanta, 2000, 53:627–637.
    [114]Galeano D.T., Dura′n M.I., Guiberteau C.A., et al. Voltammetric behavior and determination of tocopherols with partial least squares calibration: analysis in vegetable oil simples [J]. Analytica Chimica Acta, 2004, 511:231– 238.
    [115]丁亚平,苏庆德,吴庆生.导数荧光—偏最小二乘法同时测定注射液中色氨酸、酪氨酸和苯丙氨酸[J] .光谱学与光谱分析, 2001, 21 (2) :21-214.
    [116] Diaz T.G., Guiberteau A., Burguillos J.M., et al. Comparison of chemometric methods :derivative ratio spectraand multivariate methods (CLS, PCR and PLS) for the resolution of ternary mixtures of the pesticides carbofuran carbaryl and phenamifos after their extraction into chloroform[J].Analyst, 1997, 122:513-517.
    [117]王镇浦,陈国松.偏最小二乘法辅助分光光度法同时测定痕量锰、铁、铜和锌[J ].分析化学,1996, 24 (1):61-64.
    [118]王镇浦,周国华,罗国安.偏最小二乘法( PLS)及其在分析化学中的应用[J].分析化学, 1989, 17 (7):662-669.
    [119]Association of Official Analytical Chemists (AOAC). Official methods of analysis, 15th eds [M]. Kenneth Helrick, Arlington, Virginia, USA, 1990.
    [120]Kowalski B.R., and Seasholtz M.B. Recent developments in multivariate calibration [J]. Journal of Chemometrics. 1998, 2:93-96.
    [121]Berglund A. and Wold S. INLR, Implicit non-linear latent variable regression [J].Journal of Chemometrics. 1997, 11:141-147.
    [122]Miller J.N. and Miller J.C. Statistics and chemometrics for analytical chemistry, 4th ed. [M], Prentice Hall, Edinburgh, 2000.
    [123]Shibata S., Furukawa M., and Nakashima R. Syntheses of azo dyes containing 4, 5-diphenylimidazole and their evaluation as analytical reagents [J]. Analytica. Chimica. Acta, 1976, 81: 131-141.
    [124]Shibata S., Furukawa M. and Goto K. Dual-wavelength spectrophotometry: Part VI. Qualitative and quantitative analysis by means of first-derivative spectra [J]. Analytica. Chimica. Acta, 1973, 65(1): 49-58.
    [125]Cardoso M., Oliveira E.D., Passos M.L. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills [J]. Fuel, 2009, 88:756–763.
    [126]Nagarathnamma R., Bajpai P., Bajpai P.K. Studies on decolourization, degradation and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis sub6ermispora [J]. Process Biochemistry, 1999, 34:939–948.
    [127]Neto C.P., Belino E., Evtuguin D.,et al. Total fractionation and analysis of organic components of industrial Eucalyptus globulus kraft black liquor [J]. Appita Journal, 1999, 52(3):213-217.
    [128]Carlos P.N., Eolte B., Dmitry E., et al. Total fractionation and analysis of organic components of industrial Eucalyptus globulus kraft black liquor [J]. Appita Journal, 1999, 52(3):213-217.
    [129]Astigarraga B.E.B., Moraes D.N., Comasseto J.V. Highly unsaturated conjugated system from vinylic tellurides [J]. Tetrahedron Letters, 1999, 40: 265-268.
    [130]Cornard J.P., Rasmiwetti, Merlin J.C. Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV–visible, Raman, DFT and TD-DFT calculations [J]. Chemical Physics, 2005, 309: 239–249.
    [131]Santoyo E., Surendra P.V. Determination of lanthanides in synthetic standards by reversedphase high-performance liquid chromatography with the aid of a weighted least-squares regression model Estimation of method sensitivities and detection limits [J]. Journal of Chromatography A, 2003, 997:171–182.
    [132]Abuzaid N.S., Al-Malack M.H., El-Mubarak A.H. Alternative method for determination of the Chemical Oxygen Demand for colloidal polymeric wastewater [J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59:626-630.
    [133]Silva C.R., Conceic?o C.D.C., Bonifácio V.G., et al. Determination of the chemical oxygen demand (COD) using a copper electrode: a clean alternative method [J]. Journal of Solid State Electrochemistry, 2009, 13:665–669.
    [134]Bergbauer M., Eggert C., and Kraepelin G. Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor [J]. Appl. Microbiol. Biotechnol. 1991, 35:105-109.
    [135]Ragunathan R., and Swaminathan K. Biological treatment of a pulp and paper industry effluent by Pleurotus spp.[J]. World J. Microbiol. Biotechnol. 2004, 20:389-393.
    [136]Freitas A.C., Ferreira F., Costa A. M.,et al. Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi [J]. Sci. Total Environ. 2009, 407:3282-3289.
    [137]Annadurai G., Ling L.Y., and Lee J.F. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida [J]. J. Hazard. Mater. 2008, 151:171-178.
    [138]Chen H. C. Optimizing the concentrations of carbon, nitrogen and phosphorous in a citric acid fermentation with response surface method [J]. Food Biotechnol. 1996, 10:13-27.
    [139]Jiao Y.C., Chen Q.H., Zhou J.S., et al. Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation [J]. LWT - Food Science and Technology. 2008, 41:1694-1700.
    [140]Wang Z.W., and Liu X.L. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology [J]. Bioresource Technology 99:8245-8251.
    [141]Kim Y.C., Lee K.H., Sasaki S., et al. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode [J] Anal. Chem. 2000, 72: 3379-3382.
    [142]Montgomery D.C. Response surface methods and other approaches to process optimization In D. C. Montgomery (Ed.), Design and Analysis of Experiments, 4th ed.[M]., Wiley, USA, 1997, pp. 372-422.
    [143]Montgomery D.C., Runger G.C., and Hubele N.F. Engineering Statistics, 4th ed. [M], John Wiley & Sons, Hoboken, NJ, 2007, pp. 341–413.
    [144]Dale B.M., Walter J.G., Wayne L.T., et al. Global and local optimization using radial basis function response surface models [J]. Appl. Math. Model. 2007, 31:2095-2110.
    [145]Jeong S.P., Jong S.W. and Sung J.H. Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology [J]. Int. J. Pharm. 2007, 341:97-104.
    [146]Korbahti B.K., Aktas N. and Tanyolac A. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology [J]. J. Hazard. Mater. 2007, 14:883-890.
    [147]Li X., Ouyang J., Xu Y., et al. Optimiza-tion of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology [J]. Bioresource Technology, 2009, 100:3613-3617.
    [148]Li Y., Cui F.J., Liu Z.Q., et al. Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology [J]. Enzyme and Microbial Technology, 2007, 40:1381-1388.
    [149]隋红,李鑫钢,徐世民等.活性污泥废水处理系统的优化[J].化工进展, 2007, 26(1):119-122.
    [150]Demirbas G., Gokcay C.F., Dilek F.B. Treatment of organic chlorine in pulping effluents by activated sludge [J]. Water Sci Technol, 1999, 40(1):275–279.
    [151]Junna J., Ruonala S. Trends and guidelines in water pollution control in the Finnish pulp and paper industry [J]. Tappi J. 1991, 74(7):105–11.
    [152]Chandra R. Microbial decolourisation of pulp mill effluent in presence of nitrogen and phosphorous by activated sludge process [J]. J. Environ Biol, 2001, 22(1):23–27.
    [153]Kevin A., Unwin J.P. Pulp and paper effluent management [J]. Water Environment Research, 1998, 70(4):667-690.
    [154]Georgiou D., Aivasidis A. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria [J]. Journal of Hazardous Materials. 2006, 135(1-3): 372–377.
    [155]董春娟,吕炳南. EGSB反应器内颗粒污泥的快速培养及特性研究[J].中国给水排水, 2006, 22( 15):62-66.
    [156]国家环境保护局.水与废水检测分析方法[M].第3版.北京:中国环境科学出版社, 1998.
    [157]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学, 1999, 20( 2):38-41.
    [158]Lowry O.H., Rosebrough N.J., Farr A.L., et al. Protein measurement with the folin phenol reagent [J]. The Journal of Biological Chemistry, 1951, 193(1): 265-275.
    [159]Frlund B., Griebe T., Nielsen P H. Enzymatic activity in the activated sludge floc matrix [J]. Applied Microbiology and Biotechnolology, 1995, 43:755-761.
    [160]Aoyagi H., Yabusaki K. Turbidimetric method for evaluation of photocatalytic activities of suspended fine particles [J]. Nanotechnology, Science and Applications, 2010, 3: 85–90.
    [161]王镜岩,朱圣庚,徐长法.生物化学[M].北京,高等教育出版社, 2002.
    [162]Berry B.M., Luthe C.E., Voss R.H, et al. The effects of recent changes in bleached softwood kraft mill technology on organochlorine emissions: an international perspective [J]. Pulp Pap. Can. 1991, 92:43-55.
    [163]Bajpai P., and Bajpai P.K. Reduction of organochlorine compounds in bleach plant effluents [J]. Adv. Biochem. Eng. Biotechnol. 1997, 57:213–259.
    [164]Kringstad K.P.and Lindstrom K. Spent liquors from pulp bleaching [J]. Environ. Sci. Technol. 1984, 18:236–248.
    [165]Pacheco M. and Santos M.A. Induction of micronuclei and nuclear abnormalities in the erythrocytes of Anguilla Anguilla exposed to either cyclophosphamide or to bleached kraft mill effluent [J]. Fresenius Environ. Bull. 1996, 5:746–751.
    [166]Montserrat P., Francesc T., JoséA.G., et al. Removal of organic contaminants in paper and pulp treatment effluents by TiO2 photocatalyzed oxidation [J]. Jouranl of Photochemistry and Photobiology A: Chemistry. 1997, 109:281-286.
    [167]Belmonte M., Xavier C., Decap J., et al. Improved aerobic biodegradation of abietic acid in ECF bleached kraft mill effluent due to biomass adaptation [J]. J. Hazard. Mater. 2006, 135: 256–263.
    [168]Buzzini A.P., Pires E.C. Evaluation of an up flow anaerobic sludge blanket reactor with partial recirculation of effluent used to treat wastewaters from pulp and paper plants [J]. Bioresour. Technol. 2007, 98:1838–1848.
    [169]Brown S., Grady J.C., Tabak H. Biodegradation kinetics of substituted phenolics: demonstration of a protocol based on electrolytic respirometry [J]. Water Res 1990, 24:853–861.
    [170]Cadeira M., Heald S., Carvalho M., et al. 4-Chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor [J]. Appl Microbiol Biotechnol. 1999, 52:722–729.
    [171]Kennedy M., Grammas J., Arbuckle W. Parachlorophenol degradation using bioaugmentation [J]. Res J WPCF. 1990, 62:227–233.
    [172]Wang C., Zhang X.L., Chen Z., et al. Strain construction for enhanced production of spinosad via intergeneric protoplast fusion [J]. Can. J. Microbiol. 2009, 55:1070-1075.
    [173]Jones C.W., Mastrangelo I.A., Smith H.H., et al. Interkingdom fusion between human (HELA) and tobacco hybrid (GGLL) protoplasts [J]. Science. 1976, 193:401–403.
    [174]Sivakumar U., Kalaichelvan G. and Ramasamy K. Protoplast fusion in Streptomyces sp. for increased production of laccase and associated ligninolytic enzymes [J]. World J. Microbiol. Biotechnol. 2004, 20:563–568.
    [175]Richard H.B. Genetic recombination by protoplast fusion in streptomyces [J]. J.Ind. Microbiol. Biotechnol. 2001, 22:460–471.
    [176]郝林.食品微生物学实验技术[M].北京:中国农业出版社, 2001. 76-83.
    [177]Hopwood D.A. and Wright H.M. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolr [J]. J. Gen. Microbiol. 1978, 162:307-317.
    [178]Chen H.L., Chen Y.C., Zhan H.Y., et al. Determination of chroma in pulping effluent by ratio spectrum-derivative spectrophotometry [J]. Environmental Progress & Sustainable Energy. 2010, 29(3):342-348.
    [179]Chen H.L., Chen Y.C., Zhan H.Y., et al. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent [J]. Environ Monit Assess. 2011, 175:321–329.
    [180]Mahmood T., Elliott A. A. review of secondary sludge reduction technologies for thepulp and paper industry [J]. Water Research, 2006, 40(11): 2093-2112.
    [181]Marques S., Alves L., Roseiro J. C., et a.l. Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichiastipitis [J]. Biomass and Bioenergy, 2008, 32 (5): 400-406.
    [182]Yamashita Y., Kurosumi A., Sasaki C., et al. Ethanol production from paper sludge by immobilized Zymomonas mobilis [J]. Biochemical Engineering Journal, 2008, 42(3):314-319.
    [183]Energy Information Administration (EIA). Primary Energy Consumption by Source. Available from http://www.eia.doe.gov/emeu/international/energyconsumptionhtml, 2008.
    [184]Ohgren K., Bura R., Lesnicki G., et al. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover [J]. Process Biochemistry, 2007, 42(5):834-839.
    [185]Wyman C.E., Spindler D.D., Grohmann K. Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol [J]. Biomass and Bioenergy, 1992, 3(5): 301-307.
    [186]Hassan G.H., Tandon S.M. and Singh R. Anaerobic digestion of alkali treated crop residues with cattle waste[J]. Proc. Indian Acad. Sci. 1989, 99(5):503-507.
    [187]Marty D., Boninb P., Michoteyb V., et al. Bacterial biogas production in coastal systems affected by freshwater inputs [J]. Continental Shelf Research, 2001, 21:2105–2115.
    [188]Alvarez R., Lidén G. Semi-continuous co-digestion of solid slaughterhouse waste,manure, and fruit and vegetable waste [J]. Renewable Energy. 2007, 33 (4): 726-734.
    [189]Singh K.S. and Viraraghavan T. Impact of temperature on performance, microbiological and hydrodynamic aspects of UASB reactors treating municipal wastewater [J]. Water Science and Technology, 2003, 48(6):211-217.
    [190]APHA. Standard methods for the Examination of Water and Wastewater [M]. 21st Edition. American Public Health Association, Washington, D.C., 2005.
    [191]周史强,罗勇,林奕珊. ICP光谱法和FIA光度法测定水中总磷的比较[J] .广东水利水电, 2009, 2:44-46.
    [192]Redzwan G. and Banks C. The use of a specific function to estimate maximum methaneproduction in a batch fed anaerobic reactor [J]. Journal of Chemical Technology and Biotechnology, 2004, 79:1174-1178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700