利用连锁与连锁不平衡联合作图解析毛白杨重要性状的等位遗传变异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林作为陆地生态系统最重要的组成部分,蕴含了约82%的生物量和50%的生物多样性,是人类可持续发展与可再生利用的主要资源。但我国森林覆盖率低,国内所需木材原料大多依赖进口,木材资源的战略安全及国家林木育种工程面临严峻挑战;而“林以种为本,种以质为先”,常规的杂交育种策略虽为国家的速生丰产林建设提供了大批良种,但林木遗传杂合度高、育种周期长且重要经济性状多为数量性状等因素严重阻碍了林木遗传改良进程,当前林业生产所用品种的生产力难以满足工业发展对木材产量与质量的需求。因此,深入研究木材形成的生物学基础,解析木材形成的遗传调控机制,是加速林木良种化进程的根本。为此,本论文以我国北方重要的用材及生态型树种毛白杨(Populus tomentosa Carr.)的自然群体与杂交群体为材料,在毛白杨木材形成相关候选基因内微卫星标记资源大规模开发的基础上,首次开展了以连锁与连锁不平衡联合作图为策略的研究工作,剖析了控制林木生长及木材品质性状的等位遗传变异,并建立了林木基因标记辅助育种技术。
     主要研究内容及结论如下:
     1.利用直接测序法从138个毛白杨木材形成相关候选基因内开发出544个SSR标记位点,其中75%的位点位于基因的启动子或内含子等调控区域。利用这些标记在毛白杨自然群体中筛选出包含861个等位位点的188对多态性SSR引物,每一标记平均等位位点数目为2-7个。随机选择30对基因内SSR引物对杨树属内五个杨派26个种间个体(馒头柳作为类外群)进行种间转移检测发现,72%的基因内SSR标记可以在胡杨派中有效扩增,而在白杨派种间扩增率为100%;Neighbor-Joining(NJ)聚类分析确定了符合杨属传统分类的6个谱系分组。另外,通过比较220对包含基因内SSR位点的毛白杨与毛果杨同源序列,确定了种间SSR变异的主要原因是SSR位点侧翼序列的突变及重复基元类型的改变。进一步的杂交群体遗传分离检测及单标记关联分析表明开发的基因内SSR标记资源在关联作图、遗传连锁作图及近缘种比较基因组学等方面均具有较大的应用潜力。
     2.群体遗传多样性及群体结构评价是开展连锁不平衡作图及构建核心种质资源的前提。本文利用20对毛白杨特异性SSR标记对选择于毛白杨种质资源基因库的460株个体进行了遗传多样性评价,共确定了99个等位位点,其平均观测等位位点数目为4.05,显示了该群体具有中等遗传多样性水平。群体遗传结构分析表明,毛白杨种质资源可以划分为11个亚群体(K=11)。对STRUCTURE模型确定的K=3情况下的亚群体组成进行分析,表明了毛白杨三个气候区可以分别作为相对独立的遗传群体进行相关研究。对不同气候区的遗传多样性检测表明南部气候区具有最丰富的遗传多样性水平(N=93,Np=11,HE=0.445,F=-0.102),东北及西北气候区次之,表明南部气候区是当前毛白杨生长分布的中心区域。利用建立的“UPGMA-聚类分析逐次随机取样”与“群体结构重检测”联合分析法对毛白杨种质资源进行核心种质群体构建,确定15%(69)的比例选择出来的毛白杨核心种质群体是最理想的。
     3.进一步的连锁不平衡研究显示,在毛白杨候选基因内1,200bp距离内连锁不平衡水平已衰退至不明显,显示了基于候选基因的连锁不平衡作图策略在林木中具有更高的效力。利用混合线性模型进行单标记关联分析,确定了来自于39个候选基因的48个SSR标记位点与10个生长与木材品质性状显著连锁,构成80个关联(Q≥0.10),每一标记位点可解释表型变异的1.20%-14.5%;基于单倍型的关联分析确定了来自于32个高连锁区域(代表20个基因)的64个单倍型与10个性状的80个关联(Q≤0.10)。比较单标记及单倍型的关联结果显示单倍型效应主要来自于其包含的显著单标记位点,基于单倍型的关联分析并没有显现出更高的作图分辨率。
     4.利用1200株银腺杨×毛白杨杂交F1连锁作图群体构建了首张基于候选基因内共显性标记的毛白杨高密度、高解析度遗传连锁图谱。其中,在LOD≥5.0,r≤0.25条件下,确定了包含1270个标记位点(309个SSR、929个AFLP和32个InDel)的19个较大的连锁群,连锁位点覆盖毛白杨基因组总长约2758.6cM,标记间平均遗传距离为2.3cM。341个基因内共显性标记在连锁图谱的标定代表了候选基因的定位,为后期开展重要性状的QTL作图提供了科学的遗传平台。
     5.基于遗传图谱信息,利用复合区间作图法对光合相关性状、生物量、叶片性状和木材品质等28个数量性状进行了QTL分析。当LOD值≥2.5时,共检测到与25个表型性状相关的179个QTLs,每一标记可解释表型变异的1.27%-30.02%,显示不同复杂数量性状具有不同的遗传控制机制。所有179个QTL按照光合相关性状、叶片性状、生物量及木材品质分组后确定的QTL数目是10-84个,不均匀地分布到18个连锁群上,平均9.4个。LG VI和LG XII是控制这些性状的重要区域,LG_XIII上没有发现与所有28个数量性状相关的QTL。进一步研究发现80%的QTLs区间内包含基因内共显性标记,其隶属的基因主要包括与细胞生长分化相关的重要调控基因或转录因子,如类核酸剪切调控蛋白基因、蛋白酶体调控亚基S3蛋白家族基因和锌指蛋白家族基因等,另外一部分是控制木材形成及生长的功能基因,如纤维素合酶基因家族成员(CesA3、CesA7和CesA9),葡萄糖-6-磷酸脱氢酶基因与EXP1基因等。
     6.利用连锁与连锁不平衡联合作图策略,确定了来自于27个候选基因的29个SSR与8个生长与木材品质性状组成的39个显著关联(Q≤0.10)。进一步比较了每个显著标记在两个作图群体内对应的基因型效应,最终选择基因型效应一致的31个关联组合。随后,筛选出控制每个性状极高及极低表型值的优势等位位点联合体,并根据育种需要组合利用多个优势位点联合体建立基因标记辅助选择育种技术。利用该技术分别在毛白杨种质资源库(关联群体)及杂交作图群体内选择了10个具有潜在应用价值的优良单株。
Forest trees as foundation species in ecosystems that cover vast areas of the earth's surface, constituting roughly82%of the continental biomass and comprising more than50%of the terrestrial biodiversity They are a source for many of the essential needs and sustainable development of humans. However, the shortage of forests resource and imports of most wood raw material of our essential needs make a severe challenge for the strategic security of wood material and the national forest breeding program. The seed quality is the key for trees breeding. Conventional breeding programs may provide many fine varieties for national fast-growing and high-quality forest program, but these resources can not be sufficient to meet the industrial needs for wood produces. Especially, the breeding and improvement progress has been hindered by trees large size, long generation times, and the natural quantitative for economic traits of interest. Understanding of the molecular mechanisms underlying allelic variation of tree growth and wood formation is considered as one of the main prerequisites for tree genetic breeding improvement. Hence, on the basis of lager-scale development of microsatellites in candidate genes related to wood properties in the Chinese white poplar(Populus tomentosa Carr.), one of the most potential indigenous tree species used for industrial needs and renewable bioenergy in northern China, we first carried out dissection of the molecular mechanisms underlying allelic variation of growth and wood formation by using joint linkage-linkage disequilibrium (LD) mapping, and then constructed molecular marker-assisted selection (MAS) breeding approach.
     The main results and conclusion in this study as follows:
     1. We first characterized544genic SSR loci derived from138candidate genes involved in wood formation, distributed throughout the genome of P. tomentosa. Of these SSRs, three-quarters were located in the promoter or intron regions. By screening15wild P. tomentosa ecotypes, we identified188polymorphic genic SSRs with861alleles, two to seven alleles for each marker. Transferability analysis of30random genic SSRs, testing whether these SSRs work in26genotypes of five genus Populus sections (outgroup, Salix matsudana Koidz), showed that72%of the SSRs could be amplified in Turanga and100%could be amplified in Leuce. Based on genotyping of these26genotypes, a neighbor-joining (NJ) analysis showed the expected six phylogenetic groupings. In silico analysis of SSR variation in220sequences that are homologous between P. tomentosa and Populus trichocarpa suggested that genic SSR variations between relatives were predominantly affected by repeat motif variations or flanking-sequence mutations. Inheritance tests and single-marker associations demonstrated the power of genic SSRs in linkage mapping and association studies, as well as comparative genomic studies.
     2. An understanding of genetics diversity and population structure is important for developing association studies and constructing core collections for tree breeding. Using20species-specific microsatellite markers, we identified99alleles with a mean of4.95observed alleles per locus in the460native P. tomentosa individuals, indicating a moderate level of polymorphism across all individuals. A model-based population structure analysis divided P. tomentosa into11subpopulations (K=11). The pattern of individual assignments into the subsets (K=3) provides reasonable evidence for treating climatic zones as genetic regions for population genetics. The highest level of genetic variation was found in the southern climatic region (i.e., N=93, NP=11,HE=0.445, F=-0.102), followed by the northeastern and northwestern regions. Thus, the southern region is probably the center of the current species distribution. Finally, joint "Stepwise UPGMA clustering procedure" and "Population structure test" selection approach were firstly designed to construct the core collections and identify the core collection comprising15%(69) of the initial collection was the optimal one representing the genetic diversity of P. tomentosa genetic resources.
     3. Linkage disequilibrium (LD) test shows a clear and rapid decline of LD with distance in base pairs within candidate gene (r2≥0.1, within1200bp), indicating that LD did not extend over the entire gene region. The low LD indicated that candidate gene-based LD mapping approach may be having a higher mapping resolution. Using mixture linar models,80significant associations with all ten phenotypic traits were identified at the threshold of Q<0.10, representing48SSRs from39cadidate genes. These loci explained a small proportion of the phenotypic variance, ranging from1.20%to14.50%. Using haplotype-based association test, we identified80signifcant assocaitons at the threshold of Q≤0.10, representing60significant haplotypes from32high-LD regions (20cadidate genes) with all ten traits. Haplotype analysis did not improve the effect of candidate gene-based association mapping, and the significance is mainly derived from its single markers.
     4. As an further dissection for important traits in forest tree, a hybrid population consists of1,200individuals, were randomly selected and used for constructing a high-density and high-resolution genetic linkage map, which included19major linkage groups (2758.6cM) comprising1,270markers (929AFLP,309genic-SSRs and32InDels). The average marker interval was2.30cM.341genic-codominant markers order in the linkage map represent the positions of all candidate genes, which provide an important tool for QTLs mapping for traits of interest.
     5. Using composite interval mapping, QTLs mapping of28quantitative traits were carried out, including photosynthesis, leaf, growth biomass and wood-property triats. A total of179putative QTLs were detected for these25traits at LOD (Logarithm of Odds)≥2.5, with a small proportion of phenotypic variance explained, from1.27%to30.02%; each quantitative trait had its specific genetic model. The number of QTLs of all four groups varied from10to84, unevenly assigned to18linkage groups. LG_VI and LG_XII contained the hot putative QTL regions for multiple traits of interest, whereas no QTL were detected on LG_XIII. In addition,80%of all QTLs linked to genic-codominant markers, and the corresponding candidate genes not only included key function genes or transcription factor related to cell growth and development, such as Nuclear speckle splicing regulatory protein1-like, Proteasome regulatory subunit S3family protein gene and zinc finger (DHHC type) family protein gene, also the functaional genes involved to wood formation and tree growth were identified, such as CesA gene family (CesA3、CesA7and CesA9), Glucose-6-phosphate1-dehydrogenase and EXP1.
     6. A total of39common associations were detected in both populations using joint linkage-LD mapping approach, representing29SSRs from27candidate genes associations with eight growth and wood-property traits. On the basis of the genotypic effects for each marker tested in both populations,31associations with the same effect patterns were identified. Subsequently, the excellent allele-block controlling the highest and lowest phenotypic values were detected and further used for constructing the molecular marker-assisted selection (MAS) breeding approach. Using MAS breeding approach, we selected10high-quality and fast-growing germplasm from both association and linkage populations. The clonal propagation experiment for new germplasm of Populus tomentosa was carried out.
引文
[1]何承忠.毛白杨遗传多样性及起源研究[D].北京:北京林业大学,2005.
    [2]黄智慧.毛白杨分布区气候区划的研究[J].北京林业大学学报,1992,14(3):26-32.
    [3]康向阳,朱之悌.毛白杨异源三倍体形态和减数分裂观察[J].北京林业大学学报,1999,21(1):1-5.
    [4]李博.毛白杨与毛新杨转录组图谱构建及若干性状的遗传学联合分析[D].北京:北京林业大学,2009.
    [5]李宽钰,黄敏仁,王明庥.用RAPD探讨毛白杨起源[J].植物分类学报,1997,35(1):24-31.
    [6]马开峰.毛白杨基因组DNA甲基化遗传变异及遗传效应[D].北京林业大学,2013.
    [7]苏晓华,张绮纹,郑先武等.美洲黑杨(Populus deltoids Marsh.) x青杨(P. cathayana Rehd.)分子连锁图谱的构建[J].林业科学,1998,34(6):29-37.
    [8]孙丽丹.梅花遗传连锁图谱构建和表型性状QTLs分析[D].北京林业大学,2013.
    [9]卫尊征.小叶杨遗传资源评价及重要性状的SSRs关联分析[D].北京林业大学,2010.
    [10]张德强,杨凯,张志毅.毛白杨种子胚根发育生根性状的遗传分析[J].北京林业大学学报,2002,24(2):95.
    [11]张德强,张志毅,杨凯.杨树分子标记研究进展[J].北京林业大学学报,2000,22(6):79-84.
    [12]张德强.毛白杨遗传连锁图谱的构建及重要性状的分子标记[D].北京:北京林业大学,2002.
    [13]张志毅,黄智慧,张东方,等.毛白杨标本园无性系开花结实的研究[J].北京林业大学学报,1992b,14(增3):43-51.
    [14]张志毅,朱之悌,G.Muller-starck,等.毛白杨无性系同工酶基因标记的研究[J].北京林业大学学报,1992a,14(3):9-19.
    [15]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327.
    [16]朱之悌.全国毛白杨优树资源收集、保存和利用的研究[J].北京林业大学学报,1992,14(增刊3):1-26.
    [17]Abdurakhmonov IY, Abdukarimov A. Application of association mapping to understanding the genetic diversity of plan germplasm resources [J]. International Journal of Plant Genomics,2008, 2008:1-18.
    [18]Akey J, Jin L, Xiong M. Haplotypes vs single marker linkage disequilibrium tests:what do we gain? [J]. European Journal of Human Genetics,2001,9(4):291-300.
    [19]Allona I, Quinn M, Shoop E, et al. Analysis of xylem formation in pine by cDNA sequencing [J]. Proceedings of the National Academy of Sciences, USA,1998,95:9693-9698
    [20]Althoff DM, Gitzendanner MA, Segraves KA. The utility of amplified fragment length polymorphisms in phylogenetics:a comparison of homology within and between genomes [J]. Systematic Biology,2007,56(3):477-484.
    [21]Apuya NR, Frazier BL, Keimp, et al. Restriction fragment length polymorphisms as genetic makers in soybean Glycinemax (L.) Merrill [J]. Theoretical and Applied Genetics,1998,75:889-901.
    [22]Aranzana MJ, Kim S, Zhao KY, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes [J]. PLoS Genetics,2005,1(5): e60.
    [23]Atwell S, Huang YS, Vilhjalmsson BJ, et al. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines [J]. Nature,2010,465:627-631.
    [24]Ball RD. Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies [J]. Genetics,2005,170:859-873.
    [25]Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers [J]. Molecular Ecology,2002,11(2):155-165.
    [26]Beaulieu J, Doerksen T, Boyle B, et al. Association genetics of wood physical traits in the conifer White Spruce and relationships with gene expression [J]. Genetics,2011,188:197-214.
    [27]Bhattramakki D, Dolan M, Hanafey M, et al. Insertion-deletion polymorphisms in 3'regions of maize genes occur frequently and can be used as highly informative genetic markers[J]. Plant Molecular Biology,2002,48(5-6):537-547.
    [28]Billotte N, Jourjon MF, Marseillac N, et al. QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.) [J]. Theoretical and Applied Genetics,2010,120:1673-1687.
    [29]Blair MW, Gonzalez LF, Kimani PM, et al. Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa [J]. Theoretical and Applied Genetics,2010,121 (2):237-248.
    [30]Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics,1980,32(3): 314.
    [31]Bowers JE, Brunick RL, Bachlava E, et al. Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses [J]. G3:Genes| Genomes| Genetics,2012,2(7): 721-729.
    [32]Brachi B, Faure N, Horton M, et al. Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature [J]. PLoS Genetics,2010,6(5):e1000940. doi:10.1371/journal.pgen.1000940
    [33]Bradbury, PJ, Zhang Z, Kroon DE, et al. TASSEL:software for association mapping of complex traits in diverse samples [J]. Bioinformatics,2007,23:2633-2635.
    [34]Bradshaw HD, Otto KG, Frewen BE, et al. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus) [J]. Genetics,1998,149(1): 367-382.
    [35]Bradshaw JHD, Villar M, Watson BD, et al. Molecular genetics of growth and development in Populus. Ⅲ. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers [J]. Theoretical and Applied Genetics,1994,89(2-3):167-178.
    [36]Brookes AJ. The essence of SNPs [J]. Gene,1999,234(2):177-186.
    [37]Brown GR, Bassoni DL, Gill GP, et al. Identification of quantitative trait loci influencing wood property traits in loblolly pine(Pinus taeda L.). Ⅲ. QTL verification and candidate gene mapping [J]. Genetics,2003,164:1537-1546.
    [38]Brown GR, Gill GP, Kuntz RJ, et al. Nucleotide diversity and linkage disequilibrium in loblolly pine [J]. Proceedings of the National Academy of Sciences, USA,2004,101:15255-15260.
    [39]Brunner AM, Busov VB, Strauss SH. Poplar genome sequence:functional genomics in an ecologically dominant plant species [J]. Trends in Plant Science,2004,9:49-56.
    [40]Campoy JA, Ruiz D, Egea J, et al. Inheritance of flowering time in apricot(Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers [J]. Plant Molecular Biology Reporter,2011,29(2):404-410.
    [41]Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants [J]. Genetics,2000,156:847-854.
    [42]Caruso M, Federici CT, Roose ML. EST-SSR markers for asparagus genetic diversity evaluation and cutivar identification [J]. Molecular Breeding,2008,21(2):195-204.
    [43]Cervera MT, Storme V, Ivens B, et al. Dense genetic linkage maps of three Populus species (populus deltoides, P. Nigra and P. Trichocarpa) based on AFLP and Microsatellite markers [J].Genetics,2001,158:787-809.
    [44]Chagne D, Chaumeil P, Ramboer A, et al. Cross-species transferability and mapping of genomic and cDNA SSRs in pines [J]. Theoretical and Applied Genetics,2004,109:1204-1214.
    [45]Chen X, Sullivan PF. Single nucleotide polymorphism genotyping:biochemistry, protocol, cost and throughput [J]. The Pharmacogenomics Journal,2003,3(2):77-96.
    [46]Cheng R, Saito A, Takano Y, et al. Estimation of the position and effect of a lethal factor locus on a molecular linkage map [J]. Theoretical and Applied Genetics,1996,93:494-502.
    [47]Ching ADA, Caldwell KS, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J]. BMC genetics,2002,3(1):19.
    [48]Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences, USA,2009,106:13118-13123.
    [49]Davidson J, Ekramoddoullah A. Analysis of bark proteins in blister rust-resistant and susceptible western white pine(Pinus monticola) [J]. Tree Physiology,1997,17:663-669.
    [50]Dillon SK, Brawner JT, Meder R, et al. Association genetics in Corymbia citriodora subsp. Variegate identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulpyield[J].New Phytologist,2012,195:596-608.
    [51]Dillon SK, Nolan M, Li W, et al. Allelic variation in cell wall candidate genes affecting solid wood properties in association populations and land races of Pinus radiate [J]. Genetics,2010,185: 1477-1487.
    [52]Dirlewanger E, Moing A, Rothan C, et al. Mapping QTLs controlling fruit quality in peach(Prunus persica (L.) Batsch) [J]. Theoretical and Applied Genetics,1999,98(1):18-31.
    [53]Douglas CB, Adel MZ, Robert A et al. Growth stage-based phenotypic analysis of Arabidopsis:a model for high throughput functional genomics in plants [J]. The Plant Cell,2001,13:1499-1510.
    [54]Du Q, Gong C, Pan W, et al. Development and application of microsatellites in candidate genes involved in wood formation in the Chinese white poplar(Populus tomentosa Carr.) [J]. DNA Research,2013b,20(1):31-44.
    [55]Du Q, Pan W, Xu B, et al. Polymorphic simple sequence repeat (SSR) loci within cellulose synthase (PtoCesA) genes are associated with growth and wood properties in Populus tomentosa [J]. New Phytologist.2013a,197(3):763-776.
    [56]Du Q, Wang B, Wei Z et al. Genetic diversity and population structure of Chinese white poplar {Populus tomentosa) revealed by SSR markers [J]. Journal of Heredity,2012b,103 (6):853-862
    [57]Du Q, Xu B, Gong C, et al. Variation in growth, leaf, and wood property traits of Chinese white poplar(Populus tomentosa), a major industrial tree species in Northern China [J]. Canadian Journal of Forest Research,2014,44:326-339.
    [58]Du Q, Zhang D, Li B. Development of 15 novel microsatellite markers from cellulose synthase genes in Populus tomentosa (Salicaceae) [J]. American Journal of Botany,2012a,99(2):e46-e48.
    [59]Dvornyk V, Sirvio A, Mikkonene M, et al. Low nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris [J]. Molecular Biology and Evolution,2002,19:179-199.
    [60]Eckenwalder JE. Systematics and evolution of Populus. In:Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM. (eds). Biology of Populus and its implications for management and conservation [M]. NRC Research Press, Ottawa, Canada,1996,7-32.
    [61]Eckert AJ, Bower AD, Wegrzyn JL, et al. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold hardiness related traits [J]. Genetics,2009,182: 1289-1302.
    [62]Eckert AJ, Wegrzyn JL, Cumbie WP, et al. Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome[J]. New Phytologist,2012,193:890-902.
    [63]Ellegren H. Microsatellites:simple sequences with complex evolution [J]. Nature Reviews Genetics,2004,5:435-445.
    [64]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study [J]. Molecular Ecology,2005,14:2611-2620.
    [65]Fan JB, Chee MS, Gunderson KL. Highly parallel genomic assays [J]. Nature Reviews Genetics, 2006,7(8):632-644.
    [66]Feng SP, Li WG, Huang HS, et al. Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis) [J]. Molecular Breeding, 2009,23:85-97.
    [67]Flint-Garcia SA, Thomsberry JM, Buekler ES. Structure of linkage disequilibrium in Plants [J]. Annual Review of Plant Biology,2003,54:357-374.
    [68]Flint-Garcia SA, Thuillet A, Yu J, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection [J]. The Plant Journal,2005,44:1054-1064.
    [69]Freeman JS, Potts BM, Vaillancourt RE. Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic [J]. Genetics,2008,178: 563-571.
    [70]Fujioka S, Yamane H, Spray CR, et al. The dorninant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins [J]. Proceedings of the National Academy of Sciences, USA,1988,85(23):9031-9035.
    [71]Gonzalez-Martinez SC, Krutovsky KV, Neale DB. Forest-tree population genomics and adaptive evolution [J]. New Phytologist,2006,170:227-238.
    [72]Gonzalez-Martinez SC, Wheeler NC, Ersoz E, et al. Association genetics in Pinus taeda L. I. Wood property traits [J]. Genetics,2007,175(1):399-409.
    [73]Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3) [J].2001. http://www.unil.ch/izea/softwares/fstat.html.
    [74]Grattapaglia D, Plomion C, Kirst M, et al. Genomics of growth traits in forest trees [J]. Current Opinion in Plant Biology,2009,12(2):148-156.
    [75]Guerra FP, Wegrzyn JL, Sykes R, et al. Association genetics of chemical wood properties in black poplar(Populus nigra) [J]. New Phytologist,2013,197:162-176.
    [76]Hall D, Luquez V, Garcia VM, et al. Adaptive population differentiation in phenology across a latitudinal gradient in European Aspen (Populus tremula, L.):A comparison of neutral markers, candidate genes and phenotypic traits [J]. Evolution,2007,61:2849-2860.
    [77]Hansen BG, Halkier BA, Kliebenstein DJ. Identifying the molecular basis of QTLs:eQTLs add a new dimension [J]. Trends in Plant Science,2008,2(13):72-77.
    [78]Hansen M, Kraft T, Ganestam S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers [J], Genetics Research,2001,77(1):61-66.
    [79]Hardy OJ, Vekemans X. SPAGEDi:a versatile computer program to analyze spatial genetic structure at the individual or population levels [J]. Molecular Ecology Notes,2002,2:618-620.
    [80]Hedrick PW, Muona O. Linkage of viability genes to marker loci in selfing organisms [J]. Heredity, 1990,64:67-72.
    [81]Helentjaris T. A genetic linkage map for maize based on RFLPs [J]. Trends in Genetics,1987,3: 217-221.
    [82]Hill WG, Robertson A. Linkage disequilibrium in finite populations [J]. Theoretical and Applied Genetics,1968,38:226-231.
    [83]Hisano H, Sato S, Isobe S, et al. Characterization of the soybean genome using EST-derived microsatellite markers [J]. DNA Research,2007,14:271-281.
    [84]Hu J, Zhu J, Xu HM. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops [J]. Theoretical and Applied Genetics, 2000,101(1-2):264-268.
    [85]Ingvarsson PK, Garcia MV, Luquez V, et al. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae) [J]. Genetics,2008,178:2217-2226.
    [86]Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae) [J]. Genetics,2005,169:945-953.
    [87]Isobe SN, Hirakawa H, Sato S, et al. Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (Fragaria× ananassa) and its applicability[J]. DNA research,2013,20(1):79-92.
    [88]Jaradat AA, Hodgkin T, Brown AHD, et al. The dynamics of a core collection [J].1995.
    [89]Jaradat AA.1995. The dynamics of a core collection. In:Hodgkin T, Brown AHD, van Hintum TL, Morales E. (eds), Core Collection of Plant Genetic Resources. IPGRI, A Wiley-Sayce Publication, pp.179-186.
    [90]Jensen JL, Bohonak AJ, Kelley ST. Isolation by distance, web service [J]. BMC Genetics,2005,6: 13. doi:10.1186/1471-2156-6-13.
    [91]Joshi CP, Bhandari S, Ranjan P, et al. Genomics of cellulose biosynthesis in poplars [J]. New Phytologist,2004,164:53-61.
    [92]Jun TH, Van K, Kim MY, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean [J]. Euphytica,2008,162:179-191.
    [93]Kao YY, Harding SA, Tsai CJ. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen [J]. Plant physiology, 2002,130(2):796-807.
    [94]Kearsey MJ, Farquhar AGL. QTL analysis in plants; where are we now? [J]. Heredity,1998,80(2): 137-142.
    [95]Kim S, Misra A. SNP genotyping:technologies and biomedical applications [J]. Annual Review of Biomedical Engineering,2007,9:289-320.
    [96]Kim S, Plagnol V, Hu TT, et al. Recombination and linkage disequilibrium in Arabidopsis thaliana [J]. Nature Genetics,2007,39:1151-1155.
    [97]King R, Harris S, Karp A, et al. Characterisation and inheritance of nuclear microsatellite loci for use in population studies of the allotetraploid Salix alba-Salix fragilis complex [J]. Tree Genetics & Genomes,2010,6:247-258.
    [98]Kirst M, Basten CJ, Myburg AA, et al. Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid [J]. Genetics,2005,169:2295-2303.
    [99]Krutovsky KV, Neale DB. Nucleotide diversity and linkage disequilibrium in cold-hardiness and wood quality-related candidate genes in Douglas-fir [J]. Genetics,2005,171:2029-2041.
    [100]Kutter C, Watt S, Stefflova K, et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression [J]. PLoS Genetics,2012,8:e1002841. doi:10.1371/journal.pgen.1002841
    [101]Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121(1):185-199.
    [102]Laurie CC, Chasalow SD, LeDeaux JR, et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel [J]. Genetics,2004,168:2141-2155.
    [103]Lerceteau E, Plomion C, Andersson B. AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris:a preliminary study [J]. Molecular Breeding,2000,6(5):451-458.
    [104]Leskinen E, Alstrom-Rapaport C. Molecular phylogeny of Salicaceae and closely related Flacourtiaceae:evidence from 5.8 S, ITS 1 and ITS 2 of the rDNA [J]. Plant Systematics and Evolution,1999,215:209-227.
    [105]Lexer C, Fay MF, Joseph A, et al. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen):the role of ecology and life history in gene introgression [J]. Molecular Ecology,2005,14:1045-1057.
    [106]Li L, Lu S, Chiang VL. A genomic and molecular view of wood formation [J]. Critical Reviews in Plant Sciences,2006,25:213-233.
    [107]Li YC, Korol AB, Fahima T, et al. Microsatellites within genes:structure, function, and evolution [J]. Molecular Biology and Evolution,2004,21:991-1007.
    [108]Li SX, Yin TM, Wang MX, et al. Characterization of microsatellites in the coding regions of the Populus genome [J]. Mol Breeding,2011,27,59-66.
    [109]Liu K, Muse SV. PowerMarker:an integrated analysis environment for genetic markers analysis [J]. Bioinformatics,2005,21:22128-2129.
    [110]Liu Z, Furnier GR. Comparison of allozyme, RFLP, and between trembling aspen and bigtooth aspen[J]. Theoretical and Applied Genetics,1993,87:97-105.
    [111]Long AD, Langley CH. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits [J]. Genome Research,1999,9:720-731.
    [112]Lopez-Gartner G, Cortina H, McCouch S, et al. Analysis of genetic structure in a sample of coffee (Coffea arabica L.) using fluorescent SSR markers [J]. Tree Genetics & Genomes,2009,5: 435-446.
    [113]Lu S, Zhou Y, Li L, et al. Distinct roles of cinnamate 4-hydroxylase genes in Populus [J]. Plant Cell Physiology,2006,47:905-914.
    [114]Lu Y, Zhang S, Shah T, et al. Joint linkage-linkage disequilibrium mapping is a powerful approach to detect quantitative trait loci underlying drought tolerance in maize[J]. Proceedings of the National Academy of Sciences, USA,2010,107:19585-19590.
    [115]Manenti G, Galvan A, Pettinicchio A, et al. Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci [J]. PLoS Genetics,2009,5:e1000331. 10.1371/journal.pgen.1000331.
    [116]Mansfield SD, Parish R, Goudie JW, et al. The effects of crown ratio on the transition from juvenile to mature wood production in lodgepole pine in western Canada [J]. Canadian Journal of Forest Research,2007,37:1450-1459.
    [117]Mantel N. Ranking procedures for arbitrarily restricted observation [J]. Biometrics,1967,23: 65-78.
    [118]Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes [J]. Nature Genetics,2002,30:194-200.
    [119]Myles S, Peiffer J, Brown PJ, et al. Association mapping:Critical considerations shift from genotyping to experimental design [J]. The Plant Cell,2009,21:2194-2202.
    [120]Nagel JM, Griffin KL. Construction cost and invasive potential:comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks [J]. American Journal of Botany, 2001,88:2252-2258.
    [121]Narasimhamoorthy B, Saha M, Swaller T, et al. Genetic diversity in switchgrass collections assessed by EST-SSR markers [J]. BioEnergy Research,2008,1:136-146.
    [122]Neale DB, Kremer A. Forest tree genomics:growing resources and applications [J]. Nature Reviews Genetics,2011,12:111-122.
    [123]Neale DB, Savolainen O. Association genetics of complex traits in conifers [J]. Trends in Plant Science,2004,9:325-330.
    [124]Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data [J]. Journal of Molecular Evolution,1983,19(2):153-170.
    [125]Nielsen R. Molecular signatures of natural selection [J]. Annual Review of Genetics,2005,39: 197-218.
    [126]Ooijen JV. JoinMap@4, software for the calculation of genetic linkage maps in experimental populations [M]. Wageningen, The Netherlands,2006:1-55.
    [127]Paillard S, Schnurbusch T, Winzeler M, et al. An integrative genetic linkage map of winter wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics,2003,107(7):1235-1242.
    [128]Pakull Birte, Groppe Katrin, Meyer Matthias, et al. Genetic linkage mapping in aspen (Populus tremula L.and Populus tremuloides Michx.) [J]. Tree Genetics & Genomes,2009,5:505-515.
    [129]Patterson N, Price AL, Reich D. Population structure and eigenanalysis [J]. PLoS genetics,2006, 2(12):e190.
    [130]Persson S, Wei H, Milne J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets [J]. Proceedings of the National Academy of Sciences, USA,2005,102:8633-8638.
    [131]Piry S, Luikart G, Cornuet JM. BOTTLENECK:a computer program for detecting recent reductions in the effective population size using allele frequency data [J]. Journal of Heredity, 1999,90:502-503.
    [132]Porth I, Klapste J, Skyba O, et al. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control, and genetic correlations [J]. New Phytologist,2013,197:777-790.
    [133]Prasad MD, Muthulakshmi M, Madhu M, et al. Survey and analysis of microsatellites in the silkworm, Bombyx mori:frequency, distribution, mutations, marker potential and their conservation in heterologous species [J]. Genetics,2004,169:197-214.
    [134]Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data [J]. Genetics,2000,155:945-959.
    [135]Rae AM, Street NR, Robinson KM, et al. Five QTL hotspots for yield in short rotation coppice bioenergy poplar:The Poplar Biomass Loci [J]. BMC Plant Biology,2009,9:23.
    [136]Rae AM, Tricker PJ, Bunn SM, et al. Adaptation of tree growth to elevated CO2:quantitative trait loci for biomass in Populus [J]. New Phytologist,2007,175:59-69.
    [137]Rafalski JA. Application of SNP in crop genetics [J]. Current Opinion in Plant Biology,2002a,5: 94-100.
    [138]Rafalski JA. Novel genetic mapping tools in plants:SNP and LD-based approaches [J]. Plant Science,2002b,162:329-333.
    [139]Rauscher G, Simko I. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivarsand mapping genes [J]. BMC Plant Biology,2013,13(1):11.
    [140]Reiter RS, Williams JGK, Feldman KA, et al. Global and local genome mapping Arobidopsis thaliana by using RIL and RAPD [J]. Proceedings of the National Academy of Sciences,USA, 1992,89:1477-1481.
    [141]Remington DL, Thornsberry JM, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome [J]. Proceedings of the National Academy of Sciences, USA,2001,98:11479-11484.
    [142]Rice WR. Analyzing Tab.s of statistical tests [J]. Evolution,1989,43:223-225.
    [143]Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients [J]. Genetical Research,1996,67(02):175-185.
    [144]Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance [J]. Genetics,1997,145:1219-1228.
    [145]Rousset F. Genetic differentiation between individuals [J]. Journal of Evolutionary Biology,2000, 13(1):58-62.
    [146]Salvi S, Tuberosa R. To clone or not to clone plant QTLs:present and future challenges [J]. Trends in Plant Science,2005,10:297-304.
    [147]Schlesinger WH, Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2 [J]. Nature,2001,411:466-469.
    [148]Schon CC, Utz HF, Groh S, et al. Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits [J]. Genetics,2004,167(1):485-498.
    [149]Sexton T, Henry R, Harwood C, et al. SNP discovery and association mapping in Eucalyptus pilularis (blackbutt) [J]. BMC Proceedings,2011,5(Suppl 7):09. doi:10.1186/1753-6561-5-S7-09
    [150]Singh R, Zaki NM, Ting NC, et al. Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity [J]. Biologia, 2008,63:227-235.
    [151]Sinnwell JP, Schaid DJ. Statistical Analysis of Haplotypes With Traits and Covariates When Linkage Phase Is Ambiguous. R Package Version 1.4.4,2009.
    [152]Slatkin M, Barton NH. A comparison of three indirect methods for estimating average levels of gene flow [J]. Evolution,1989,43:1349-1368.
    [153]Slavov GT, Nipper R, Robson P, et al. Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis [J]. New Phytologist,2013, doi:10.1111/nph.12621
    [154]Slavov GT, Zhelev P. Salient biological features, systematics, and genetic variation of Populus [M]. Genetics and Genomics of Populus. Springer New York,2010:15-38.
    [155]Smith JSC. Diversity of United States hybrid maize germplasm:Isozymic and chromatographic evidence [J]. Crop Science,1988,28:63-69.
    [156]Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics,2004,109:1105-1114.
    [157]Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant cell walls [J]. Science,2004,306:2206-2211.
    [158]Somerville C. Cellulose synthesis in higher plants [J]. Annual Review of Cell and Developmental Biology,2006,22:53-78.
    [159]Song D, Shen J, Li L. Characterization of cellulose synthase complexes in Populus xylem differentiation [J]. New Phytologist,2010,187:777-790.
    [160]Spokevicius AV, Southerton SG, MacMillan CP, et al. Beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls [J]. The Plant Journal,2007,51(4):717-726.
    [161]Sterck L, Rombauts S, Jansson S, et al. EST data suggest that poplar is an ancient polyploidy [J]. New Phytologist,2005,167:165-170.
    [162]Stich B, Melchinger AE. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis [J]. BMC Genomics,2009,10:94 doi:10.1186/1471-2164-10-94.
    [163]Storey JD, Tibshirani R. Statistical significance for genomewide studies [J]. Proceedings of the National Academy of Sciences, USA,2003,100(16):9440-9445.
    [164]Szyjanowicz PM, McKinnon T, Taylor NG, et al. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana [J]. The Plant Journal,2004, 37:730-740.
    [165]Tanaka K, Murata K, Yamazaki M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall [J]. Plant Physiology,2003,133: 73-83.
    [166]Tao Y, Hartl D, Laurie C. Sex-ratio segregation distortion associated with reproductive isolation in Drosophila [J]. Proceedings of the National Academy of Sciences, USA,2001,98,13183-13188.
    [167]Taylor DR, Ingvarsson PK. Common features of segregation distortion in plants and animals [J]. Genetica,2003,117(1):27-35.
    [168]Temnykh S, Declerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Research,2001,11:1441-1452.
    [169]Thamarus K, Groom AK, Murrell J, et al. A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits [J]. Theoretical and Applied Genetics,2002,104: 379-387.
    [170]Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time [J]. Nature Genetics,2001,28:286-289.
    [171]Thumma BR, Matheson BA, Zhang D, et al. Identification of a cis-acting regulatory polymorphism in a Eucalypt cobra-like gene affecting cellulose content [J]. Genetics,2009,183: 1153-1164.
    [172]Thumma BR, Nolan MF, Evans R, et al. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp [J]. Genetics,2005,171(3): 1257-1265.
    [173]Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray) [J]. Science,2006,313:1596-1604.
    [174]Tuskan GA, Gunter LE, Yang ZM, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa [J]. Canadian Journal of Forest Research,2004,34:5-93.
    [175]Varshney RK, Sigmund R, Borner A, et al. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice [J]. Plant Science,2005,168:195-202.
    [176]Veerasingham SJ, Sellers KW, Raizada MK. Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension [J]. Progress in biophysics and molecular biology,2004,84(2):107-123.
    [177]Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome [J]. Science,1998,280(5366): 1077-1082.
    [178]Wang H, Penmetsa RV, Yuan M, et al. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.) [J]. BMC Plant Biology,2012,12:10.
    [179]Wang J, Li Z, Guo Q, et al. Genetic variation within and between populations of a desert poplar (Populus euphratica) revealed by SSR markers [J]. Annals of Forest Science,2011,68:1143-1149.
    [180]Wang J, Lydiate DJ, Parkin IAP, et al. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa [J]. BMC Genomics,2011, 12:101.
    [181]Wegrzyn JL, Eckert AJ, Choi M, et al. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem [J]. New Phytologist,2010,188:515-532.
    [182]Wheeler NC, Jermstad KD, Krutovsky K, et al. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping [J]. Molecular Breeding,2005,15:145-156.
    [183]Woolbright SA, DiFazio SP, Yin T, et al. A dense linkage map of hybrid cottonwood(Populus fremontii×P. angustifolia) contributes to long-term ecological research and comparison mapping in a model forest tree [J]. Heredity,2008,100:59-70.
    [184]Wright SI, Andolfatto P. The impact of natural selection on the genome:emerging patterns in drosophila and Arabidopsis [J]. Annual review of ecology, evolution, and systematic,2008,39: 193-213.
    [185]Wu RHD, Bradshaw JR, Stettlet RF. Moecular Genetics of Gronth and Development in Populus (Salicaceae). v. Mapping Quantitative Trait Loci Affecting Leaf Variation [J]. American Journal of Botany,1997,84 (2):143-153.
    [186]Wu RL, Han YF, Hu JJ, et al. An integrated genetic map of Populus deltoids based on amplified fragment length polymorphisms [J]. Theoretical and Applied Genetics,2000,100:1249-1256.
    [187]Xie XM, Zhou F, Zhang XQ, et al. Genetic variability and relationship between MT-1 elephant grass and closely related cultivars assessed by SRAP markers [J]. Journal of genetics,2009,88(3): 281-290.
    [188]Xin X, Mei P, Zhang F, et al. The direction of microsatellite mutation is dependent upon allele length [J]. Nature Genetics,2000,24:396-399.
    [189]Xu B, Yang X, Li B, et al. Isolation, expression and single nucleotide polymorphisms analysis of cellulose synthase gene (PtCesA4) from Populus tomentosa [J]. Scientia Silvae Sinicae,2009,45: 1-10.
    [190]Xu S. Quantitative trait locus mapping can benefit from segregation distortion [J]. Genetics,2008, 180(4):2201-2208.
    [191]Xu X, Liu X, Ge S, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes [J]. Nature biotechnology,2011,30(1):105-111.
    [192]Xu Y, Zhu L, Xizo. et al. Chromosomal regions associated with segregation distortion of moleculars in F2, backcross, doubled haploid, and recombinant inbred population in rice (Oryza sativa L.) [J]. Molecular and General Genetics,1997,253:535-545.
    [193]Yang J, Park S, Kamdem DP, et al. Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia L [J]. Plant molecular biology,2003,52:935-956.
    [194]Yang M, Han Y, VanBuren R, et al. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar [J]. BMC genomics,2012,13(1):653-664.
    [195]Yeh FC, Yang RC, Boyle T. POPGENE version 1.32:Microsoft Windows-based freeware for population genetic analysis, quick user guide. Center for International Forestry Research, University of Alberta, Canada,1999.
    [196]Yin TM, DiFazio SP, Gunter LE, et al. Genome structure and emerging evidenceof an incipient sex chromosome in Populus [J]. Genome Research,2008,18:422-430.
    [197]Yin TM, DiFazio SP, Gunter LE, et al. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map [J]. Theoretical and Applied Genetics,2004,109: 451-463.
    [198]Yin TM, Huang M, Wang MX, et al. Preliminary interspecific genetic maps of the Populus genome constructed from RAPD markers [J]. Genome,2001,44:602-609.
    [199]Yin TM, Zhang XY, Gunter LE, et al. Microsatellite primer resource for Populus developed from the mapped sequence scaffolds of the Nisqually-1 genome [J]. New Phytologist,2009,181: 498-503.
    [200]Yin X, Stam P, Dourleijn CJ, et al. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley [J]. Theoretical and Applied Genetics,1999,99(1-2): 244-253.
    [201]Yonezawa T, Tominaga T, Toshima N. Novel characterization of the structure of surfactants on nanoscopic metal clusters by a physicochemical method [J]. Langmuir,1995,11(12):4601-4604.
    [202]Yu J, Pressoir G, Briggs WH, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness [J]. Nature Genetics,2006,38:203-208.
    [203]Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics,1994,136(4):1457-1468.
    [204]Zhang DQ, Du QZ, Xu BH, et al. The actin multigene family in Populus:organization, expression and phylogenetic analysis [J]. Molecular Genetics and Genomics,2010,284:105-119.
    [205]Zhang DQ, Xu BH, Yang XH, et al. The sucrose synthase gene family in Populus:structure, expression, and evolution [J]. Tree Genetics & Genomes,2011,7:443-451.
    [206]Zhang DQ, Yang XH, Zhang ZY, et al. Expression and nucleotide diversity of the poplar COBL gene [J]. Tree Genetics & Genomes,2010,6:331-344.
    [207]Zhang DQ, Zhang ZY, Yang K, et al. Genetic mapping in(Populus tomentosa×P. bolleana) and P. tomentosa Carr. using AFLP markers [J]. Theoretical and Applied Genetics,2004,108:657-662.
    [208]Zhang DQ, Zhang ZY, Yang K. QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar(Populus tomentosa x P. bolleana) x P. tomentosa [J]. Canadian Journal of Forest Research,2006,36:2015-2023.
    [209]Zhang H, Wu JW, Zheng QH, et al. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China [J]. Journal of Arid Environments,2003,55:545-553.
    [210]Zhang L, Zuo K, Zhang F, et al. Conservation of noncoding microsatellites in plants:implication for gene regulation [J]. BMC Genomics,2006,7:323.
    [211]Zhang ZY, Zhu ZT. Research Advances in Genetic Improvement of Populus tomentosa Carr. in China. International Poplar Symposium Ⅱ, September 12-17,1999, Orleans, France Abstract. p.100
    [212]Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis [J]. The Plant Cell,2006,18:3158-3170.
    [213]Zhu CS, Gore M, Buckler ES, et al. Status and prospects of association mapping in plants [J]. Plant Genome,2008,1(1):5-20.
    [214]Zhu Z, Zhang Z. The status and advances of genetic improvement of Populus tomentosa Carr.[J]. Journal of Beijing Forestry University,1997,6:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700