用户名: 密码: 验证码:
两优培九功能叶光反应特性和对低剂量UV-B辐射增强的光合响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻生殖生长期是夺取高产的主要阶段。其中,最上部3片功能叶光合产物占水稻经济产量的70%-80%,能为产量形成提供良好的基础。在在野外条件下,利用荧光动力学分析和生理生化研究技术,对生殖生长期超高产杂交稻两优培九和大面积推广稻汕优63功能叶原初反应、电子传递和光合磷酸化水平进行系统研究,比较光反应特性。结果表明:
     (1)与汕优63相比,两优培九功能叶叶绿素含量高22.90%,光合功能期长约50%,叶绿素a/b比值高36.78%;
     (2)光能吸收与分配方面,两优培九功能叶单位叶面积吸收的光能不占优势,但保持高吸收的稳定期长,有活性的反应中心数量多,热耗散的能量比例较少,进入电子传递链的能量高;
     (3)荧光参数分析发现两优培九PSII供体侧、受体侧和反应中心性能优良,光能吸收、传递和转化为电能效率较高;
     (4)叶绿体放氧活性、电子传递链和光合磷酸化活性均显著高于汕优63,表明两优培九电能转化为活跃化学能能力强。
     两优培九正是在光反应的各个步骤中占有优势,拥有较高的光合效率和较长的光合功能期,奠定了其超高产的坚实基础。
     空气污染导致平流层臭氧浓度下降,紫外线B到达地球表面。UV-B辐射的增加,会导致植物的生长发育发生一系列的变化,如影响植物形态结构包括株高、根冠比、叶片大小、生物产量等,对光系统产生伤害,引起基因表达和蛋白酶活性下降。
     本文在两优培九光反应特性研究基础上,采用剂量为5.4kJ m-2d-1的低强度UV-B辐射胁迫水稻,系统地对生殖生长期功能叶光反应、碳同化、叶绿体超微结构和类囊体膜蛋白进行了详细研究,结果表明:
     (1)光合生理指标显示两优培九上三片功能叶在剑叶露芽(DAE)15天后整体开始进入衰老期。与对照相比,UV-B处理后功能叶叶绿素含量较高,但净光合速率和气孔导度在剑叶露芽25天前显著下降。
     (2)UV-B处理下,PSII在光能吸收、传递和转化上表现较好:单位面积光量子吸收(ABS/CSM)、光量子流捕获(TRo/CSM)、潜在电子传递能力(ETo/CSM)和最大量子产量(Fv/Fm)均增加,同时热耗散(DIo/CSM)较少。这可能是UV-B处理的植株PSII具有更高光化学活性的主要原因。
     (3)虽然全电子链电子传递活性没有显著差异。但是,处理组功能叶Ca2+-ATP酶活性(Ca2+-ATPase)和光合磷酸化活性一直较低,说明碳同化力形成较少。UV-B处理功能叶中,暗反应关键酶Rubisco活性显著下降可能是光合效率较低的主要原因。
     (4)淀粉粒聚集,脂质小滴和胞质小球增多是叶绿体受UV-B胁迫损伤的表现。但是,生殖生长后期处理组叶绿体膜裂解较晚,膜内结构较完整致密,叶绿素含量下降较慢和较多基质类囊体有序紧密排列,可能是UV-B处理下两优培九具有较好原初光反应活性的主要原因。叶绿体结构损伤程度和光合作用受抑制程度相一致。
     (5)在UV-B辐射增强条件下,研究了功能叶抗氧化系统的变化。结果表明,UV-B辐射胁迫使功能叶抗氧化物酶超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性先升后降再上升,过氧化物酶(POD)活性上升;抗氧化物质类还原型谷胱甘肽(GSH)含量和还原型抗坏血酸(ASA)含量提高,但增幅逐渐减少。功能叶活性氧(O2-)累积,丙二醛(MDA)相对含量先升高后下降,可溶性蛋白含量则相反。抗氧化系统变化幅度和光合生理指标变化基本一致。
     (6)蛋白质组学研究发现两优培九功能叶类囊体膜对低强度UV-B的光合响应包括:(a)PSII的结构蛋白和重要组成蛋白未受损伤,同时与PSII关系密切的辅因子含量有所提高,表明PSII的光能吸收和转化能力得到加强。(b)ATP合酶各亚基蛋白含量的上升,说明胁迫促进了ATP的水解速率,以减缓过量光能积累造成的损伤。(c)调控碳在淀粉和蔗糖之间分配,参与卡尔文循环和糖酵解过程的关键酶蛋白含量显著下降,表明卡尔文循环和糖酵解循环受到了明显抑制。(d)胁迫响应蛋白的大量增加,开启了不同的抗逆信号传导途径。
The chloroplast light reaction characteristics were compared between super-high-yield hybrid rice Liangyoupeijiu and traditional hybrid rice Shanyou63in order to provide theoretical insights into physiological basis for high yield. Using fluorescence dynamics analysis and physiological and biochemical research techniques, in the field we systematically studied the primary response, electron transport chain and photophosphorylation during the reproductive period. The results showed that,
     (1) As compared to Shanyou63, chlorophyll content in functional leaves of Liangyoupeijiu was22.90%higher, it had a longer photosynthetic function duration and chla/chlb ratio was36.78%higher;
     (2) In the term of light absorption and distribution, there was no significant difference in light absorption per unit leaf area of functional leaves, but Liangyoupeijiu maintained a high and long stability period of light energy absorption capacity, the number of active reaction centers was more, the energy of heat dissipation was relatively fewer, the energy transferred into the electron transport chain was higher;
     (3) Fluorescence analysis showed that structures and status of the body side, the receptor side and the reaction center in PSIIperformed better than Shanyou63, indicated that Liangyoupeijiu had a higher efficient in the transforming light energy into electric energy;
     (4) In addition, oxygen evolution of the chloroplast, activities of electron transport chain and photophosphorylation were significantly higher, indicated that Liangyoupeijiu possessed some advantages in the energy converted into transforming electric energy into active chemical energy. For higher light energy absorption, transmission and conversion efficiency than Shanyou63, Liangyoupeijiu established a physicological basis of super-high-yield hybrid rice.
     One of the most important aspects of global change is that of stratospheric ozone depletion resulting from air pollution and the resulting increase in UV-B radiation reaching the surface of the Earth. Enhanced UV-B radiation can lead to a series of changes in plant growth, such as to affect plant morphological structure including plant height, the ratio of root and shoot, leaf size and biological yield, to hurt light system, to cause expression of genes and activities of photosynthetic protein enzymes dropping.
     In this paper, LYPJ was systematically studied the light reaction, carbon assimilation, chloroplast ultrastructure, the antioxidant system and thylakoid membrane proteins of the upper three functional leaves in detail during reproductive development based on the research light response characteristics of Liangyoupeijiu using the UV-B dose of5.4kJ m-2d-1to treat rice.The results were as follows:
     (1) Photosynthesis physiological indices showed that the upper three functional leaves of LYP J entered into senescence approximately15days after flag leaf emergence (DAE). Compared with the control, the chlorophyll (Ch1) content was greater in UV-B treated leaves, but the net photosynthetic rate (PN) and stomatal conductance (gs) remained relatively stable at lower values before35DAE, which were significant differences.
     (2) Increases in the absorption flux of photons per cross section (ABS/CSM), the phenomenological fluxes for trapping (TRo/CSM), the potential electron transport (ETo/CSm), the maximum quantum yield (Fv/Fm) and a decline in dissipation (DIo/CSM) might contribute to higher light energy absorption, transfer and the transformation of photosystem Ⅱ (PSII) in UV-B treated leaves.
     (3) Besides, the results showed a not significant increase of the electron transport rate (ETR). However, Ca2+-ATPase and photophosphorylation activities of UV-B treated leaves maintained a relatively stable lower value, suggesting that the carbon assimilatory power was less. The significant decreased activity of ribulose-1,5-bisphosphate carboxylase (RuBPcase) was greatly associated with the decline in photosynthetic efficiency.
     (4) Long term UV-B treatment delayed chloroplasts growth of flag leaves. Chloroplast membranes in UV-B treated flag leaves later swelled and disintegrated, and more stromal thylakoids were parallel to each other and were arranged in neat rows, which may be responsible for better manifest of the primary light reaction in UV-B treatment. It is likely that accumulation of starch and an increase in the number of lipid droplets and translucent plastoglobuli were results of inhibition of carbohydrate transport. Enhanced low intensity UV-B radiation tends to promote the absorption of light energy and the transport of electron, but result in the decrease of photophosphorylation and Rubisco activation. The extent of the damage to the chloroplast ultrastructure was consistent with the degree of inhibition of photosynthesis.
     (5) The changes of antioxidant systems in functional leaves under enhancing ultraviolet-B radiation were investigated. The results showed that antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) activities increased signficiantly at first, then decreased, elevated at last. Peroxidase (POD) activities tended to increase; The contents of antioxidant substances ascorbic acid (ASA) and glutathione (GSH) increased under a long term UV-B stress, but amplitude was becoming smaller. The relative contents of hydrogen peroxide (O2-) and malon-dialhyde (MDA) increased at first, then slowly decreased. The reverse was true in soluble protein content. The results indicated that the change of the antioxidant systems was consistent with the performance of photosynthesis.
     (6) Proteomics study showed that photosynthetic response mechanism of thylakoids membrane in functional leaves of LYPJ response to low intensity UV-B included the following aspects:(a) Structure and important constituent proteins of PSII were not damaged, at the same time cofactor content increased, that showed light energy absorption and transformation of the ability of PSII were strengthened.(b)Increases in content of ATPase subunits indicated the stress had promoted the hydrolysis rate of ATP in order to slow down light energy accumulation.(c) Key enzymes participated in the regulation in carbon distribution between starch and sucrose, the Calvin cycle and glycolysis, whose activities decreased significantly, that showed the Carbon assimilation was obviously inhibited.(d) A great increase of stress response proteins opened different signal transduction pathways.
引文
[1]Loomis R S, Williams W A. Maximum crop productivity:an estimate. Crop Sci, 1963,3:67-72
    [2]Gagdner F P, Pearce R B, Mitchell R L. Physiology of Crop Plants. AmeS:Iowa State University Press,1985.3
    [3]Normile D. Agriculture:Variety spices up Chinese rice yields. Science 18,2000, 289(5482):1122b-3b
    [3]吕川根,邹江石.两系法亚种间杂交稻两优培九的选育与应用.杂交水稻,2000,15(2):4-5
    [4]王强,张其德,蒋高明等.超高产杂交稻光合特性研究.植物学报,2000,42(12):1285-1288
    (5)Zhang M P, Zhang C J, Yu G H, Jiang Y Z, Strasser R J, Yuan Z Y, Yang X S, Chen G X. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. Journal of Plant Physiology,2010,167,277-285
    (6)Zhang C J, Chu H J, Chen G X, Shi D W, Zuo M, Wang J, Lv C G, P Wang and Chen L. Photosynthetic and biochemical activities in flag leaves of a newly developed super-high-yield hybrid rice(Oryza sativa) and its parents during the reproductive stage. Journal of Plant Research,2007,120(2):209-217
    (7)Chen G X, Liu S H, Zhang C J and Lu C G. Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super-high-yield rice hybrid. Photosynthetica,2004,42(4):573-578
    (8)Wang J, Zhang C J, Chen G X, Wang P, Shi D W, Lu C G. Responses of photosynthetic functions to low temperature in flag leaves of rice genotypes at the milky stage. Rice Science,2006,13(2):113-119
    [9]吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较分析.中国农业科学,2003,36(6):633-639
    [10]刘辉,徐孟亮,吴厚雄等.高产杂交稻两优培九生育后期光能性能的研究.农业现代化研究,2004,5:225-227
    [11]周丽华.高产杂交稻增产潜力的生物学研究基础.安徽农业科学,2006,34(19):4869-4871
    [12]刘丽霞,程红卫,陈温福等.不同类型水稻品种抽穗后上三片功能叶气孔密度的比较.辽宁农业科学,2001,3:1-3
    [13]欧志英,彭长连,阳成伟等.超高产水稻剑叶的高效光合特性.热带亚热带植物学报,2003,11(1):1-6
    [14]陈炳松,张云华.超级杂交稻两优培九生育后期的光合特性和同化产物的分配.作物学报,2002,28(6):777-782
    [15]王强,卢从明,张其德等.超高产杂交稻两优培九的光合作用、光抑制和C4途径酶特性Science in China (Series C),2002,32(6):481-487
    [16]Wang Q, Zhang Q D, Fan D Y, et al. Photo synthetic light and CO2 utilization and C4 traits of two novel super-rice hybrids. Journal of Plant Physiology,2006,163:529-537
    [17]Katsura K, Maeda S, Horie T. et al. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Research,2007,103(3):170-177
    [18]Jiang G Q, GuoJ L, Meng Q W. Genes differentially expressed under photoinhibition stress in flag leaves of super-hybrid rice Liangyoupeijiu (Oryza sativa) and their genetic origins. Photosynthetica,2005,43(2):231-236
    [19]李霞,焦德茂.超级杂交稻“两优培九”的光合生理特性.江苏农业学报,2002,18(1):9-13
    [20]Huang X Q, Jiao D M, Li X. Characteristics of chlorophyll fluorescence and membrane lipid peroxidation of various high-yield rices under photooxidation conditions, Acta Botanica Sinica,2002,44 (3):279-286
    [21]Chen G X, Liu S H, Zhang C J, et al. Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super-high-yield rice hybrid. Photosynthetica,2004,42(4):573-578
    [22]Shi G Y, Yang L X, Wang YX. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions agriculture. Ecosystems and Environment,2009,131:178-184
    [23]Zhang Y H, Chen L J, He J L, et al. Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress. Biologia Plantarum,2010,54(1):164-168
    [24]Erickson D J, Zepp R G, Atlas E. Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases. Chemosphere Glob Change Science, 2000,2:137-149
    [25]Day T A, Neale P J. Effects of UV-B radiation on terrestrial and aquatic primary producers. Annual Review of Ecology, Evolution, and Systematics,2002,33:371-396
    [26]Fedina I, Hidema J, Velitchkova M, et al. UV-B induced stress responses in three rice cultivars. Biol. Plantarum 2010,54:571-574
    [27]Lidon F C, Ramalho J C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. J. Photoch. Photobio. B,2011,104:457-466
    [28]Mazza C A, Battista D, Zima A M, et al. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant, Cell Environ.,1999,22:61-70
    [29]Desimone M, Henke A, Wagner E. Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol,1996,111:789-796
    [30]Desimone M, Wagner E, Johanningmeier U. Degradation of active-oxygen-modified ribulose-1,5-bisphosphate carboxylase/oxygenase by chloroplastic proteases requires ATP-hydrolysis. Planta,1998,205:459-466
    [31]Hirouchi T, Nakajima S, Najrana T, et al. A gene for a class Ⅱ DNA photolyase from Oryza sativa:cloning of the cDNA by dilution-amplification. Mol. Genet. Genomics,2003,269:508-516
    [32]Kim H Y, Kobayashi K, Nouchi I, et al. Enhanced UV-B radiation has little effects on growth, delta 13C values and pigments of pot-grown rice(Oryza sativa) in the field. Plant Physiol,1996,96:1-5
    [33]Hada H, Hidema J, Maekawa M, et al. Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered CPD photorepair in purple rice (Oryza sativa L). Plant, Cell Environ.,2003,26:1691-1701
    [34]Sato T, Kang H S, Kumagai T. Genetic study of resistance to inhibitory effects of UV radiation in rice(Oryza sativa L.). Physiol. Plant,1994,91:234-238
    [35]Sato T, Ueda T, Fukuta Y, et al. Mapping of quantitative trait loci associated with ultraviolet-B resistance in rice(Oryza sativa L.). Theor. Appl. Genet.,2003,107:1 003-1008
    [36]Teranishi M, Iwamatsu Y, Hidema J, et al. Ultraviolet-B sensitivities in Japanese lowland rice cultivars:cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol.,2004,45:1845-1856
    [37]Teramura A H, Ziska L H, Sztein A E, et al. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Plant Physiol.,1991, 83:373-380
    [38]Dai Q J, Peng S B, Chaviz A Q, et al. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ. Exp. Biol.,1994,34:433-442
    [39]Dai Q J, Peng S B, Chavez A Q, et al. Supplemental ultraviolet-B radiation does not reduce growth or grain yield in rice. Agron. J.,1997,89:793-799
    [40]Dai Q J, Peng S B, Chavez A Q, et al. Effect of enhanced UV-B radiation on growth and production of rice under greenhouse and field conditions. In:Peng S B, Ingram K T, Neue H U, Ziska L H, (ed.):Climate change and rice. Berlin, Springer-Verlag,1998,189-198
    [41]Mohammed A R, Tarpley L. Differential response of southern US rice (Oryza sativa L.) cultivars to ultraviolet-B radiation. J. Agron. Crop Sci.2010,196:286-295
    [42]Huang L K, He J, Chow W S, et al. Responses of detached rice leaves to moderate supplementary ultraviolet-B radiation allow early screening for relative sensitivity to ultraviolet-B irradiation. Aust. J. plant physiol.,1993,20:285-297
    [43]Ambasht N K, Agrawal M. Influence of supplemental UV-B radiation on photosynthetic characteristics of rice plants. Photosynthetica,1997,34:401-408
    [44]Hidema J, Kumagai T. Sensitivity of rice to ultraviolet-B radiation. Ann. Bot., 2006,97:933-942
    [45]Xu K, Qiu B S. Responses of super-high-yield hybrid rice Liangyoupeijiu to enhancement of ultraviolet-B radiation. Plant Sci.,2007,172:139-149
    [46]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta,1981,153(4):388-394
    [47]Yang J H, Chen T, Wang X L. Effect of enhanced UV-B radiation on endogenous ABA and free proline contents in wheat leaves. Acta Ecologica Sinica,2000,20 (1): 39-42
    [48]Nedunchezhian N, Kulandaivelu G. Effects of UV-B enhanced radiation on ribulose-1,5-biophosphate carboxylase in leaves of Vigna sinensis L. Photosynthetica, 1991,25:431-435
    [49]Nedunchezhian N, Kulandaivelu G. Evidence for the ultraviolet-B (280-320 nm) radiation induced structural reorganization and damage of photosystem Ⅱ polypeptides in isolated chloroplasts. Physiologia Plantarum,1991.81:558-562
    [50]Brandle J R. Campbell W F, Caldwell M M. Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol.,1977,60:165-169
    [51]Vu C V, Allen J L, Garrard L A. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants. Plant Physiol.,1982,55:11-16
    [52]Wright L A, Murphy T M. Short-wave ultraviolet light closes leaf stomata. Amer. J Bot,1982,69:1196-1199
    [53]Takeuchi A,Yamaguchi T, Hidema J, et al. Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (Oryza sativa L.) growing under supplementary UV-B radiation. Plant, cell and environment,2002,25(6):695-706
    [54]林文雄,梁义元,金吉雄.水稻对UV-B辐射增强的抗性遗传及其生理生化特性研究.应用生态学报,1999,10(1):31-34
    [55]Teramura A H, Ziska L H, Sztein A E. Changes in growth and photosynthetic capacity of rice within creased UV-B radiation. Physiol.Plant,1991,83:373-380
    [56]Kumagai T, Hidema J, Kang H S, et al. Effects of supplemental UV-B radiation on the growth and yield of two cultivars of Japanese lowland rice (Oryza sativa L.) under the field in a cool rice-growing region of Japan. Agriculture, ecosystems and environment Breed,2001,83:201-208
    [57]唐莉娜,林文雄,吴杏春.UV-B辐射增强对水稻生长发育及其产量形成的影响.应用生态学报,2002,13(10):1278-1282
    [58]许莹,殷红,毛晓燕.UV-B辐射增加对水稻生长发育及产量的影响.中国农学通报,2006,4:411-414
    [59]晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响.植物生理学报,1996,22(4):373-378
    [60]吴杏春,林文雄,黄忠良等.UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显微结构的影响.生态学报,2007,7(2):554-564
    [61]Wu, X C, Fang, C X, Chen, J Y, et al. A proteomic analysis of leaf responses to enhanced ultraviolet-B radiation in two rice (Oryza saliva L.) cultivars differing in UV sensitivity. J. Plant Biol.,2011,54:251-261
    [62]Ambasht N K, Agrawal M. Influence of supplemental UV-B radiation on photosynthetic characteristics of rice plants. Photosynthetica,1997,34:401-408
    [63]Rech M, Mouget J L, Morant-Manceau A, et al. Long-term acclimation to UV radiation:effects on growth, photosynthesis and carbonic anhydrase activity in marine diatoms. Bot. Mar.,2005,48:407-420
    [64]Ruhland C T, Xiong F S, Clark W D, et al. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica. Photochem. Photobiol., 2005,81:1086-1093
    [65]Liu M, Li R G, Fan H, et al. Effects of enhanced UV-B radiation on photo-synthetic pigments and some enzymes in tobacco. Acta Bot. Bor-Occid. Sin.,2007, 27:291-296
    [66]杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦叶绿体膜组分和膜流动性的影响.植物生态学报,2000,24(2):102-105
    [67]侯扶江,贲桂英,韩发.田间增加紫外线UV辐射对大豆幼苗生长和光合作用的影响.植物生态学报,1998,22(3):256-261
    [68]师生波,贲桂英,韩发等.不同海拔地区紫外线B辐射状以及植物叶片紫外线吸收物质含量的分析.植物生态学报,1998,23(6):529-535
    [69]林文雄,吴杏春,梁义元等.UV-B辐射胁迫对水稻叶绿素荧光动力学影响.中国生态农业学报,2002,10(1):8-11
    [70]Kolb C A, Kaser M A, Kopecky J, et al. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol,2001,127:863-875
    [71]Gao W, Zheng Y, Slusser J R, et al. Effects of supplementary ultraviolet-B irradiation on maize yield and qualities:a field experiment. Photochem. Photobiol., 2004,80:127-131
    [72]Xu K, Qiu B S. Responses of super-high-yield hybrid rice Liangyoupeijiu to enhancement of ultraviolet-B radiation. Plant Sci.,2007,172:139-149
    [73]巫继拓,沈允钢.菠菜叶绿体的光抑制部位.植物生理报,1990,164:31-36
    [74]Vu C V, Allen L H, Garrard L A. Effects of enhanced UV-B radiation (280-320 nm) on ribulose 1,5-bisphosphate carboxylase in pea and soybean. Environ. Exp. Bot.,1984,24(2):131-143
    [75]林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(2):1-16
    [76]Nedunchezhian N, Kulandaivelu G. Effects of UV-B enhanced radiation on ribulose-1,5-biophosphate carboxylase in leaves of Vigna sinensis L. Photo-synthetica,1991,25,431-435
    [77]Gerhardt K E, Wilson M I, Greenberge B M. Tryptophan photolysis leads to a UV-B induced 66kDa photoproduct of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in vitro and in vivo. Photochem. Photobiol.,1999,70:49-56
    [78]Nogues S, Allen D J, Morison J I L, et al. Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiology,1998,117:173-181
    [79]Jordan B R, He J, Chow W S, et al. Changes in mRNA levels and polypeptide subunits of ribulose-1,5-bisphosphate carboxylase in response to supplementary UV-B radiation. Plant Cell Environ.,1992,15:91-98
    [80]曾建敏,林文雄,梁康迳等.水稻对低剂量UV-B辐射胁迫的分子应答研究.应用生态学报,2003,14(6):941-944
    [81]Sullivan J H. Possible impacts of changes in UV-B radiationon North American trees and forests. Environmental Pollution,2005,137(3):380-389
    [82]OKada M, Kitajima M, Butler W L. Inhibition of photosytem Ⅰ and PSII in chloroplasts by UV radiation. Plant Cell Physiol,1976,17:35-43
    [83]Strid A, Chow W S, Anderson J M. UV-B damage and protection at the molecular level in plant. Photosynthesis Res,1994,39:475-489
    [84]Kausky H, Hirsch A. Neue versuche zur kohlensaureassimilation. Die Naturwissenschaften,1931,19(48):964-964
    [85]Strasser R J. Akoyunoglou G ed. Photosynthesis Ⅲ. Structure and Molecular Organization of the Photosynthetic Apparatus.Philadelphia:BISS Press,1981:727-737
    [86]Strasser R J, Govindjee. The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In:Argyroudi-Akoyunoglou JH (eds).Regulation of Chloroplast Biogenesis. New York:Plenum Press,1991.423-436
    [87]Strasser R J, Govindjee. On the O-J-I-P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In:Murata N (eds). Research in Photosynthesis. Dordrecht:KAP Press,1992.4:29-32
    [88]Strasser B J, Strasser R J. Measuring fast fluorescence transients to address environmental questions:The JIP test. In:Mathis P ed. Photosynthesis:from Light to Biosphere. Dordrecht:KAP Press,1995, (5):977-980
    [89]Strasser R J, Srivastava A, Tsimilli-Michael M.The fluorescence transient as a tool to characterize and screen photosynthetic samples. In:Yunus M, Pathre U, Mohanty P (eds). Probing Photosynthesis:Mechanism, Regulation and Adaptation. London:Taylor and Francis Press, chapter 2000,25:445-483
    [90]Strasser RJ, Tsimill-Michael M, Srivastava. Analysis of the chlorophyll a fluorescence transient. In:Papageorgiou G and Govindjee (eds). Advances in Photosynthesis and Respiration. Netherlands:KAP Press,2004, chapter 12,1-47
    [91]Govindjee. Sixty-three years since Kautsky:Chlorophyll a fluorescence. Australian J Plant Physiol,1995,22:131-160
    [92]Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photo-synthetica,2003,41:267-271
    [93]Lee H Y, Hong Y N, Chow W S. Photoinactivation of phtosystem Ⅱ complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta,2001,212:332-342
    [94]Guisse B, Srivastava A, Strasser R J. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Geneve,1995,48: 147-160.
    [95]Srivastava A, Guisse B, Greppin H, edu. Regulation of antenna structure and electron transport in PS Ⅱ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP. Biochim Biophys Acta, 1997,13,20:95-106
    [96]Salekdeh GH, Komatsu S. Crop proteomics:Aim at sustainable agriculture of tomorrow. Proteomics,2007,7(16):2976-2996
    [97]Feng Q et al, Sequence and analysis of rice chromosome 4. Nature,2002,420: 316-420
    [98]Yu J. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002,296:79-82
    [99]Elizabeth Pennisi. Sowing the seeds for the ideal crop. Science,2010,327: 802-803
    [100]Sasaki T. The rice genome project in Japan. Proc Natl Acad Sci., USA,1998, 95:2027-2028
    [101]Ferro M, Salvi D, Rolland H, et al. Integral membrane proteins of the chloroplast envelope:Identification and subcellular localization of new transporters. PNAS,2002,99(17):11487-11489
    [102]Ferro M, Salvi D, Brugiere S, et al. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Molecular & Cellular Proteomics,2003,2: 325-345
    [103]Van W K. Plastid proteomics. Plant Physiol. Biochem.,2004,42(12):963-977
    [104]Menke W. Das allgemeine bauprinzip des lamellarsystems der chloroplasten. Experientia,1960,16(12):537-53
    [105]Anderson J M, Andersson B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci.,1988,13 (9):351-355
    [106]Arvidsson P O, Sundby C. A model for the topology of the chloroplast thylakoid membrane. Aust. J Plant Physiol.,1999,26 (7):687-94
    [107]Paolillo D J. The three dimensional arrangement of intergranal lamellae in chloroplasts. J Cell Sci,1970,6:243-55
    [108]Mustardy L, Garab G. Granum revisited. A three-dimensional model-where things fall into place. Trends Plant Sci,2003,8 (3):117-22
    [109]Chuartzman S G, Nevo R, Shimoni E, et al. Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell,2008,20(4):1029-1039
    [110]Buchanan B B, Gruissem W, Jones R L. Photosynthesis. In:Biochemistry & Molecular, Biology of Plants,2004,131-483
    [111]Wollman F A, Minai L, Nechushtai R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochimica Biophysica Acta,1999, 1411:21-85
    [112]Friso G, Giacomelli L, Ytterberg A J, et al. Indept hanalysis of thethylakoid membrane proteome of Arabidopsis thaliana chloroplasts new proteins, new functions, and a plastid proteome database. Plant Cell,2004,16:478-499.
    [113]Shi L X, Lorkovic Z J, Oelmuller R, et al. The low molecular mass PsbW protein is involved in the stabilization of the dimeric photosystem Ⅱ complex in Arabi dopsis thaliana. J. Biol. Chem.,2000,275(48):37945-37950
    [114]Andreasp M W, Jor G S, Lars M V. Using mutants to probe the in vivo function of plastid envelope membrane metabolite transporters. J. Exp. Botany,2004,400(55): 1231-1244
    [115]Kashino Y, Laube W M,Carroll J A,et al. Proteomic analysis of a highly active photosystem Ⅱ preparation from the Cyanobacterium synechocystis sp. PCC 6803 revealst he presence of novel polypeptides. Biochemistry,2002,41(25):8004-8012
    [116]Lindahl M, Spetea C, Hunda T, et al. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystemⅡ, D1 protein. Plant Cell,2000,12: 419-431
    [117]Shi L X, Schroder W P. Compositional and topological studies of the Psb W protein in spinach thylakoid membrane. Photosynth. Res.,1997,53:45-53
    [118]Naver H, Boudrea U E, Rochaix J D. Functional studies of Ycf3:it s role in assembly of photosystem I and interactions with some of its subunits. Plant Cell, 2001,13(12):2731-2746
    [119]Hamel P, Olive J, Pierre Y, et al. A new subunit of cytochrome b6f complex undergoes reversible phosphorylation upon state transition. J. Biol. Chem.,2000, 275(22):17072-17079
    [120]Wollman F A. The structure, function and biogenesis of cytochrome b6f complexes. In:Rochaix J D, Goldschmidt-Clermont M, Merchant S(eds). The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Springer Net herlands,1998,7:459-476
    [121]Zhu X Y, Chen G C, Zhang C L. Photosynthetic electron transport, photopho-sphorylation, and antioxidants in two ecotypes of reed (Phragmites communis Trin.) from different habitats. Photosynthetica,2001,39 (2):183-189
    [122]Wang Y, Sun J, Chitnis P R. Proteomic study of the peripheral proteins from thylakoid membranes of the Cyanobacterium synechocystis sp. PCC 6803. Elect-rophoresis,2000,21(9):1746-1754
    [123]Srivastava R, Pisareva T, Norling B. Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics,2005,5(18):4905-4916
    [124]Ettinger W F, Theg S M. Physiologically active chloroplasts contain pools of unassembled extrinsic protein of the photosynthetic oxygen exolving enzyme complex in the thylakoid lumen. J. Cell Biol.,1991,115(2):321-328
    [125]Leister D. Chloroplast research in the genomic age. Trends Genet,2003,19(1): 47-56
    [126]Baginsky S, Gruissem W. Chloroplast proteomics:potentials and challenges. Journal of Experimental Botany,2004,55(400):1213-1220
    [127]UNEP, Executive Summary. Final of UNEP/WMO scientific assessment of ozone depletion:2002. Prepared by scientific assessment panel of the montreal protocol on substances that deplete the ozone layer released by WMO/UNEP on 23 August 2002)
    [128]Hader D P, Kumar H D, Smith R C, et al.Aquatic ecosystems:effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci,2003,2:39-50
    [129]Gao K S, Wu Y P, Li G,et al. Solar UV radiation drives CO2 fixation in marine phytoplankton:a double-edged sword. Plant Physiol.,2007,144:54-59
    [130]Tang L N, Lin W X, Liang Y Y, et al. Effects of enhanced ultraviolet-B radiation on soluble protein and nucleic acid in rice leaves. Chinese Journal of Eco-Agriculture,2004,12(1):40-42
    [131]Yoshida S. Physiological analysis of rice yield. In 'Fundamentals of rice crop science'. Yoshida S (Eds). Philippines:International Rice Research Institute Publishing,1981,231-251
    [132]Arnon D I. Copper enzymes in isolated chloroplasts, Polyphenol oxidase in Bete vulgaris. Plant Physiol,1949,24:1-15
    [133]Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol 2005 31(6):559-566
    [134]Ketcham S R, Davenport J W, Warncke K, et al. Role of the γ subunit of chloroplast coupling factor 1 in the light-dependent activation of phospho-sphorylation and ATPase activity by dithiothreitol. J. Biol. Chem.,1984,259:7 286-7293
    [135]Ma G Y, Fang Z W, Zhang R X. Isolation of protoplasts and chloroplasts from wheat leaf and measurement of their photosynthetic rate. Plant Physiol. Commun., 1991,27(1):53-55
    [136]Dunahay T G, Staehelin L A, Seibert M. Structural, biochemical and biophysical characterization of four oxygen evolving photosystemⅡ preparations from spinach. Biochimical et Biophysica Acta,1984,764:179-193
    [137]Coombs J, Hall D O. Techniques in Bioproductivity and Photosynthesis. Oxford:Pergamon Press,1982,136-137
    [138]Cao S Q, Zhai H Q, Yang T N, et al. Studies on photosynthetic rate and function duration of rice germplasm sesources. Chin J Rice Sci,2001,15(1):29-34
    [139]Guisse B, Srivastava A, Strasser R J. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Geneve,1995,48:147-160
    [140]Chen G X, Liu S H, Zhang C J, et al. Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super high-yield rice hybrid. Photosynthetica,2004,42(4):573-578
    [141]Appenroth K J, Stockel J, Srivastava A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by O-J-I-P chlorophyll a fluorescence measurements. Environ. Pollut.,2001,115:49-64
    [142]Van Heerden P D R, Strasser R J, et al. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol. Plant,2004,121:239-249
    [143]Van Heerden P D R, Tsimilli-Michael M, Kruger G H J, et al. Dark chilling effects on soybean genotypes during vegetative development:parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol Plant,2003,117:476-491
    [144]Oquist G, ChowW S, Anderson J M. Photoinhibition of photosynthesis represents a mechanism for long-term regulation of photosystem Ⅱ. Planta,1992, 186:450-460
    [145]Xu D Q, Wu S. Three phases of dark recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica,1996,32:417-423
    [146]Wang N, Chen G-X, Lv C-G. Studies on photosynthetic characteristics of flag leaves in hybrid rice Liangyoupeijiu and its parents. Hybrid Rice,2004,19(1):53-55
    [147]Cui J L. Photosynthesis and Productivity. Jiangsu:Jiangsu Scientific and Technical Publishers,2000,282-282
    [148]Ruggaber A, Dlugi R, Nakajima T. Modelling of radiation quantities and photolysis frequencies in the troposphere. J. Atmos. Chem.,1994,18:171-210
    [149]Zhang F C, He Y H, Zheng Y F, et al. Effect of enhanced UV-B radiation on wheat. Journal of Nanjing Institute of Meteorology,2003,26:545-551
    [150]Vallejos R H, Arana J.L, Ravizzini R A. Changes in activity and structure of the chloroplast proton ATPase induced by illumination of spinach leaves. J. Biol. Chem., 1983,258:7317-7321
    [151]Makino A, Mae T, Ohira K. Photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Quantitative analysis by carboxylation/oxygenation and regeneration of ribulose-1,5-bisphosphate. Planta,1985,166:414-420
    [152]Sayre R T, Kennedy R A. Photosynthetic enzyme activities and localiza-tion in Mo/lugo velicillata populations differing in the levels of C3 and C4 cycle operation. Plant Physiol.,1979,64:293-299
    [153]Guidi L D E, Soldatini G F. Assimilation of CO2, enzyme activation and photosynthetic electron transport in bean leaves, as affected by high light and ozone. New Phytol.,2002,156:377-388
    [154]Albert K R, Mikkelsen T N, Ro-Poulsen H. Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. Plant Physiol.,2005,124:208-226
    [155]Allen D J, Nouges S, Morison J I L, et al. A thirty percent increase in UV-B has no impact on photosynthesis in well watered and droughted pea plants in the field. Global Change Biol.,1999,5:235-244
    [156]Xiong F S, Day T A. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol.,2001,125:738-751,
    [157]Xu Y, Yin H, Mao X Y. Studies on the effects of enhanced UV-B radiation on growth and production of rice. Chin. Agric. Sci. Bull.,2006,22:411-414
    [158]Kolb C A, Kaser M A, Kopecky J, et al. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol.,2001,127:863-875
    [159]Wilson M I, Greenberg B M. Protection of the D1 photosystem Ⅱ reaction center protein from degradation in ultraviolet radiation following adaptation of Brassica napus L. to growth in ultraviolet-B. Photochem. Photobiol,1993,57: 556-563
    [160]Babu T S, Jansen M A K, Greenberg B M, et al. Amplified degradation of photosystem Ⅱ D1 and D2 proteins under a mixture of photosynthetically active radiation and UV-B radiation:dependence on redox status of photosystem Ⅱ. Photochem. Photobiol.,1999,69:553-559
    [161]Wei J M, Wang D F, Shi X B, et al. Structure and function of ATP synthase. In:Kuang, T.-Y. (eds):Mechanism and regulation of primary energy conversion process in photosynthesis Nanjing:Jiangsu Science and Technology Press Publishing,2003,330-357
    [162]Xiong X R, Chen W M, Feng S Y, et al. Simulation on botanic Rubisco active cente. Chinese Journal of Biochemistry and Molecular Biolog.,2003,19(4):493-498
    [163]Nedunchezhian N, Kulandaivelu G. Effects of UV-B enhanced radiation on ribulose-1,5-biophosphate carboxylase in leaves of Vigna sinensis L. Photo-synthetica,1991,25:431-435
    [164]Gerhardt K E, Wilson M I, Greenberge B M. Tryptophan photolysis leads to a UV-B induced 66kDa photoproduct of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in vitro and in vivo. Photochem. Photobiol.,1999,70(1):49-56
    [165]Hofmann R W, Campbell B D, Fountain D W, et al. Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant Cell Environ.,2001,24:917-927
    [166]Ren J, Yao Y A., Yang Y Q, et al. Growth and physiological responses to supplemental UV-B radiation of two contrasting poplar species. Tree Physiol.2006, 26:665-672
    [167]Giannopolitis C N, Ries S K.Superoxide dismutase.I.Occurrence in higher plants. Plant Physiology,1977,59:309-314
    [168]陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002,120-120
    [169]Ellman G L. Tissue sulfhydryl groups. Archives of biochemistry and biophysics,1959,82:70-77
    [170]Tanaka K, Suda Y, Kondo, N, et al. O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant and Cell Physiology,1985,26: 1425-1431.
    [171]Zhao S J, Li D Q. The modern experimental directory on plant physiology. Beijing:Science Press,1999,305-306
    [172]Wang, A.G, Shao, C B, Luo G H, et al. Studies on the damage of structure and function of soybean hypocotyl mitochondria by activated oxygen. Journal of Plant Physiology and Molecular Biology,1990,16:13-18
    [173]Bradford, M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    [174]Robert D R, Thompson J E, Dmberff E B. Differential changes in the synthesis and steady levels of thyokoid protein during bean leaf senescence. Plant Mol. Biol., 1987,9:343-353
    [175]Mudd J B. Biochemical basis for the toxicity of ozone. In:Yunus M, Iqbal M (eds). Plant Response to Air Pollution. New York:Wiley,1997,267-284
    [176]Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany,2002,53:1237-1247
    [177]Willekens H, Langebartels C, Tire C, et al. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proceedings of the National Academy of Sciences of the United States of America,1994,91:10450-10454
    [178]Asada K. Ascorbate peroxidase:a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum,1992,85,235-241.
    [179]Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    [180]De Souza I R P, Macadam J W. A transient increase in apoplastic peroxidase activity precedes decrease in elongation rate of B73 maize (Zea mays) leaf blades. Physiologia Plantarum,1998,104:556-562
    [181]Alscher R G, Hess J L. Antioxidants in Higher Plant. Boca Raton:CRC Press, 1993,59-60
    [182]Noctor G, Foyer C H. Ascorbate and glutathione:Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol Biol.,1998,49:249-279
    [183]Lu S C. Regulation of glutathione synthesis. Curr. Topies Cell Regulation,2000, 36:95-116
    [184]Alscher R G. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant,1989,77:457-464
    [185]吴杏春,林文雄,郭玉春等.UV-B辐射增强对水稻叶片抗氧化系统的影响.福建农业学报,2001,16(3):51-55
    [185]Pflieger D, Rossier J. Purification and proteomic analysis of chloroplasts and their suborganellar compartments. Organelle Proteomics. Methods in Molecular Biology. Totowa:Human Press,2008,432-432
    [186]中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999
    [187]Gong X, Yan L. Improvement of chloroplast DNA isolation from higher plant. Chin. Sci. Bull.,1991,36:464-469
    [188]朱丽华.植物绿色组织蛋白质组分双向电泳分析.植物生理学通讯,1992,28(3):217-219
    [189]杨炜,毕学知,黄大年等.水稻蛋白质组的双向电泳分析技术.中国水稻科学,1993,7(1):43-47
    [190]Yan J X, Wait R, Berkelman T, et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis,2004,21:3666-3 672
    [191]邵彩虹,王经源,林文雄.苗期水稻叶片发育进程的差异蛋白质组学分析. 中国农业科学,2008,41(11):3831-3837
    [192]Kurisu G, Zhang H, Smith J L, et al. Structure of the cytochrome b6-f complex of oxygenic photosynthesis:tuning the cavity. Science,2003,302 (5647):1009-1 014
    [193]Ichikawa K, Miyake C, Iwano M, et al. Ribulose 1,5-Bisphosphate carboxylase/oxygenase large subunit translation is regulated in a small subunit-independent manner in the expanded leaves of tobacco. Plant Cell Physiol., 2008,49 (2):214-225
    [194]Babadzhanova M P, Babadzhanova M A, Aliev K A. Free and membrane-bound multienzyme complexes with Calvin cycle activities in cotton leaves. Russian J.Plant Physiol.,2002,49:592-597
    [195]Sharkey T D. Effects of moderate heat stress on photosynthesis:importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ,2005,28:269-277
    [196]Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res.,1997,25:3389-3402
    [197]Altschul S F, Wootton J C, Gertz E M, et al. Protein database searches using compositionally adjusted substitution matrices. FEBS J.,2005,272:5101-5109
    [198]Tremblay G, Havaux M, Ouellet F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J., 2009,60(4):691-702
    [199]Hobo T, Kowyama Y, Hattori T. bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA,1999,96(26): 15348-15353
    [200]Miyoshi K, Kagaya Y, Ogawa Y,et al. Temporal and spatial expression pattern of the OSVP1 and OSEM genes during seed development in rice. Plant and Cell Physiology,2002,43(3):307-313
    [201]Crouzet J, Trombik O, Fraysse A S, et al. Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett,2006,580:1 123-1130
    [202]尚毅,肖进.小麦中一个PDR型ABC转运蛋白基因的克隆和特征分析.中国科学,2009,54(17):2500-2507
    [203]Carrillo N, Ceccarelli E. Open questions in ferredoxin-NADPH reductase catalytic mechanism. Eur. J. Biochem.,2003,270:1900-1915
    [204]Ceccarelli E, Arakaki A, Cortez N, et al. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim. Biophys. Acta,2004,1698:155-165
    [205]Palatnik J, Tognetti V, Poli H, et al. Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photooxidative damage. Plant J,2003,35:332-341
    [206]Rodriguez R E, Lodeyro A, Poli H O, et al. Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol.,2007, 143(2):639-649
    [207]Silva P, Thompson E, Bailey S, et al. FtsH is involved in the early stages of repair of photosystem Ⅱ in Synechocystis sp PCC 6803. Plant Cell,2003,15: 2152-2164
    [208]Cheregi O, Sicora C, Kos P B, et al. The role of the FtsH and Deg proteases in the repair of UV-B radiation-damaged Photosystem Ⅱ in the cyanobacterium Synechocyslis PCC 6803. Biochim. Biophys. Acta,2007,1767:820-828
    [209]Zhang P, Sicora C I, Vorontsova N, et al. FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803. Mol. Microbiol.,2007,65:728-740
    [210]Nixon P J, Michoux F, Yu J, et al. Recent advances in understanding the assembly and repair of photosystem Ⅱ. Ann. Bot.,2010,106:1-16
    [211]Mann N H, Novac N, Mullineaux C W. Involvement of an FtsH homologue in the assembly of functional photosystem Ⅰ in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett.,2000,479 (12):72-77
    [212]Yoshida A, Tani K. Phosphoglycerate kinase abnormalities:functional, structural and genomic aspects. Biomed. Biochim. Acta,1983,42:11-12
    [213]Grandbastien M A. Activation of plant retrotransposons under stress condi-tions. Trends in Plant Science,1998,3 (5):181-187
    [214]Willingham N M, Lloyd J C, Raines C A. Molecular cloning of the Arabidopsis lhaliuna sedoheptulose-1,7-biphosphatase gene and expression studies in wheat and Arabidopsis thaliana. Plant Mol. Biol.,1994,26:1191-1200
    [215]Anja S, Marco B, Riidiger H. Overexpression of the potential herbicide target sedoheptulose-1,7-bisphosphatase from Spinacia oleraceain transgenic tobacco. Molecular Breeding,2002,9:53-61
    [216]冀宪领,盖英萍,马建平等.桑树景天庚酮糖-1,7-二磷酸酶基因的克隆、原核表达与植物表达载体的构建.林业科学,2008,44(3):62-69
    [217]Agrawal G K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics,2002,8 (2):947-959
    [218]周功克,李红玉,文江祁,孔英珍,梁厚果.低温胁迫下甘肃黄花烟草愈伤组织的抗氰呼吸.植物学报,2000,42(7):679-683
    [219]Zhang X, Niwa H, Rappas M. Mechanisms of ATPases a multi-disciplinary approach. Curr Protein Pept Sci.,2004,5(2):89-105
    [220]Muller V, Cross R L. The evolution of A-, F-, and V-type ATP synthases and ATPases:reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett., 2004,576(1):1-4
    [221]Wilkens S, Zheng Y, Zhang Z. A structural model of the vacuolar ATPase from transmission electron microscopy. Micron.,2005,36(2):109-126
    [222]Ishikawa Y, Schroder W P, Funk C. Functional analysis of the PsbP-like protein (s111418) in Synechocystis sp. PCC 6803. Photosynthesis Research,2005, 84(1-3):257-262
    [223]Kochhar A, Khurana J P, Tyagi A K. Nucleotide sequence of the psbP gene encoding precursor of 23-kDa polypeptide of oxygen-evolving complex in Arabidopsis thaliana and its expression in the wild-type and a constitutively photomorphogenic mutant. DNA Res.,1996,3:277-285
    [224]Rova EM, Mc Ewen B, Fredriksson PO, Styring S. Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23-kDa extrinsic subunit of photosystem Ⅱ. J. Biol. Chem.,1996,271:28 918-28 924
    [225]Ifuku K, Nakatsu T, Kato H, Sato F. Crystal structure of the PsbP protein of photosystem II from Nicoliana tabacum. EMBO Rep.2004,5:362-367
    [226]Kessler F, Blobel G. Interaction of the protein import and folding machineries in the chloroplast. Proc Natl Acad Sci USA,1996,93(15):7684-7689
    [227]Kouranov A, Schnell D J. Protein translocation at the envelope and thylakoid membranes of chloroplasts. J Biol Chem.,1996,271(49):31009-31012
    [228]Wei Z M, Wei Z, Laby R J, et al. Harpin, elicitor of the hyper-sensitive response produced by the plant pathogen. Erwinia amylovora Science,1992,257: 85-88
    [229]段同钊.新型植物生化激活剂-康壮素.蔬菜,2003,12:40-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700