用户名: 密码: 验证码:
含铀废水微生物处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了少根根霉真菌处理含铀废水。用静态法系统研究了反应时间、pH、浓度、温度等因素对吸附反应的影响。在25℃、起始pH=4时,少根根霉对铀的饱和吸附容量可达162.3mg/g干重。NaOH改性处理后少根根霉的吸附能力有较大提高,在25℃、起始pH=4时,其吸附量为216.5mg/g干重。吸附反应的最佳pH范围为4~5,Fe~(3+)、Cu~(2+)、Zn~(2+)、CO_3~(2-)及F~-等离子对吸附反应有不同程度的干扰,但K~+、Na~+、NH_4~+、Cl~-、NO_3~-等离子无干扰。
     少根根霉可直接用于柱吸附,聚胺酯泡沫塑料可有效固定少根根霉菌丝体细胞。碱改性后固定的细胞处理含铀废水,去除率达到98%。Na_2CO_3和NaHCO_3可定量解析被吸附的铀离子,洗脱率为94%。少根根霉可以重复使用,吸附-解析次数达6次时,仍能保持较高的吸附能力。
     表面测试表明,细胞壁上的胺基-NH_2和乙酰胺-NHCOCH_3等官能团参与了与铀离子的络合反应,NaOH改性后细胞发生收缩皱褶,暴露出更多的活性基团,使吸附能力增强。
     本研究将聚胺酯泡沫塑料固定的少根根霉,用NaOH改性处理后其吸附能力得到较大提高,对含铀废水有较好的吸附处理能力。同时可以充分利用发酵工业产生的大量废弃菌丝体,达到以废治废的目的,吸附的铀离子通过洗脱而回收。该项技术具有广阔的应用前景。
Rhizopus arrhizus was chosed to treat uranium-containing wastewater in the study. A series of factors, such as the reaction time, pH, temperature and concentration etc, which might influence the biosorption, were studied systematically. Its uranium-uptaking capacity was up to 162.3mg/g dry weight (25@, reaction time 30minutes) when the initial pH was 4. The adsorption capabilities were improved greatly by the pre-treatment of Rhizopus arrhizus with NaOH.When the initial pH was 4 at 251, the uranium-uptaking capacity was up to 216.5mg/g dry weight. The optium pH was 4-5, Fe3+, Cu2+, Zn2+, CO32- and F- could affect uranium adsorption respectively,but K+, Na+, NH4+, Cl- NO3- had no affect to the uranium adsorption. Rhizopus arrhizus could be used in column adsorption directly, and the
    polyurethane foam could immobilized the cells effectively. The adsorption rate could be up to 98% using the immobilized cells by pretreating with NaOH. The adsorbed uranium could be eluted quantitively with Na2CO3 and NaHCO3.The elution rate was up to 94%. Rhizopus arrhizus could be used repeatly. It exhibited higher uptake capabilities when the adsorption-elution cycles was up to 6 times.
    The surface analysis of Rhizopus arrhizus showed that - NH2 and -NHCOCH3 groups in cell wall might complex uranim ion in the solution. The cell shrinked after pretreatment with NaOH and then exposed more actived groups, which
    
    
    
    resulted in the increase of the adsorption capacity.
    The adsorption capabilities of Rhizopus arrhizus improved higher when used the polyurethane foam immobilized cells by pretreating with NaOH. It was found ideal results by treating uranium-containing wastewater. This research is valuable in uranium-containing wastewater treatment field.
引文
1 王宝贞.放射性废水处理.北京:科学出版社,1979年第一版.
    2 王成祥,李彦.环境放射学.北京:中国环境科学出版社,1991年
    3 孟祥和,胡国飞.重金属废水处理.北京:化学工业出版社,2000
    4 陈坚,任洪强等.环境生物技术应用及发展.北京:中国轻工业出版社,2001
    5 Ruchhoft C. C., Sewage Works J.,1949, 21(5):877
    6 Greene B et al. Interaction of Gold and Gold Complexes with Algae Biomass. Environ. Sci. Technol.,1986,20:627-632
    7 M Tsezos et al. A batch reactor mass transfer kinetic model for immobilized biomass biosorption. Biotechnol. Bioeng.,1998,32:545-550
    8 Barkley N P. Extraction of Mercury from Groundwater using Immobilized Algae. J. Air waste Manage. Assoc,1991,41,(10): 121-126
    9 Ander B, Norberg.Hans Presson. Accumulation of heavy-metal ions by Zoogloeas ramigera. Biotechnol. Bioeng.,1984,26:239-246
    10 G.W.Stranderberg, S.E.Shumate, et al. Microbial cells as biosorbents for heavy metals, accumulation of uranium by S.cerevisiate and Paeruginosa. Appl. Environ. Microbial., 1981,41:237
    11 Volesky B. May H. Cadmium biosorption by Saceharomyces cerevisiae. Biotechnol.Bioeng., 1993,41,826-829
    12 Artola A, Rigola M. Selection of optimum biological sludge for zinc removal from wastewater by a biosorption process. Biotechnol. Lett., 1992,14(12): 1199-1204
    13 Briertey C.L. Bioremediation of metal-contamined surfaces and groundwaters. Geomicrobiol.J., 1990(8):201-223
    14 Cabral, J.P.S. Selective binding of metal ions to Pseudomonas syringae cells. Microbios, 1992,71:47-53
    15 M.Galun, P. Keller. Removal of Uranium from Solution by Fungal Biomass and Fungal Wall-Related. Biopolymers.Science, 1982,219:285-286
    16 Jo-Shu Chang,Juan Hong. Biosorption of mercury by the inactived cells of
    
    Pseudomonas aeruginasa PU21 .Biotechnol.Bioeng., 1994,44(8):99-106
    17 Anne Clarie T, YuesAndres, et al. Selective biosrption of lanthanide(La,Eu,Yb) ions by Pseudomonas aeruginasa. Environ. Sci.Technol.,1999, 33:489-495
    18 L.J. Michel, et al. Cadmium accumulation by immobilized cells of a Citrobacter sp using various phosate donors. Biotechnol.Bioeng., 1986, 28: 1358-1365
    19 N.Kuyucak, B.Volesky, etal. Accumulation of cobalt by marine alga[J] . Biotechnol. Bioeng., 1989,33:809-814
    20 Z.R.Holan, B.Volesky. Biosorption of cadmium by biomass of marine algae. Biotechnol.Bioeng., 1993,41:819-825
    21 Z.R.Holan,B. Volesky. Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng., 1994,43: 1001-1009
    22 Bennis W. Darall, Benjamin Greene,et al. Selective recovery of gold and other metal ions from an algal biomass. Envrion. Sci. Technol.,1986, 20(2):206-208
    23 Tobin J.M., Cooper D.G. Appl.and Environ. Microbio.,1984,4,821
    24 Ray H.Crist, Karl Oberholser. Nature of bonding between metallic ions and algal cell walls . Environ. Sci. Technol., 1981,15(10):1212-1217
    25 Pearson, R.G. et al. Sarv. Prog. Chem., 1969,5
    26 Nierboer,E. et al. Environ. Pollut, Ser B.1980,1
    27 Kuyucak.N,Volesky.B.Biosorbents for recoveryof metals from industrial solutions. Biotechnol. Lett., 1988, 10(2): 137-142
    28 E.Guibal,C.Roulph,et al.Uranium biosorption by a filamentous fungus Mucor miehel pH effect on mechanism and performances of uptake. Water Res., 1992,26(8): 1139-1145
    29 HoseaM.,GreenB., Mcpherson R.et al.Inorganica Chimica.Acta., 1986,123: 161
    30 Blackwell K.J.,SingletonI. Appl.Microbiol. Biotechnol., 1995,43,575-581
    31 Bustard M. Bioprocess Engineering. 1997,17(1):45-50
    32 Ariff A.B., Mel M., Hasan M.A.World J Microbiol.Biotechnol., 1999,15:255-260
    33 Mogollon L.,Rodriguez R.Appli.Biochem. Biotechnol., 1998,72:593-601
    34 Ashkenazy R.,Yannai S.Appl.Microbiol. Biotechnol., 1999,52:608-611
    35 Webster E A.,Murphy A J.,Chudek J A.Biometals,1997,10:105-117
    36 Aksu Z.,Acikel U.Separation Science and Technology,1999,34(3):501-524
    
    
    37 Huang Chinpin, Huang Chinpao. Wat. Res., 1991,11 : 1365-1372
    38 高仁喜,关自斌等.国内外铀、金矿石微生物浸出的技术进展.铀矿冶,2000,19(1):38-43
    39 Bennis W, Benjiamin Greene. Selective recovery of gold and other metal ions from an algal biomass. Envrion. Sci. Technol., 1986, 20(2):206-208
    40 Ferris N, Meyers-Nem P. Biosorption of Uranium and Lead by Streptomyces Longwoodensis. Biotechnol. Bioeng.,1986,24:385-410
    41 N. Mameri, Z. Boudries. Batch zinc biosorption by a bacterial living Streptomyces rimosus biomass.[J]. Wat. Res., 1999,33(6):1347-1354
    42 M.D. Mullen, D. C. Wolf, et al. Bacterial sorption of heavy metals[J]. Appl. Envrion . Microbiol., 1989,55(12): 3143-3149
    43 李首健,戈昌厚等.少根霉吸附铅的研究.四川大学学报(自然科学版),1991.28(2):261-264
    44 G.M.Gadd,C.White.Removal of thorium from simulated process streams by fungal biomass potential for thorium desorption and reuse of biomass and desorbent [J] .J. Chem. Tech. Biotechnol., 1992,55: 39-44
    45 M.Tsezos. Recovery of uranium from biological adsorbents-desorption equilibrium[J].Biotechnol Bioeng., 1984,26:973-981
    46 Riccado A.A, Muzzarelli, F. Tanfani, et al. Chelating, film-forming and coagulating ability of the chitosanglucan complex from Aspergillus niger industrial wastes[J].Biotechnol. Bioeng.,1980,22:885-896
    47 Modak J.M., Natarajan K.A. Biosorption of copper and zinc using waste Aspergillus niger biomass. Miner. Metal.Proeess., 1996,13:52-57
    48 M.Galun,P.Keller. Recovery of uranium from solution using precultured Penicillium biomass. Water, Air and Soil Pollution,1983,20:221-232
    49 牛惠,许学书,王建华.非生长产黄青霉吸附铅的研究.微生物学报,1993,33(6):459-463
    50 Volesky B. May H. Cadmium biosorption by Saceharomyces cerevisiae. Biotechnol. Bioeng., 1993,41,826-829
    51 Chin-pin Huang, chin-pao Huang .The removal of Cu from deliute aqueous solutions by Saceharomyces cerevisiae Wat. Res., 1988, 34:433-439
    
    
    52 Singleton I.,et al. Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisioe. J.Chem.Tech.Biotechnol., 1996,65:21-28
    53 Patricia O. Harris, Gernald J.Ramelow. Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedsmus quadricada. Environ. Sci.Technol., 1990,24(2):220-228
    54 Brendlyn D. Faison, Carmen A. Cancel. Binding of dissolved strontium by Micrococcu luteus.Appl. Environ. Microbiol., 1990,56(12): 3649-3656
    55 刘瑞霞,汤鸿霄.重金属的生物吸附机理及吸附平衡模式研究.化学研究,2002,14(2):87-92
    56 吴涓,李清彪等.重金属生物吸附的研究进展.离子交换与吸附,1998,14(2):180-187
    57 陈勇生,孙启俊等.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34-43
    58 K. K. Dwivedy, A. K. Mather. Bioleaching-Our Experience. Hydrometallurgy, 1995,(38): 99-109
    59 L.Bengtsson, B.Johansson. Studies on the Biosorption of Uranium by Talaromyces Emersonii CBS814.70 Biomass. Appl Microbiol. Biotechnol., 1995,42:807-811
    60 Volesky. B. Biosorbent Materials [J].Biotechnol. Bioeng. Symp., 1986,16:121-126
    61 谭红,李福德.利用酵母细胞快速富集溶液中的铀.工业微生物,1992,22(1):22-26
    62 冯易君,谢家理.某些离子对FT菌富集铀的影响研究.四川大学学报(自然科学版),1997,34(2):254-255
    63 张小枝,罗上庚等.满江红鱼腥藻吸附低浓度铀的研究.核化学与放射化学.1998,20(2):114-118
    64 Galun M, Siegal SM, et al. Ultrastructural localization of uranium biosorption in Penicillium digitatum by stem X-ray microanalysis. Enzyme Pollut, 1987,43: 209-218
    65 Marques AM ,Roea X ,et al. Uranium accumulation by Pseudomonas sp. EPS-5028. Appl. Microbiol Biotechnol. 1991,35:406-410
    66 Zhang Xiaozhi, Luo Shanggeng, et al. Accumulation of uranium at Low
    
    Concentration by the Green Alga Scenedesmus Obliquus34. J.Appl. Physiol, 1997,9:65-71
    67 Robert J.C.Mclean,Diane Beauchemin, et al. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945 [J].Appl.Envrion. Microbiol., 1990,56(12): 3671-3677
    68 Tsezos.M, Volesky.B.Biosorption of uranium and thorium. Biotechnol. Bioeng., 1981,23:583-604
    69 Kuyucak.N,Volesky.B.Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett., 1988, 10(2): 137-142
    70 Ping Yong, Lynne E, Macaskie. J. Chem Technol. Biotechnol., 1998, 71, 15-26
    71 董灵英.铀的分析化学(第一版).北京:原子能出版社,1982
    72 周德庆.微生物学教程(第一版).北京:高等教育出版社,1993
    73 谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987
    74 D.W.琼斯主编,江丕栋等译.生物聚合物波谱学导论 北京:科学出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700