苍白球外侧部在异常不自主运动产生中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基底神经节(Basal Ganglia)是一群重要的皮质下灰质核团,一般认为包括五部分:新纹状体(包括尾状核和壳核)、苍白球外侧部(External Globus Pallidus,GPe)、苍白球内侧部(Internal Globus Pallidus, GPi)—黑质网状部(Substantia Nigra pars reticulate, SNr)复合体、黑质致密部(substantia nigra pars compacta, SNc)及丘脑底核(Subthalamic nucleus, STn)。基底神经节对于运动控制的神经环路机制一直不是非常清楚。目前人们对于基底神经节环路的认识主要集中在直接通路与间接通路模型。然而直接通路与间接通路模型并不能涵盖基底神经节环路的所有方面,不能解释所有基底神经节参与的运动障碍疾病的神经环路机制。对于基底神经节在异常行为与运动障碍中的作用,有待于进一步的研究。
     GPi是基底神经节的主要输出结构。大部分运动障碍疾病与之功能异常相关,目前临床上应用高频电刺激GPi可以改善部分帕金森病、肌张力障碍、舞蹈病患者的运动症状。而GPe的作用尚不是很清楚,其能否成为部分运动障碍疾病治疗的靶核团有待于进一步研究。目前认为GPe是基底神经节间接通路中的一个重要核团,其主要接受新纹状体中脑啡肽(enkephalin, ENK)阳性的γ-氨基丁酸(GABA)能神经元的抑制性投射以及STn的谷氨酸能神经元的兴奋性投射。亨廷顿舞蹈病(Huntington disease, HD)早期特征性的病理改变为新纹状体中ENK阳性的GABA能神经元的丢失。这部分抑制GPe的GABA能神经元的丢失,将会增加GPe的放电节律。GPe放电节律的增加可能是HD舞蹈样症状产生的重要神经基础。有实验在猴子的GPe局部注射GABA受体拮抗剂,增加GPe核团的活性使猴子对侧肢体产生不自主运动及异常行为(包括活动过多、注意力缺陷等)。总之GPe的活性增加可能与异常不自主运动(abnormal involuntary movements)和异常行为的产生相关。对GPe的功能进行进一步研究,有可能为其成为另一个潜在的运动障碍疾病治疗的靶核团提供实验依据。
     传统的研究脑功能的手段包括:建立实验动物损伤模型、神经影像学(如PET、 fMRI)检查、电刺激核团和核团内局部注射药物等方法。这些方法具有各自的优缺点,但均很难特异性地实时控制特定核团特定类型神经元的活动,因此难以建立神经元活性与运动症状之间的直接因果关系。近几年,随着一项新型的技术-光遗传学(optogenetics)技术的出现,使人们看到了突破这一瓶颈的曙光。光遗传学技术是将来自海藻或古生物的光敏感的离子通道蛋白(如对细胞起兴奋作用的光敏感阳离子通道蛋白channelrhodopsin-2, ChR2;或对细胞起抑制作用的光敏感阴离子通道蛋白natronomonas pharaonis halorhodopsins, NpHR)基因通过特定转基因技术手段(如病毒转导或构建转基因小鼠等)特异性地表达在特定类型的神经元中,以便通过光刺激改变该神经元的兴奋性,从而研究其在神经环路及特定行为中的作用。我们可以通过光遗传学技术特异性地兴奋GPe的GABA能神经元,从而研究其对运动行为的影响,并分析其参与的神经环路机制。这将提供比以往更为确凿的关于GPe的功能的证据。
     因此,本课题中我们利用新的光遗传学技术,特异性兴奋GPe的GABA神经元,进一步研究其在不自主运动与异常行为产生中的作用,及其在基底神经节环路中的作用。
     第一部分光刺激直接兴奋小鼠GPe的GABA能神经元对小鼠运动行为的影响
     GPe的神经元类型主要为GABA能神经元。VGAT-ChR2-EYFP转基因小鼠是一种特异性在GABA能神经元上表达ChR2的转基因鼠。将光纤植入该小鼠的右侧GPe,在其自由活动时,给予蓝光刺激,发现小鼠在光刺激过程中出现头颈部扭转、对侧前肢异常姿势等肌张力障碍样改变,同时伴有咀嚼与伸舌等不自主运动以及旋转行为,光刺激结束后上述不自主运动与异常行为消失。同步脑电图记录,排除刺激过程中癫痫发作可能。我们第一次通过光遗传学手段非常直观地观察到了直接兴奋GPe的GABA能神经元可使小鼠产生异常不自主运动。以c-Fos表达作为神经元兴奋的标记,检测小鼠皮质-基底神经节-皮质环路中主要核团(运动皮质M1、GPe、GPi、STn)的c-Fos表达情况,进一步提示了这种异常不自主运动产生的神经环路基础,与GPe活性增加、GPi活性下降、M1活性增加相关。
     第二部分光刺激兴奋GPe的兴奋性输入纤维对小鼠运动行为的影响
     GPe主要接受纹状体的抑制性输入与STn的兴奋性输入。Thyl-ChR2-EYFP转基因小鼠是一种在兴奋性投射神经元中表达ChR2的转基因鼠。我们通过免疫组化证实,在该小鼠内ChR2不表达在GPe的神经元胞体上,而是表达在GPe的兴奋性输入纤维上。将光纤植入该小鼠的GPe,同样在其自由活动时,给予蓝光刺激,发现小鼠在光刺激过程中出现与之前VGAT-ChR2-YFP转基因小鼠类似的头颈部扭转,左前肢痉挛等不自主运动以及旋转行为。同步脑电图记录,排除癫痫发作可能。c-Fos的表达结果证实了光刺激兴奋GPe的兴奋性输入从而增加了GPe的GABA能神经元的兴奋性。结果提示通过光遗传学手段兴奋GPe的兴奋性输入,同样能产生肌张力障碍样改变及其它不自主运动。说明GPe的兴奋性输入增加可能是GPe活性增加的原因,某些运动障碍疾病产生的神经环路机制可能与GPe的兴奋性输入增加有关。同时也进一步说明了GPe的活性增加是异常不自主运动产生的关键。
     第三部分光刺激特异性兴奋STn投射至GPe的谷氨酸能神经元轴突末梢对小鼠运动行为的影响
     由于GPe接受的兴奋性输入主要来源于STn。之前对Thy1-ChR2-EYFP转基因小鼠GPe的光刺激可能就是兴奋了STn对GPe的投射纤维。为进一步验证STn对GPe的兴奋性投射这条通路,我们通过对小鼠STn局部注射AAV病毒AAV-CaMKIIα-ChR2-mCherry,使STn谷氨酸能神经元特异性地表达ChR2。通过对该小鼠大脑切片观察,发现GPe与GPi内均有来源于STn的表达ChR2的谷氨酸能神经元的投射纤维,这与已知的STn向GPe与GPi的解剖投射关系相符。将光纤植入该小鼠的GPe处,在其自由活动时,给予蓝光刺激,发现小鼠在光刺激过程中出现头颈部扭转及旋转行为等不自主运动。从而特异性地证明了:增加STn投射至GPe这条通路的神经兴奋性,可产生异常不自主运动。提示GPe的活性增加可能与STn投射至GPe这条通路的神经活性增加有关,并推测STn投射至GPe的这条神经通路的活性增加可能与某些运动障碍疾病有关。通过检测c-Fos的表达情况,再次证实了GPe的GABA能神经元活性增加在异常不自主运动产生中的关键作用。
     总之,本课题首次应用光遗传学技术,通过直接兴奋GPe的GABA能神经元或兴奋GPe的兴奋性输入纤维或特异性地兴奋STn投射至GPe的谷氨酸能神经元投射这条神经通路,均使小鼠产生了异常不自主运动。从而明确了GPe的GABA能神经元活性增加可产生异常不自主运动,这可能是一些与异常不自主运动相关的运动障碍疾病的神经基础。另外我们的研究结果提示GPe的活性增加的原因之一可以是STn投射至GPe的谷氨酸能神经元这条通路的活性增加,STn投射至GPe的谷氨酸能神经元投射这条神经通路的活性增加可能与某些运动障碍疾病有关。通过对皮质-基底神经节-皮质环路中主要核团(M1、GPe、GPi、STn)的c-Fos表达检测发现:GPe的GABA能神经元活性增加、GPi的活性下降、M1的活性增加可能是异常不自主运动产生的神经环路机制。这些结果为进一步理解与异常不自主运动相关的运动障碍疾病的神经环路机制提供了有价值的线索,为GPe有可能成为治疗这类运动障碍疾病的靶核团提供了实验依据。
The basal ganglia are a group of subcortical nuclei. The main components of the basal ganglia are the striatum (caudate nucleus and putamen), external globus pallidus (GPe), internal globus pallidus (GPi)-substantia nigra pars reticulate (SNr), substantia nigra pars compacta (SNc) and the subthalamic nucleus (STn). The role of the basal ganglia in motor control is debated. A considerable advance was made in understanding the role of the basal ganglia with the development of what has come to be commonly called the direct pathway and indirect pathway model of basal ganglia. However, the direct pathway and indirect pathway models of basal ganglia are still incapable to explain all the neural circuitry of all the movement disorders which are associated with the basal ganglia dysfunction. The role of the specific neuron subtype of the basal ganglia in movement disorders needs to be further studied.
     GPi is the primary output nuclei of the BG. Most of the movement disorders are associated with the dysfunction of GPi. The recent literature confirms the efficacy of high-frequency electrical stimulation of the GPi for parkinson disease, primary dystonia, huntington disease. But the function of GPe is not clear. The GPe is a component of the indirect pathway. The GPe receives massive GABAergic afferent fibers from the striatum and glutamatergic afferent fibers from the STn. The chorea (hyperkinesia) characteristic of the early stage of the Huntington Disease (HD) appears to stem from preferential loss of ENK+striatal neurons. Due to loss of the inhibitory ENK positive striatal neurons projecting to the GPe, the GPe activity is increased. Excess GPe activity may be the cause of chorea in HD. Previous experiments have shown that abnormal involuntary movements could be induced by using microinjections of bicuculline into the GPe in primates. In a word, excess GPe activity may be the cause of abnormal involuntary movements. The GPe may be another good therapy target for movement disorders besides the GPi.
     Traditional methods in neural circuits study include lesion animal model, functional image study, electrical stimulation, microinjection of drug. All these methods could not manipulate individual components of the brain with high-temporal resolution. Only in recent years, the emergence of optogenetics makes it possible. Neurons may be controlled by optogenetics for fast, specific excitation or inhibition in freely moving mammals. For example, Channelrhodopsins (ChR2) conduct cations and depolarize neurons upon blue light illumination, while natronomonas pharaonis halorhodopsins (NpHR) conduct chloride ions into the cytoplasm upon yellow light illumination. Here we can use the optogenetic tools to study the function of GPe GABAergic neurons in motor control and the neural circuitry of the basal ganglia.
     Part1The effects of direct optical stimulation of local GPe GABAergic neurons
     The majority of GPe neurons are projection neurons that contain glutamate decarboxylase (GAD). VGAT-ChR2-EYFP transgenic mice are used for precisely controlling action potential firing of GABAergic neurons using blue light. A fiber guide was inserted to the right GPe of the VGAT-ChR2-EYFP transgenic mouse. After illumination of the right GPe by blue light, the mouse developed twisted postures of the neck and the left arm abnormal posture resembling dystonia, repetitive involuntary movements (licking and chewing) and rotation. All the abnormal involuntary movements disappeared after laser off. EEG recordings from the motor cortex during the optical stimulation did not show any abnormal activity. So these involunrary movements were not caused by seizures. We first validated that stimulation of GPe GABAergic neurons could induce dystonia like behavior and involuntary movements. We examined the expression of the immediate early gene, c-Fos, a biomarker of active neurons, in the basal ganglia loop (GPe, GPi, STn, M1). Our findings suggest the neural circuitry of the abnormal involuntary movements is related with excess GPe activity, reduced GPi activity, and excess motor cortex activity.
     Part2The effects of optical stimulation of excitatory afferent axons in GPe
     The GPe receives massive GABAergic afferent fibers from the striatum and glutamatergic afferent fibers from the STn. The Thyl-ChR2-EYFP transgenic mice are used for precisely controlling action potential firing of excitatory projection neurons using blue light. We established that ChR2-EYFP was expressed in the excitatory afferent axons in GPe, but not cell bodies of GPe. A fiber guide was inserted to the right GPe of the Thyl-ChR2-EYFP transgenic mouse. After illumination of the right GPe by blue light, the mouse developed the similar phenotype as VGAT-ChR2-EYFP transgenic mouse in the first part, such as twisted postures of the neck and the left arm spasm resembling dystonia and rotation. EEG recordings from the motor cortex during the optical stimulation did not show any abnormal activity. So these abnormal involuntary movements were not caused by seizures. The results indicated that increasing the activity of excitatory afferent axons in GPe could also induce abnormal involuntary movements. The increase of activity of afferent axons in GPe may be the neural substrates in some movement disorders. The excess GPe activity play a critical role in producing abnormal involuntary movements.
     Part3The effects of optical stimulation of specific glutamatergic afferent fibers from STn in GPe
     The GPe receives glutamatergic afferent fibers from the STN. In the second part we cannot establish whether the glutamatergic afferent fibers stimulated in GPe come from the STn. In this part, we delivered AAV carrying ChR2-mCherry under the CaMKIIa promoter to the right STn of the mice. ChR2-mCherry expression was specific to STn excitatory neuron cell bodies and precesses. ChR2-mCherry was expressed in the afferent fibers in the GPe. A fiber guide was inserted to the right GPe of this mouse. After illumination of the right GPe by blue light, the mouse developed the similar phenotype as VGAT-ChR2-EYFP transgenic mouse and Thyl-ChR2-EYFP transgenic mouse in the first and second part, such as twisted postures of the neck and rotation. The results shown that optical stimulation of specific glutamatergic afferent fibers in GPe, which come from STn, would cause abnormal involuntary movements. So the abnormal activity of this specific neuron pathway (glutamatergic projection neurons from STn to GPe) may be involved in the neural circuitry mechanism of abnormal involuntary movements related movement disorders. We also emphasized the important role of excess GPe activity in producing abnormal involuntary movements.
     Therefore, we first used optogenetic tools to reveal that excess GPe GABAergic neurons activity may be the cause of abnormal involuntary movements. This may be the neural substrates of abnormal involuntary movements related movement disorders. The increasing activity of specific glutamatergic afferent fibers in GPe, which come from STn, may be involved in the neural circuitry mechanism of abnormal involuntary movements related movement disorders. Excess GPe activity, reduced GPi activity and excess motor cortex activity may be the neural circuitry mechanism of the abnormal involuntary movements. The results provided an important clue to understand the neural circuitry mechanism of abnormal involuntary movements related movement disorders. GPe may be another good therapy target for abnormal involuntary movements related movement disorders.
引文
1. Marsden, C.D., THE MYSTERIOUS MOTOR FUNCTION OF THE BASAL GANGLIA-THE ROBERT WARTENBERG LECTURE. Neurology,1982. 32(5):p.514-539.
    2. DeLong, M.R., Primate models of movement disorders of basal ganglia origin. Trends Neurosci,1990.13(7):p.281-5.
    3. Graybiel, A.M., Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci,1990.13(7):p.244-54.
    4. Kawaguchi, Y., C.J. Wilson, and P.C. Emson, Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci, 1990.10(10):p.3421-38.
    5. Surmeier, D.J., J.N. Mercer, and C.S. Chan, Autonomous pacemakers in the basal ganglia:who needs excitatory synapses anyway? Current Opinion in Neurobiology,2005.15(3):p.312-318.
    6. Gatev, P., O. Darbin, and T. Wichmann, Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord,2006.21(10):p. 1566-77.
    7. Yizhar, O., et al., Optogenetics in neural systems. Neuron,2011.71 (1):p.9-34.
    8. Fenno, L., O. Yizhar, and K. Deisseroth, The development and application of optogenetics. Annu Rev Neurosci,2011.34:p.389-412.
    9. Zhang, F., et al., Multimodal fast optical interrogation of neural circuitry. Nature, 2007.446(7136):p.633-9.
    10. Welter, M.L., D. Grabli, and M. Vidailhet, Deep brain stimulation for hyperkinetics disorders:dystonia, tardive dyskinesia, and tics. Curr Opin Neurol, 2010.23(4):p.420-5.
    11. Kita, H., Globus pallidus external segment. Gaba and the Basal Ganglia:From Molecules to Systems,2007.160:p.111-133.
    12. Reiner, A., et al., Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A,1988.85(15):p.5733-7.
    13. Grabli, D., et al., Behavioural disorders induced by external globus pallidus dysfunction in primates:I. Behavioural study. Brain,2004.127:p.2039-2054.
    14. Bronfeld, M., et al., Bicuculline-Induced Chorea Manifests in Focal Rather Than Globalized Abnormalities in the Activation of the External and Internal Globus Pallidus. Journal of Neurophysiology,2010.104(6):p.3261-3275.
    15. Kita, H. and S.T. Kitai, THE MORPHOLOGY OF GLOBUS-PALLIDUS PROJECTION NEURONS IN THE RAT-AN INTRACELLULAR STAINING STUDY. Brain Research,1994.636(2):p.308-319.
    16. Zhao, S.L., et al., Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods,2011.8(9): p.745-U91.
    17. Franklin, G.P.K.B.J., The Mouse Brain in Stereotaxic Coordinates, second edition.2001 (Academic Press, New York).
    18. Smith, Y., et al., DISTRIBUTION OF GABA-IMMUNOREACTIVE NEURONS IN THE BASAL GANGLIA OF THE SQUIRREL-MONKEY (SAIMIRI-SCIUREUS). Journal of Comparative Neurology,1987.259(1):p. 50-64.
    19. Sagne, C., et al., Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. Febs Letters,1997.417(2):p. 177-183.
    20. Gasnier, B., The loading of neurotransmitters into synaptic vesicles. Biochimie, 2000.82(4):p.327-337.
    21. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A,2003.100(24):p.13940-5.
    22. Grabli, D., et al., Behavioural disorders induced by external globus pallidus dysfunction in primates:I. Behavioural study. Brain,2004.127(Pt 9):p. 2039-54.
    23. Mitchell, I.J., et al., Neural mechanisms of dystonia:evidence from a 2-deoxyglucose uptake study in a primate model of dopamine agonist-induced dystonia. Mov Disord,1990.5(1):p.49-54.
    24. Hantraye, P., et al., A primate model of Huntington's disease:behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol,1990.108(2):p.91-104.
    25. McCairn, K.W., et al., The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain,2009.132(Pt 8):p.2125-38.
    26. Kita, H., Parvalbumin-immunopositive neurons in rat globus pallidus:a light and electron microscopic study. Brain Res,1994.657(1-2):p.31-41.
    27. Kita, H. and S.T. Kitai, The morphology of globus pallidus projection neurons in the rat:an intracellular staining study. Brain Res,1994.636(2):p.308-19.
    28. Smith, Y., et al., Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol,1987.259(1): p.50-64.
    29. Kita, H., H. Tokuno, and A. Nambu, Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport,1999.10(7):p.1467-72.
    30. Kita, H. and T. Kita, Number, origins, and chemical types of rat pallidostriatal projection neurons. J Comp Neurol,2001.437(4):p.438-48.
    31. Staines, W.A. and H.C. Fibiger, Collateral projections of neurons of the rat globus pallidus to the striatum and substantia nigra. Exp Brain Res,1984.56(2): p.217-20.
    32. Bevan, M.D., et al., Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci,1998.18(22):p. 9438-52.
    33. Albin, R.L., A.B. Young, and J.B. Penney, The functional anatomy of basal ganglia disorders. Trends Neurosci,1989.12(10):p.366-75.
    34. Paleacu, D., Anca, M., Giladi, N., Olanzipine in Huntington's disease. Acta Neurol. Scand,2002.105:p.441-444.
    35. Ayalon, L., et al., Amelioration of behavioral deficits in a rat model of Huntington's disease by an excitotoxic lesion to the globus pallidus. Exp Neurol, 2004.186(1):p.46-58.
    36. Temel, Y., et al., Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington's disease. Neuroscience Letters,2006. 406(1-2):p.138-141.
    37. Matsumura, M., et al., ACTIVITY OF PALLIDAL NEURONS IN THE MONKEY DURING DYSKINESIA INDUCED BY INJECTION OF BICUCULLINE IN THE EXTERN AL PALLIDUM. Neuroscience,1995.65(1): p.59-70.
    38. Arenkiel, B.R., et al., In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron,2007.54(2):p.205-18.
    39. Wang, H., et al., High-speed mapping of synaptic connectivity using photostimulation in Channel rhodopsin-2 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America,2007.104(19):p. 8143-8148.
    40. Zhao, S., et al., Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods,2011.8(9):p. 745-52.
    41. Adamantidis, A.R., et al., Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature,2007.450(7168):p.420-4.
    42. Petreanu, L., et al., The subcellular organization of neocortical excitatory connections. Nature,2009.457(7233):p.1142-5.
    43. Ciocchi, S., et al., Encoding of conditioned fear in central amygdala inhibitory circuits. Nature,2010.468(7321):p.277-82.
    44. Lobo, M.K., et al., Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science,2010.330(6002):p.385-90.
    45. Kravitz, A.V., et al., Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature,2010.466(7306):p.622-6.
    46. Dittgen, T., et al., Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences of the United States of America,2004.101(52):p. 18206-18211.
    47. Monahan, P.E. and R.J. Samulski, Adeno-associated virus vectors for gene therapy:more pros than cons? Molecular Medicine Today,2000.6(11):p. 433-440.
    48. Tan, W., et al., Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci,2008.11(5):p.538-40.
    49. Benzekhroufa, K., et al., Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain. BMC Biotechnol,2009.9:p.23.
    50. Smith Y, P. A., Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res.,1988 Jun 21,453(1-2):p.353-6.
    51. Aravanis, A.M., et al., An optical neural interface:in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng,2007.4(3):p. S143-56.
    52. Kita, H. and S.T. Kitai, Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol, 1987.260(3):p.435-52.
    53. Smith Y, H.L., Parent A, Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol,1990 Apr 8.294(2):p.306-23.
    1. Alexander, GE., M.R. DeLong, and P.L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci,1986.9:p.357-81.
    2. Alexander, GE., M.D. Crutcher, and M.R. DeLong, Basal ganglia-thalamocortical circuits:parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res,1990.85:p.119-46.
    3. Middleton, F.A. and P.L. Strick, Basal ganglia and cerebellar loops:motor and cognitive circuits. Brain Res Brain Res Rev,2000.31(2-3):p.236-50.
    4. Monakow, K.H., K. Akert, and H. Kunzle, Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res,1978.33(3-4):p.395-403.
    5. Inase, M., et al., Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey:comparison with the input zones from the supplementary motor area. Brain Res,1999.833(2):p. 191-201.
    6. Takada, M., et al., Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci,2001.14(10):p.1633-50.
    7. Nambu, A., H. Tokuno, and M. Takada, Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neuroscience Research,2002. 43(2):p.111-7.
    8. Parent, M. and A. Parent, Single-axon tracing study of corticostriatal projections arising from primary motor cortex in primates. J Comp Neurol,2006.496(2):p. 202-13.
    9. Gerfen, C.R. and D.J. Surmeier, Modulation of striatal projection systems by dopamine. Annu Rev Neurosci,2011.34:p.441-66.
    10. Levesque, M. and A. Parent, The striatofugal fiber system in primates:a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A,2005.102(33):p.11888-93.
    11. McFarland, N.R. and S.N. Haber, Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci,2000. 20(10):p.3798-813.
    12. McFarland, N.R. and S.N. Haber, Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol,2001.429(2):p. 321-36.
    13. Smith, Y., et al., The thalamostriatal system:a highly specific network of the basal ganglia circuitry. Trends Neurosci,2004.27(9):p.520-7.
    14. Schultz, W. and A. Dickinson, Neuronal coding of prediction errors. Annu Rev Neurosci,2000.23:p.473-500.
    15. Cragg, S.J., Meaningful silences:how dopamine listens to the ACh pause. Trends Neurosci,2006.29(3):p.125-31.
    16. Calabresi, P., et al., Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci,2007.30(5):p.211-9.
    17. Hikosaka, O., Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci,2007.1104:p.229-49.
    18. Wickens, J.R., et al., Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann N Y Acad Sci,2007.1104:p.192-212.
    19. Surmeier, D.J., J. Plotkin, and W. Shen, Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol,2009. 19(6):p.621-8.
    20. Morris, G., R. Schmidt, and H. Bergman, Striatal action-learning based on dopamine concentration. Exp Brain Res,2010.200(3-4):p.307-17.
    21. Ingham, C.A., et al., Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci,1998.18(12):p. 4732-43.
    22. Gerfen, C.R., Indirect-pathway neurons lose their spines in Parkinson disease. Nat Neurosci,2006.9(2):p.157-8.
    23. Day, M., et al., Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci,2008.28(45):p.11603-14.
    24. Smith, Y., et al., The thalamostriatal systems:anatomical and functional organization in normal and parkinsonian states. Brain Res Bull,2009.78(2-3):p. 60-8.
    25. Villalba, R.M., H. Lee, and Y. Smith, Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol,2009.215(2):p.220-7.
    26. MacDonald, V. and G.M. Halliday, Selective loss of pyramidal neurons in the pre-supplementary motor cortex in Parkinson's disease. Mov Disord,2002.17(6): p.1166-73.
    27. Halliday, GM., V. Macdonald, and J.M. Henderson, A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson's disease. Brain,2005.128(Pt 10):p.2272-80.
    28. Pifl, C., G. Schingnitz, and O. Hornykiewicz, Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience,1991.44(3):p.591-605.
    29. Rommelfanger, K.S. and T. Wichmann, Extrastriatal dopaminergic circuits of the Basal Ganglia. Front Neuroanat,2010.4:p.139.
    30. Picconi, B., et al., Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci,2003.6(5):p.501-6.
    31. Prescott, I.A., et al., Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients. Brain,2009.132(Pt 2):p. 309-18.
    32. Kalen, P., et al., Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis:role of excitatory amino acids and GABA. Brain Res,1989. 492(1-2):p.187-202.
    33. Di Matteo, V., et al., Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. Prog Brain Res,2008.172:p.423-63.
    34. Pisani, A., et al., Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci,2007.30(10):p.545-53.
    35. Fox, S.H., R. Chuang, and J.M. Brotchie, Serotonin and Parkinson's disease:On movement, mood, and madness. Mov Disord,2009.24(9):p.1255-66.
    36. Miyachi, S., O. Hikosaka, and X. Lu, Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp Brain Res,2002. 146(1):p.122-6.
    37. Hoshi, E., et al., The cerebellum communicates with the basal ganglia. Nat Neurosci,2005.8(11):p.1491-3.
    38. Bostan, A.C., R.P. Dum, and P.L. Strick, The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A,2010.107(18):p.8452-6.
    39. Albin, R.L., A.B. Young, and J.B. Penney, The functional anatomy of basal ganglia disorders. Trends Neurosci,1989.12(10):p.366-75.
    40. DeLong, M.R., Primate models of movement disorders of basal ganglia origin. Trends Neurosci,1990.13(7):p.281-5.
    41. Marsden, C.D. and J.A. Obeso, The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain,1994.117 (Pt 4):p. 877-97.
    42. Soares, J., et al., Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced parkinsonism and lesions of the external pallidal segment. J Neurosci, 2004.24(29):p.6417-26.
    43. Filion, M. and L. Tremblay, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res,1991.547(1): p.142-51.
    44. Filion, M., L. Tremblay, and P.J. Bedard, Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res,1991.547(1):p.152-61.
    45. Bergman, H., et al., The primate subthalamic nucleus. Ⅱ. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology,1994.72(2):p. 507-20.
    46. Boraud, T., et al., High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett,1996. 215(1):p.17-20.
    47. Boraud, T., et al., Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res,1998.787(1):p.157-60.
    48. Heimer, G, et al., Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J Neurosci,2002.22(18):p.7850-5.
    49. Wichmann, T., M.A. Kliem, and J. Soares, Slow oscillatory discharge in the primate basal ganglia. Journal of Neurophysiology,2002.87(2):p.1145-8.
    50. Wichmann, T., et al., Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res,1999.125(4):p.397-409.
    51. Raz, A., E. Vaadia, and H. Bergman, Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci,2000.20(22):p.8559-71.
    52. Wichmann, T. and J. Soares, Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology,2006.95(4):p.2120-33.
    53. Leblois, A., et al., Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur J Neurosci,2007.26(6):p. 1701-13.
    54. Galvan, A., et al., Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys. Exp Neurol,2010.223(2):p.505-15.
    55. Menza, M., et al., Sleep disturbances in Parkinson's disease. Mov Disord,2010. 25 Suppl 1:p. S117-22.
    56. Fox, S.H. and J.M. Brotchie, The MPTP-lesioned non-human primate models of Parkinson's disease. Past, present, and future. Prog Brain Res,2010.184:p. 133-57.
    57. Filion, M., Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey. Brain Res,1979.178(2-3):p.425-41.
    58. Hutchison, W.D., et al., Differential neuronal activity in segments of globus pallidus in Parkinson's disease patients. Neuroreport,1994.5(12):p.1533-7.
    59. Magnin, M., A. Morel, and D. Jeanmonod, Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience,2000. 96(3):p.549-64.
    60. Vila, M., et al., Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci,2000.12(1): p.337-44.
    61. Ni, Z.G, et al., Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res,2001.899(1-2):p.142-7.
    62. Breit, S., et al., Effects of 6-hydroxydopamine-induced severe or partial lesion of the nigrostriatal pathway on the neuronal activity of pallido-subthalamic network in the rat. Exp Neurol,2007.205(1):p.36-47.
    63. Baufreton, J., et al., Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J,2005.19(13):p.1771-7.
    64. Baufreton, J., et al., D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance. J Neurosci,2003.23(3):p.816-25.
    65. Shen, K.Z. and S.W. Johnson, Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus. Neuroreport,2005.16(2):p.171-4.
    66. Bevan, M.D., N.E. Hallworth, and J. Baufreton, GABAergic control of the subthalamic nucleus. Prog Brain Res,2007.160:p.173-88.
    67. Goldberg, J.A., et al., Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci,2004.24(26):p.6003-10.
    68. Rivlin-Etzion, M., et al., Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol,2006.16(6):p.629-37.
    69. Hammond, C., H. Bergman, and P. Brown, Pathological synchronization in Parkinson's disease:networks, models and treatments. Trends Neurosci,2007. 30(7):p.357-64.
    70. Brown, P., Oscillatory nature of human basal ganglia activity:relationship to the pathophysiology of Parkinson's disease. Mov Disord,2003.18(4):p.357-63.
    71. Gatev, P., O. Darbin, and T. Wichmann, Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord,2006.21(10):p. 1566-77.
    72. Kuhn, A.A., et al., The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Exp Neurol,2005.194(1):p.212-20.
    73. Weinberger, M., et al., Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. Journal of Neurophysiology,2006.96(6):p.3248-56.
    74. Plenz, D. and S.T. Kital, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature,1999.400(6745):p.677-82.
    75. Holgado, A.J., J.R. Terry, and R. Bogacz, Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci, 2010.30(37):p.12340-52.
    76. Bevan, M.D., et al., Move to the rhythm:oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci,2002.25(10):p. 525-31.
    77. Terman, D., et al., Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci,2002.22(7):p.2963-76.
    78. Weinberger, M. and J.O. Dostrovsky, A basis for the pathological oscillations in basal ganglia:the crucial role of dopamine. Neuroreport,2011.22(4):p.151-6.
    79. Brown, P. and D. Williams, Basal ganglia local field potential activity:character and functional significance in the human. Clin Neurophysiol,2005.116(11):p. 2510-9.
    80. Bezard, E., et al., Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. Eur J Neurosci,1999.11(6):p.2167-70.
    81. Bezard, E., C.E. Gross, and J.M. Brotchie, Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends Neurosci,2003.26(4):p. 215-21.
    82. Mallet, N., et al., Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci,2008. 28(52):p.14245-58.
    83. Mallet, N., et al., Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci,2008.28(18):p.4795-806.
    84. Tseng, K.Y., et al., Substantia nigra pars reticulata units in 6-hydroxydopamine-lesioned rats:responses to striatal D2 dopamine receptor stimulation and subthalamic lesions. Eur J Neurosci,2000.12(1):p.247-56.
    85. Lee, H.S., et al., Common causes of hemiballism. Am J Emerg Med,2005.23(4): p.576-8.
    86. Levy, R., et al., Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. Journal of Neurophysiology,2001.86(1):p.249-60.
    87. Kliem, M.A., et al., Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. Journal of Neurophysiology,2007. 98(3):p.1489-500.
    88. Raike, R.S., H.A. Jinnah, and E.J. Hess, Animal models of generalized dystonia. NeuroRx,2005.2(3):p.504-12.
    89. Hantraye, P., et al., A primate model of Huntington's disease:behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol,1990.108(2):p.91-104.
    90. Mitchell, I.J., et al., Neural mechanisms of dystonia:evidence from a 2-deoxyglucose uptake study in a primate model of dopamine agonist-induced dystonia. Mov Disord,1990.5(1):p.49-54.
    91. Gerlach, J. and L. Hansen, Clozapine and D1/D2 antagonism in extrapyramidal functions. Br J Psychiatry Suppl,1992(17):p.34-7.
    92. Tang, J.K., et al., Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson's disease. Journal of Neurophysiology,2007.98(2):p.720-9.
    93. Starr, P.A., et al., Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. Journal of Neurophysiology,2005.93(6):p.3165-76.
    94. Hutchison, W.D., et al., Pallidal neuronal activity:implications for models of dystonia. Ann Neurol,2003.53(4):p.480-8.
    95. Zhao, Y., M. DeCuypere, and M.S. LeDoux, Abnormal motor function and dopamine neurotransmission in DYT1 DeltaGAG transgenic mice. Exp Neurol, 2008.210(2):p.719-30.
    96. Silberstein, P., et al., Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain,2003.126(Pt 12):p.2597-608.
    97. Carbon, M., et al., Abnormal brain networks in primary torsion dystonia. Adv Neurol,2004.94:p.155-61.
    98. Asanuma, K., M. Carbon-Correll, and D. Eidelberg, Neuroimaging in human dystonia. J Med Invest,2005.52 Suppl:p.272-9.
    99. Butefisch, C.M., et al., Task-dependent intracortical inhibition is impaired in focal hand dystonia. Mov Disord,2005.20(5):p.545-51.
    100. Sommer, M., et al., Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm. Mov Disord,2002.17(5):p.1017-25.
    101. Breakefield, X.O., et al., The pathophysiological basis of dystonias. Nat Rev Neurosci,2008.9(3):p.222-34.
    102. Obeso, J.A., et al., The origin of motor fluctuations in Parkinson's disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology, 2004.62(1 Suppl 1):p. S17-30.
    103. Soares-Weiser, K. and H.H. Fernandez, Tardive dyskinesia. Semin Neurol,2007. 27(2):p.159-69.
    104. Calabresi, P., et al., Levodopa-induced dyskinesias in patients with Parkinson's disease:filling the bench-to-bedside gap. Lancet Neurol,2010.9(11):p. 1106-17.
    105. Grabli, D., et al., Behavioural disorders induced by external globus pallidus dysfunction in primates:I. Behavioural study. Brain,2004.127(Pt 9):p. 2039-54.
    106. Bergman, H., T. Wichmann, and M.R. DeLong, Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science,1990.249(4975):p. 1436-8.
    107. Hamada, I. and M.R. DeLong, Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. Journal of Neurophysiology,1992.68(5):p.1859-66.
    108. Wichmann, T., H. Bergman, and M.R. DeLong, The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. Journal of Neurophysiology,1994.72(2):p.521-30.
    109. Papa, S.M., et al., Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Ann Neurol,1999.46(5):p.732-8.
    110. Silberstein, P., et al., Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson's disease. Exp Neurol,2005. 194(2):p.523-9.
    111. Alonso-Frech, F., et al., Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease. Brain,2006.129(Pt 7):p.1748-57.
    112. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell,1993.72(6):p.971-83.
    113. Paulsen, J.S., et al., Detection of Huntington's disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry,2008.79(8):p.874-80.
    114. Vonsattel, J.P. and M. DiFiglia, Huntington disease. J Neuropathol Exp Neurol, 1998.57(5):p.369-84.
    115. Kremer, H.P., et al., Atrophy of the hypothalamic lateral tuberal nucleus in Huntington's disease. J Neuropathol Exp Neurol,1990.49(4):p.371-82.
    116. Heinsen, H., et al., Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington's disease. Acta Neuropathol,1996.91(2):p. 161-8.
    117. Kassubek, J., et al., Global cerebral atrophy in early stages of Huntington's disease:quantitative MRI study. Neuroreport,2004.15(2):p.363-5.
    118. Petersen, A., et al., Orexin loss in Huntington's disease. Hum Mol/L Genet,2005. 14(1):p.39-47.
    119. Kita, H. and S.T. Kitai, Glutamate decarboxylase immunoreactive neurons in rat neostriatum:their morphological types and populations. Brain Res,1988.447(2): p.346-52.
    120. Wilson, C.J., H.T. Chang, and S.T. Kitai, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci,1990. 10(2):p.508-19.
    121. Graybiel, A.M., Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci,1990.13(7):p.244-54.
    122. Tepper, J.M., C.J. Wilson, and T. Koos, Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res Rev,2008.58(2):p.272-81.
    123. Vonsattel, J.P., et al., Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol,1985.44(6):p.559-77.
    124. Cicchetti, F., et al., Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington's disease. Brain Res Brain Res Rev, 2000.34(1-2):p.80-101.
    125. Ferrante, R.J., et al., Sparing of acetylcholinesterase-containing striatal neurons in Huntington's disease. Brain Res,1987.411(1):p.162-6.
    126. Ferrante, R.J., et al., Selective sparing of a class of striatal neurons in Huntington's disease. Science,1985.230(4725):p.561-3.
    127. Gerfen, C.R., et al., D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science,1990.250(4986):p.1429-32.
    128. Haber, S.N. and W.J. Nauta, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience,1983.9(2):p. 245-60.
    129. Vincent, S., et al., Immunohistochemical evidence for a dynorphin immunoreactive striato-nigral pathway. Eur J Pharmacol,1982.85(2):p.251-2.
    130. Kawaguchi, Y., C.J. Wilson, and P.C. Emson, Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci, 1990.10(10):p.3421-38.
    131. Menalled, L., et al., Decrease in striatal enkephalin mRNA in mouse models of Huntington's disease. Exp Neurol,2000.162(2):p.328-42.
    132. Chevalier, G. and J.M. Deniau, Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci,1990.13(7):p.277-80.
    133. Starr, P.A., et al., Pallidal neuronal discharge in Huntington's disease:support for selective loss of striatal cells originating the indirect pathway. Exp Neurol,2008. 211(1):p.227-33.
    134. Fasano, A., et al., GPi-DBS in Huntington's disease:results on motor function and cognition in a 72-year-old case. Mov Disord,2008.23(9):p.1289-92.
    135. Albin, R.L., et al., Striatal and nigral neuron subpopulations in rigid Huntington's disease:implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol,1990.27(4):p.357-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700