帕金森病及其发展过程中候选糖蛋白标志物的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经组织退行性疾病在现今快速老龄化的发展中国家及发达国家常见疾病谱里占有相当大的比重,如阿尔茨海默病(AD)、帕金森病(PD)和亨廷顿舞蹈病(HD)等。据世界帕金森病研究协会的资料显示,PD已经成为继AD(老年性痴呆)之后第二号神经疾病杀手。大多数PD患者于50~60岁发病,国外男性发病率高于女性(2:1),而我国的资料也表明,男性患者明显多于女性(2~3:1)。中国目前有超过200万的PD病患,这一数字远远超过了美国(少于100万人)。尽管中国人口统计学的变化及老龄化趋势不同于西欧和北美,但是中国正面临着大量的PD病例,预计在未来的十年里PD带来的负担将不断加大。
     PD是一种慢性中枢神经系统失调,是中老年人中常见的神经退行性疾病之一。其症状发展一般比较缓慢,发展的顺序各患者之间不尽相同,其主要特征为黑质纹状体通路的多巴胺能神经元的选择性变性。PD典型的病理学改变是包括α-synuclein和泛肽在内的胞浆内含物路易氏体(Lewy body)的出现。近几年,随着蛋白质组学及其相关技术的快速发展,质谱技术已广泛应用于PD发病机理的研究中,并找到了一些PD相关的特异性蛋白质,如α-synuclein和DJ-1等。但是,到目前为止PD的发病机理还不是十分明确。因此,寻找PD检测与监控的生物标志物对揭示PD发病机理具有重要意义。
     蛋白质糖基化是其翻译后重要的修饰方式之一,对细胞的正常生长起了重要的调节作用,直接或间接地影响着蛋白质的生物学功能。然而,蛋白质的异常糖基化会导致人类疾病的发生发展,如PD等。糖蛋白质组,作为蛋白质组的一个重要分支,涵盖了所有糖蛋白/糖肽的图谱与信息,并携带了许多潜在的疾病诊断和发病过程监控的生物标志物。目前在PD研究中,糖蛋白的发展还处于起步阶段,现代质谱技术的应用对糖蛋白的分析鉴定以及潜在生物标志物的筛选起到了很大的推动作用。
     本课题采用酰肼树脂法分离富集了正常人、不同程度PD患者和AD患者脑组织和脑脊液中的糖蛋白,用iTRAQ试剂对胰酶酶解后的糖肽进行定量标记,利用反相色谱和MALDI-TOF/TOF质谱技术鉴定并获得了人脑组织和脑脊液中糖蛋白谱,并对PD及其发展过程中潜在的糖蛋白标志物进行了初步筛选。
     研究内容:
     1.帕金森病及其发展过程人脑组织中糖蛋白谱的定性与定量分析;
     2.帕金森病及其发展过程人脑脊液中糖蛋白谱的鉴定;
     3.帕金森病及其发展过程中候选糖蛋白标志物的初步筛选。
     研究方法:
     1.样品取样与分组:
     (1)根据PD及其发展过程的病理诊断结果,设定了四个脑组织样品组(每组5例样本),取样区域为中前部脑回区,匀浆后进行蛋白定量测定。
     ①CTL组:无病史、症状或精神病和神经病的正常对照脑组织样品;
     ②PD-B组:病理检测为仅脑干出现LB的脑组织样品(Braak分级≤1);
     ③PD-L组:脑干及脑边缘出现LB的脑组织样品(Braak分级1-2级);
     ④PD-I组:大脑新皮层、脑干及脑边缘出现LB的脑组织样品(Braak分级4-5级)
     (2)从腰椎穿刺获得CSF样品,经无血污染检测后对样品进行分组。
     ①CTL组:无病史、症状或精神病和神经病的正常对照CSF样品(29例);
     ②AD组:经综合临床检验确诊为AD(美国NINCDS ADRDA标准)(51例);
     ③PDE组:早期PD组,经综合临床检验确诊为PD(Hoehn-Yahr分级≤1.5级,11例);
     ④PDL组:晚期PD组,经综合临床检验确诊为PD(Hoehn-Yahr分级≥3级,11例)
     2.人脑组织与脑脊液样品中总糖蛋白的分离纯化:
     (1)各组取等量蛋白用TCA/丙酮法沉淀总蛋白质;
     (2) BCA法测定脑组织匀浆液与脑脊液样品总蛋白含量;
     (3)脑组织与脑脊液总蛋白的胰酶酶解;
     (4) SDS-PAGE结合银染检验酶解完全程度;
     (5)脑组织与脑脊液总蛋白酶解片段的iTRAQ标记;
     (6) iTRAQ标记肽段的除盐、氧化与纯化;
     (7)酰肼树脂法富集经iTRAQ标记的糖肽:标记肽段与预处理酰肼凝胶孵育后经PNGase F酶切,获得纯化的N-糖肽。
     3.人脑组织与脑脊液糖肽的质谱分析:
     (1)待测样品用LC Packing Ultimate~(TM)液相色谱系统进行反相色谱分离后点板;
     (2) 4800 plus MALDI-TOF/TOF~(TM)质谱仪自动采集数据;
     (3)采用ProteinPilot~(TM)软件和EBI的IPI-人蛋白数据库对所得MS/MS图谱进行分析;
     (4)鉴定的糖蛋白与UniProtKB/Swiss-Prot数据库和ISB数据库中已知或可能/潜在的糖基化位点的糖蛋白进行校对;
     (5)应用GO分析对所得糖蛋白进行分类分析。
     4.应用western blotting法对筛选出的表达差异的候选糖蛋白标志物在血浆中做进一步的验证:
     (1)血浆样品分为正常对照、早期PD、中期PD以及晚期PD四组;
     (2)酰肼树脂法富集血浆总糖蛋白并进行蛋白浓度测定;
     (3)候选糖蛋白标志物在血浆样品中的western blotting分析。
     结果:
     1.根据BCA蛋白浓度测定结果,每组脑组织与脑脊液样品取120μg进行定性定量分析;
     2.银染结果显示脑组织与脑脊液样品总蛋白胰酶酶解完全;
     3.反相色谱图谱显示脑组织与脑脊液中iTRAQ标记糖肽分离效果良好,有助于质谱分析鉴定;
     4.采用ProteinPilot~(TM)软件和EBI的IPI-人蛋白数据库,对所得MS/MS图谱进行分析,分别找到了人脑组织和脑脊液中394种和283种非冗余糖蛋白。
     5.将所得糖蛋白数据与UniProtKB/Swiss-Prot和ISB的糖蛋白数据库进行比较后发现,人脑组织中有343种糖蛋白能够在这两个数据库中找到,特异性为87%(343/394),而人脑脊液中有243种糖蛋白能够在这两数据库中找到,特异性为86%(243/283)。所有鉴定的糖蛋白/糖肽经ProteinPilot~(TM)软件所得报告数据的可信度达到了95%(ProtScore≥1.3)。
     6.GO分析对人脑组织和脑脊液中糖蛋白进行细胞组分和生物过程分类,发现多数糖蛋白为细胞外蛋白和膜蛋白,其中人脑组织中糖蛋白以膜蛋白为主(IPIs=0.612),而人脑脊液中糖蛋白以细胞外蛋白为主(IPIs=0.606)。
     7.对人脑组织和脑脊液中糖蛋白谱进行对比分析,发现98种重叠蛋白(各占25%和40%),其中与CNS结构及功能相关的重叠蛋白有43种。
     8.对正常人和不同程度PD患者人脑组织中糖蛋白进行定量分析后发现,有43种糖蛋白的含量在这些样本中发生了明显的变化。
     9.Western blotting结果显示,无论是在分组试验还是在个体试验中,有6种候选糖蛋白的表达变化十分显著。其中4种糖蛋白表达上调,如CP、TNC、VCAN和MAG,2种表达下调,如NPTXR和GRIN2B。
     结论:
     本课题首次对正常人和PD患者脑组织以及脑脊液中糖蛋白谱进行了系统性的定性与定量分析,分别鉴定了394种和283种糖蛋白。研究发现,两种样品中有43种与中枢神经系统结构及功能相关的重叠蛋白。脑组织中鉴定得到的糖蛋白有43种存在表达差异,其中6种候选糖蛋白在血浆中表达变化显著,提示其很可能是PD及其发展过程中潜在的生物标志物。本课题为PD发病机理的阐明及疾病的检测和监控提供了重要的理论和实验资料。
PD is traditionally considered a movement disorder that results from a relatively selective loss of neurons in the brainstem,including dopaminergic neurons in the substantia nigra pars compacta,with subsequent loss of striatal dopamine and accompanied by the formation of intraneuronal inclusions called Lewy bodies that containα-synuclein as one of the major proteins.PD is the forth common disease occured in senior citizens.Although some unique proteins,such asα-synuclein and DJ-1, were studied,the pathogenesis of PD is still unknown.Additionally,selection of biomarkers that can predict and examine PD and its progression is important as well.
     Protein glycosylation regulates protein function and cellular distribution.Furthermore, aberrant protein glycosylations have been recognized to play major roles in human disorders,including PD and AD.Glycoproteomics,a branch of proteomics that catalogs and quantifies glycoproteins,provides a powerful means to systematically profile the glycopeptides or glycoproteins of a complex mixture,and therefore,cany great potential to be diagnostic and/or prognostic biomarkers.Until recently,very little has been known about the role of glycosylated proteins in PD.Application of this mass spectrometry-based technology will improve the identification and selection of glycoprotein biomarkers in PD and its progression.
     In this study,hydrazide resin was used to enrich glycoproteins which were isolated from brain tissue and CSF of normal people and PD patients.To perform quantitative analysis of glycoproteins unique to PD and PD progression,samples were digested with trypsin,followed with iTRAQ labeling.With MALDI-TOF/TOF,the glycoproteins/glycopeptides spectra were extracted and searched against the IPI human protein database with ProteinPilot~(TM) software with the Paragon~(TM) method.The raw peptide identification results flom the Paragon~(TM) Algorithm(Applied Biosystems) searches were further processed with the Pro Group~(TM) Algorithm within the ProteinPilot~(TM) software before final display.The Pro Group Algorithm uses the peptide identification results to determine the minimal set of proteins that can be reported for a given protein confidence threshold.
     The MS/MS analysis revealed a total of 394 non-redundant glycoproteins in human brain tissue and 283 non-redundant glycoproteins in hurnan CSF.In comparison with the existing publicly accessible database,343 of human tissue glycoproteins and 243 of human CSF glycoproteins were annotated in UniProtKB/Swiss-Prot and the ISB database as glycoproteins with known glycosylation sites or probable/potential glycosylation sites.The specificity of this approach were 87%(343/394) and 86% (243/283) separately.All reported data were based on 95%confidence for protein identification as determined by ProteinPilot(ProtScore≥1.3).
     Additionally.when the glycoproteins identified in human brain tissues and CSF were classified by GO analysis,it was apparent that a majority of the proteins belong to either the extracellular compartment or are associated with the plasma membrane.This is entirely consistent with the claim that most membrane proteins are glycosylated,and that a significant portion of glycoproteins are designated for secretion into the extracellular fluid and thereby enter blood or CSF.In this study,98 proteins were seen in brain tissue(a total of 394 proteins) and CSF(a total of 283 proteins) to account for 25% of brain tissue glycoproteins and 40%of CSF glycoproteins,besides 43 proteins are associated with CNS.These overlapping proteins identified with glycoprotein isolation are more likely related to PD pathogenesis.
     With quantitative analysis,more than 40 glycoproteins were changed in normal brain tissue and PD patients' brain tissue,which indicates that these glycoproteins might be the potential biomarkers in PD and its progress.For further study,the total plasma glycoproteins were isolated from normal people,PD in different stage and AD patiens by hydrazide resin to perform western blotting analysis.The result shows that 6 unique glycoproteins have notable expression both in group samples and in sigle samples.Thus, these candidate glycoproteins might be the potential biomarker in PD and its progression.
     It should be emphasized that this dataset represents the first systematic analysis of glycoproteins in human brain in normal and diseased settings.This study identificated and selected several glycoproteins as potential biomarker in PD and its progress,which provided important imformation and evidence to illustrate PD pathogenesis.
引文
[1]Chiang PK,Lam MA,Luo Y.The many faces of amyloid beta in Alzheimer's disease.Curr Mol Med.2008 8:580-584.
    [2]Butterfield DA,Castegna A,Thongboonkerd V,Klein JB,Lynn B,Markesbery WR,Tsuji T,Shiozaki A,Kohno R,Yoshizato K,Shimohama S,Aksenov M,Pierce WM,Booze R.Proteomic analysis of oxidatively modified proteins in Alzheimer's disease brain:insights into neurodegeneration.Cell Mol Biol(Noisy-le-grand).2003 49:747-751.
    [3]Castegna A,Aksenov M,Thongboonkerd V,Klein JB,Pierce WM,Booze R,Markesbery WR,Butterfield DA.Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain.Part Ⅱ:dihydropyrimidinase-related protein 2,alpha-enolase and heat shock cognate 71.J Neurochem.2002 82:1524-1532.
    [4]Finehout E J,Franck Z,Choe LH,Relkin N,Lee KH.Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease.Ann Neurol.2007 61:120-129,
    [5]Jin J,Hulette C,Wang Y,Zhang T,Pan C,Wadhwa R,Zhang J.Proteomic identification of a stress protein,mortalin/mthsp70/GRP75:relevance to Parkinson disease.Mol Cell Proteomics.20065:1193-1204.
    [6]Leverenz JB,Umar l,Wang Q,Montine T J,McMillan P J,Tsuang DW,Jin J,Pan C,Shin J,Zhu D,Zhang J,Proteomic identification of novel proteins in cortical lewy bodies.Brain Pathol.200717:139-145.
    [7]Osorio C,Sullivan PM,He DN,Mace BE,Ervin JF,Strittmatter W J,Alzate O.Mortalin is regulated by APOE in hippocampus of AD patients and by human APOE in TR mice.Neurobiol Aging.2007 28:1853-1862.
    [8]Simonsen AH,McGuire J,Podust VN,Hagnelius NO,Nilsson TK,Kapaki E,Vassilopoulos D,Waldemar G.A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer's disease versus normal aging and flontotemporal dementia.Dement Geriatr Cogn Disord.2007 24:434-440.
    [9]Hann SR.Role of post-translational modifications in regulating c-Myc proteolysis,transcriptional activity and biological function.Semin Cancer Biol.2006 16:288-302.
    [10]Apweiler R,Hermjakob H,Sharon N.On the frequency of protein glycosylation,as deduced from analysis of the SWISS-PROT database.Biochim Biophys Acta.1999 1473:4-8.
    [11]Hagglund P,Bunkenborg J,Elortza F,Jensen ON,Roepstorff P.A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation.J Proteome Res.2004 3:556-566.
    [12]Kameyama A,Nakaya S,Ito H,Kikuchi N,Angata T,Nakamura M,lshida HK,Narimatsu H.Strategy for simulation of CID spectra of N-linked oligosaccharides toward glycomics.J Proteome Res.2006 5:808-814.
    [13]Varki A,Kornfeld S.Structural studies of phosphorylated high mannose-type oligosaccharides.J Biol Chem,1980,255:10847-10858
    [14]Pan S,Wang Y,Quinn JF,Peskind ER,Waichunas D,Wimberger JT,Jin J,Li JG,Zhu D,Pan C,Zhang J.Identification of glycoproteins in human cerebrospinal fluid with a complementary proteomic approach.J Proteome Res.2006 5:2769-2779.
    [15]Sihlbom C,Davidsson P,Emmett MR,Marshall AG,L.NC.Glycoproteomics of cerebrospinal fluid in neurodegenerative disease Int J Mass Spectrom.2004 234:145-152.
    [16]Dalpathado DS,Desaire H.Glycopeptide analysis by mass spectrometry.Analyst.2008Jun;133(6):731-8.
    [17]Shi,M.,et al.Mortalin:A Protein Associated with Progression of Parkinson Disease? J.Neuropathol.Exp.Neurol.2008 67,117-124.
    [18]Jankovic J.Parkinson's disease.A half century of progress.Neurology.2001 57:S1-3.
    [19]Lowe J,Graham L,Leigh PN.Disorders of movement and system degeneration.In:Graham DI,Lantos PL,Graham DI,Lantos PLGraham DI,Lantos PLs'.Greenfield's Neuropathology.London:Arnold.1997 p 281-366.
    [20]Braak H,Del Tredici K,Rub U,de Vos RA,Jansen Steur EN,Braak E.Staging of brain pathology related to sporadic Parkinson's disease.Neurobiol Aging.2003 24:197-211.
    [21]Braak H,Ghebremedhin E,R(u|¨)b U,Bratzke H,Del Tredici K.Stages in the development of Parkinson's disease-related pathology.Cell Tissue Res.2004 318(1):121-34,
    [22]Bloch A,Probst A,Bissig H,et al.Neuropathol Appl Neurobiol,2006,32:284
    [23]Braak H,Rub U,Sandmann-Keil D,Gai WP,de Vos RA,Jansen Steur EN,Arai K,Braak E.Parkinson's disease:affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system.Acta Neuropathol.2000 99:489-495.
    [24]Sudo S,Shiozawa M,Cairns NJ,Wada Y.Aberrant accentuation of neurofibrillary degeneration in the hippocampus of Alzheimer's disease with amyloid precursor protein 717 and presenilin-1 gene mutations.J Neurol Sci.2005 234:55-65.
    [25]Wenk GL.Neuropathologic changes in Alzheimer's disease.J Clin Psychiatry.2003 64 Suppl 9:7-10.
    [26]Abdi F,Quinn JF,Jankovic J,Mclntosh M,Leverenz JB,Peskind E,Nixon R,Nutt J,Chung K,Zabetian C,Samii A,Lin M,Hattan S,Pan C,Wang Y,Jin J,Zhu D,Li G J,Liu Y,Waichunas D, Montine T J,Zhang J.Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders.J Alzheimers Dis.2006 9:293-348.
    [27]Borghi R,Marchese R,Negro A,Marinelli L,Forloni G,Zaccheo D,Abbruzzese G,Tabaton M.Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson's disease and normal subjects.Neurosci Lett.2000 287:65-67.
    [28]El-Agnaf OM,Salern SA,Paleologou KE,Curran MD,Gibson M J,Court JA,Schlossmacher MG,Allsop D.Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson's disease.Faseb J.2006 20:419-425.
    [29]Tokuda T,Salem SA,Allsop D,Mizuno T,Nakagawa M,Qureshi MM,Locascio J J,Schlossmacher MG,El-Agnaf OM.Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease.Biochem Biophys Res Commun.2006349:162-166
    [30]Verbeek MM,De Jong D,Kremer HP.Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases.Ann Clin Biochem.2003 40:25-40.
    [31]Hirotani M,Malta C,Niino M,Iguchi-Ariga S,Hamada S,Ariga H,Sasaki H.Correlation between D J-1 levels in the cerebrospinal fluid and the progression of disabilities in rnultiple sclerosis patients.Mult Scler.2008 14:1056-1060.
    [32]Waragai M,Wei J,Fujita M,Nakai M,Ho G J,Masliah E,Akatsu H,Yamada T,Hashimoto M.Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson's disease.Biochem Biophys Res Commun.2006 345:967-972.
    [33]Pan S,Shi M,Jin J,Albin RL,Lieberman A,Gearing M,Lin B,Pan C,Yan X,Kashima DT,Zhang J.Proteomics identification of proteins in human cortex using multidimensional separations and MALDI tandem mass spectrometer.Mol Cell Proteomics.2007a 6:1818-1823.
    [34]Pan S,Zhu D,Quinn JF,Peskind ER,Montine TJ,Lin B,Goodlett DR,Taylor G,Eng J,Zhang J.A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry.Proteomics.2007b 7:469-473.
    [35]Tang J,Gao M,Deng C,Zhang X.Recent development of multi-dimensional chromatography strategies in proteome research.J Chromatogr B Analyt Technol Biorned Life Sci.2008;866(1-2):123-32.
    [36]Zougman A,Pilch B,Podtelejnikov A,Kiehntopf M,Schnabel C,Kumar C,Mania M.Integrated analysis of the cerebrospinal fluid peptidome and proteome.J Proteome Res.20087:386-399.
    [37]Gulcicek EE,Colangelo CM,McMurray W,Stone K,Williams K,Wu T,Zhao H,Spratt H, Kurosky A,Wu B.Proteomics and the analysis of proteomic data:an overview of current protein-profiling technologies.Curr Protoc Bioinformatics Chapter.2005 13:Unit 1311.
    [38]Jobst KA,Barnetson LP,Shepstone BJ.Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia:the use of NINCDS-ADRDA and DSM-Ⅲ-R criteria,SPECT,X-ray CT,and APO E4 medial temporal lobe dementias.The Oxford Project to Investigate Memory and Aging.Int Psychogeriatr.1997 9 Suppl 1:191-222;discussion 247-152.
    [39]Rite l,Arguelles S,Venero JL,Garcia-Rodriguez S,Ayala A,Cano J,Machado A.Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration.J Neurosci Res.2007 85:3607-3618.
    [40]Simonsen AH,McGuire J,Podust VN,Hagnelius NO,Nilsson TK,Kapaki E,Vassilopoulos D,Waldemar G.A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer's disease versus normal aging and frontotemporal dementia.Dement Geriatr Cogn Disord.2007 24:434-440.
    [41]Tumani H,Teunissen C,Sussmuth S,Otto M,Ludolph AC,Brettschneider J.Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases.Expert Rev Mol Diagn.20088:479-494.
    [42]Yang YR,Liu SL,Qin ZY,Liu F J,Qin Y J,Bai SM,Chen ZY.Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barre syndrome.Cell Mol Neurobiol.200828:737-744.
    [43]Yuan X,Desiderio DM.Human cerebrospinal fluid peptidomics.J Mass Spectrom.200540:176-181.
    [44]Srivastava R,Murphy M J,Jeffery J.Cerebrospinal fluid:the role of biochemical analysis.Br J Hosp Med(Lond).2008 69:218-221.
    [45]Aebersold R,Anderson L,Caprioli R,Druker B,Hartwell L,Smith R.Perspective:a program to improve protein biomarker discovery for cancer.J Proteome Res.2005 4:1104-1109.
    [46]Qian W J,Jacobs JM,Liu T,Camp DG,2nd,Smith RD.Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications.Mol Cell Proteomics.2006 5:1727-1744.
    [47]Roth J.Protein N-glycosylation along the secretory pathway:relationship to organelle topography and function,protein quality control,and cell interactions.Chem Rev.2002 102:285-303.
    [48]Dexter DT,Wells FR,Lees A J,Agid F,Agid Y,Jenner P,Marsden CD.Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease.J Neurochem. 1989 52:1830-1836.
    
    [49] Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989 52:515-520.
    
    [50] Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006 22:1600-1607.
    
    [51] Dimmer E, Berardini TZ, Barrell D, Camon E. Methods for gene ontology annotation. Methods Mol Biol. 2007;406:495-520.
    
    [52] Kitsou E, Pan S, Zhang J, Shi M, Zabeti A, Dickson D, Albin R, Gearing M, Kashima D, Wang Y, Beyer R, Zhou Y, Pan C, Caudle W, Zhang J. Identification of proteins in human substantia nigra. PROTEOMICS - CLINICAL APPLICATIONS. 2008 2:776-782.
    
    [53] Yang YR, Liu SL, Qin ZY, Liu FJ, Qin YJ, Bai SM, Chen ZY. Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barre syndrome. Cell Mol Neurobiol. 2008 28:737-744.
    
    [54] Maluf DG, Mas VR, Archer KJ, Yanek K, Gibney EM, King AL, Cotterell A, Fisher RA, Posner MP. Molecular pathways involved in loss of kidney graft function with tubular atrophy and interstitial fibrosis. Mol Med. 2008 May-Jun;14(5-6):276-85.
    
    [55] Fournier HN, Dupe-Manet S, Bouvard D, Lacombe ML, Marie C, Block MR, Albiges-Rizo C. Integrin cytoplasmic domain-associated protein 1 alpha (ICAP-1 alpha ) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Bio! Chem. 2002 Jun 7;277(23):20895-902. Epub 2002 Mar 27.
    
    [56] Lane RP, Chen XN, Yamakawa K, Vielmetter J, Korenberg JR, Dreyer WJ. Characterization of a highly conserved human homolog to the chicken neural cell surface protein Bravo/Nr-CAM that maps to chromosome band 7q31. Genomics. 1996 Aug 1 ;35(3):456-65.
    
    [57] Sato M, Gitlin JD. Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J. Biol. Chem. 1991. 266:5128-34.
    
    [58] Desai V, Kaler SG. Role of copper in human neurological disorders.Am J Clin Nutr. 2008 Sep;88(3):855S-8S.
    
    [59] Boll MC, Alcaraz-Zubeldia M, Montes S, Rios C. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem Res. 2008;33(9): 1717-23.
    
    [60] Klevay LM. Alzheimer's disease as copper deficiency. Med Hypotheses. 2008;70(4):802-807.
    
    [61] Bharucha KJ, Friedman JK, Vincent AS, Ross ED. Lower serum ceruloplasmin levels correlate with younger age of onset in Parkinson's disease.J Neurol.2008;255(12):1957-1962.
    [62]Rouault TA,Cooperman S.Brain iron metabolism.Semin Pediatr Neurol.2006;13(3):142-148.
    [63]Hellman Ne,Gitlin Jd.Ceruloplas Minmetabolism and Function.Annu.Rev.Nutr.2002;22:439-458.
    [64]Esposito I,Penzel R,Chaib-Harrireche M,Barcena U,Bergmann F,Riedl S,Kayed H,Giese N,Kleeff J,Friess H,Schirmacher P.Tenascin C and annexin Ⅱ expression in the process of pancreatic carcinogenesis.J Pathol 2006;208:673-685
    [65]Von Lukowicz T,Silacci M,Wyss MT,Trachsel E,Lohmann C,Buck A,L(u|¨)scher TF,Neri D,Matter CMHuman antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques ex vivo.J Nucl Med.2007 Apr;48(4):582-7
    [66]Garcion E,Halilagic A,Faissner A,ffrench-Constant C.Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C.Development.2004 Jul;131(14):3423-32
    [67]Marchionini DM,Collier TJ,Camargo M,McGuire S,Pitzer M,Sortwell CE.Interference with anoikis-induced cell death of dopamine neurons:implications for augmenting embryonic graft survival in a rat model of Parkinson's disease.J Comp Neurol.2003 Sep 15;464(2):172-9.
    [68]l Jones FS,Jones PL.The tenascin family of ECM glycoproteins:structure,function,and regulation during embryonic development and tissue remodeling.Dev Dyn.2000 Jun;218(2):235-59
    [69]The therapeutic effects of Rho-ROCK inhibitors on CNS disorders.Kubo T,Yamaguchi A,lwata N,Yamashita T.Ther Clin Risk Manag.2008 Jun;4(3):605-15.
    [70]Popp S,Andersen JS,Maurel P,Margolis RU.Localization of aggrecan and versican in the developing rat central nervous system.Dev Dyn.2003;227(1):143-9.
    [71]Zimmermann DR,Dours-Zimmermann MT.Extracellular matrix of the central nervous system:from neglect to challenge.Histochem Cell Biol.2008;130(4):635-653.
    [72]Asher RA,Morgenstern DA,Shearer MC,Adcock KH,Pesheva P,Fawcett JW.Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells.J Neurosci.2002 Mar 15;22(6):2225-36.
    [73]Kim S,Takahashi H,Lin WW.Descargues P,Grivennikov S,Kim Y,Luo JL,Karin M.Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.Nature.2009;457:102-106.
    [74]Moran LB,Hickey L,Michael GJ,Derkacs M,Christian LM,Kalaitzakis ME,Pearce RK,Graeber MB.Neuronal pentraxin Ⅱ is highly upregulated in Parkinson's disease and a novel component of Lewy bodies.Acta Neuropathol.2008 115:471-478.
    [75]Hsu YC.Perin MS.Human neuronal pentraxin Ⅱ(NPTX2):conservation,genomic structure,and chromosomal localization.Genomics.1995 28:220-227.
    [76]Loftis JM,Janowsky A.The N-methyl-D-aspartate receptor subunit NR2B:localization,functional properties,regulation,and Clinical implications.Pharmacol Ther.2003 Jan;97(1):55-85.
    [77]Leaver KR,Allbutt HN,Creber N J,Kassiou M,Henderson JM.Neuroprotective effects of a selective N-methy1-D-aspartate NR2B receptor antagonist in the 6-hydroxydopamine rat model of Parkinson's disease.Clin Exp Pharmacol Physiol.2008 Nov;35(11):1388-94.
    [78]Nakazawa T,Komai S,Tezuka T,Hisatsune C,Urnemori H,Semba K,Mishina M,Manabe T,Yamamoto T.Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2(NR2B) subunit of the N-methyl-D-aspartate receptor.J Biol Chem.2001 Jan 5;276(1):693-9.
    [79]Clark RA,Gurd JW,Bissoon N,Tricaud N,Molnar E,Zamze SE,Dwek RA,Mcllhinney RA,Wing DR.Identification of lectin-purified neural glycoproteins,GPs 180,116,and 110,with NMDA and AMPA receptor subunits:conservation of glycosylation at the synapse.J Neurochem.1998;70(6):2594-2605.
    [80]Haltiwanger RS,Lowe JB.Role of glycosylation in development.Annu Rev Biochem.200473:491-537.
    [81]Lowe JB,Marth JD.A genetic approach to Mammalian glycan function.Annu Rev Biochem.2003 72:643-691.
    [82]Morelle W,Michalski JC.Glycomics and mass spectrometry.Curt Pharm Des.200511:2615-2645.
    [83]Zaia J.Mass spectrometry and the emerging field of glycomics.Chem Biol.2008 15:881-892.
    [84]Spiro RG.Protein glycosylation:nature,distribution,enzymatic formation,and disease implications of glycopeptide bonds.Glycobiology.2002 12:43R-56R.
    [85]Nalivaeva NN,Turner AJ.Post-translational modifications of proteins:acetylcholinesterase as a model system.Proteomics.2001 1:735-747.
    [86]Johansen PG,Marshall RD,Neuberger A.Carbohydrates in protein.3 The preparation and some of the properties of a glycopeptide from hen's-egg albumin.Biochem J.1961 78:518-527.
    [87]Spiro RG.Glycoproteins.Adv Protein Chem.1973 27:349-467.
    [88]Spiro RG.Periodate Oxidation of the Glycoprotein Fetuin.J Biol Chem.1964 239:567-573.
    [89]Tanaka K,Bertolini M,Pigman W.Serine and threonine glycosidic linkages in bovine submaxillary mucin.Biochem Biophys Res Commun.1964 16:404-409.
    [90]Gendler S J,Spicer AP.Epithelial mucin genes.Annu Rev Physiol.1995 57:607-634.
    [91]Flanisch FG.O-glycosylation of the mucin type.Biol Chem.2001 382:143-149.
    [92]Ngoh GA,Jones SP.New insights into metabolic signaling and cell survival:the role of beta-O-linkage of N-acetylglucosamine.J Pharmacol Exp Ther,2008,327(3):602-609
    [93]Varki A,Kornfeld S.Structural studies of phosphorylated high mannose-type oligosaccharides.J Biol Chem,1980,255:10847-10858
    [94]Peracaula R,Barrab(?)s S,Sarrats A,et al.Altered glycosylation in tumours focused to cancer diagnosis.Dis Markers,2008,25(4-5):207-18
    [95]Saez-Valero J,Fodero LR,Sjogren M,et al.Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer's disease.J Neurosci Res,2003,72:520-526
    [96]Silveyra MX,Cuadrado-Corrales N,Marcos A,et al.Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease.J Neurochern,2006,96:97-104
    [97]Sihlbom C,Davidsson P,Emmett MR,et al.Glycoproteomics of cerebrospinal fluid in neurodegenerative disease Int J Mass Spectrom,2004,234:145-152
    [98]Saez-Valero J,Barquero MS,Marcos A,et al.Altered glycosylation of acetylcholinesterase in lumbar cerebrospinal fluid of patients with Alzheimer's disease.J Neurol Neurosurg Psychiatry,2000,69:664-667
    [99]Saez-Valero J,Sberna G,McLean CA,et al.Molecular isoform distribution and glycosylation of acetylcholinesterase are altered in brain and cerebrospinal fluid of patients with Alzheimer's disease.J Neurochem,1999,72:1600-1608
    [100]Saez-Valero J,Small DH.Acetylcholinesterase and butyrylcholinesterase glycoforms are biomarkers of Alzheimer's disease.J Alzheimers Dis,2001,3:323-328
    [101]Liu F,Zaidi T,Iqbal K,Grundke-lqbal 1,Merkle RK,Gong CX.Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease.FEBS Lett.2002 512:101-106.
    [102]Wang JZ,Grundke-Iqbal I,Iqbal K.Glycosylation of microtubule-associated protein tau:an abnormal posttranslational modification in Alzheimer's disease.Nature Med.1996 2(8):871-875.
    [103]Arnold CS,Johnson GV,Cole RN,Dong DL,Lee M,Hart GW.The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine.J Biol Chem.1996271(46):28741-28744.
    [104]Robertson LA,Moya KL,Breen KC.The potential role of tau protein O-glycosylation in Alzheimer's disease.J Alzheimers Dis.2004 6:489-495.
    [105]Farrer M,Chan P,Chen R,Tan L.Lincoln S.Hernandez D,Forno L,Gwinn-Hardy K,Petrucelli L,Hussey J,Singleton A,Tanner C,Hardy J,Langston JW.Lewy bodies and parkinsonism in families with parkin mutations.Ann Neurol.2001 50:293-300.
    [106]Shimura H,Schlossmacher MG,Hattori N,Frosch MP,Trockenbacher A.Schneider R,Mizuno Y,Kosik KS,Selkoe DJ.Ubiquitination of a new form of alpha-synuclein by parkin from human brain:implications for Parkinson's disease.Science.2001 293:263-269.
    [107]Tan EK,Skipper LM.Pathogenic mutations in Parkinson disease.Hurn Mutat.200728:641-653.
    [108]M.Geng,X.Zhang,M.Bina and F.Regnier,Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests,J.Chromatogr.,B.Biomed Appl.,2001,752,293-306.
    [109]M.Wuhrer,M.I.Catalina,A.M.Deelder and C.H.Hokke,Glycoproteomics based on tandem mass spectrometry of glycopeptides,J.Chromatogr.,B,2007,849,115-128.
    [110]B.H.Clowers,E.D.Dodds,R.R.Seipert J.Hirabayashi,Lectin-based structural glycomics:Glycoproteomics and glycan profiling,Glycoconjugate J.,2004,21,35-40.
    [111]J.Bunkenborg,B.J.Pilch,A.V.Podteleinikov and J.R.Wisniewski,Screening for N-glycosylated proteins by liquid chromatography mass spectrometry,Proteomics,2004,4,454-465.
    [112]Sihlbom C,Davidsson P,Emmett MR,et al.Glycoproteomics of cerebrospinal fluid in neurodegenerative disease Int J Mass Spectrom,2004,234:145-152
    [113]Goldstein I J,Hollerman CE,Smith EE.Protein-Carbohydrate Interaction.li.Inhibition Studies on the Interaction of Concanavalin a with Polysaccharides.Biochemistry.1965 4:876-883.
    [114]Kamra A,Gupta MN.Crosslinked concanavalin A-O-(diethylaminoethyl)-cellulose—an affinity medium for concanavalin A-interacting glycoproteins.Anal Biochem.1987 164:405-410.
    [115]Yahara I,Edelman GM.Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A.Proc Natl Acad Sci U S A.1972 69:608-612.
    [116]Sparbier K,Wenzel T,Kostrzewa M.et al.Exploring the binding profiles of ConA,boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles.J Chromatogr B Analyt Technol Biomed Life Sci,2006,840(1):29-36
    [117]Novogrodsky A,Lotan R,Ravid A,Sharon N.Peanut agglutinin,a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment.J Immunol.1975 115:1243-1248.
    [118]Yamashita K,Totani K,Ohkura T,Takasaki S,Goldstein IJ,Kobata A.Carbohydrate binding properties of complex-type oligosaccharides on immobilized Datura stramonium lectin.J Biol Chem.1987 262:1602-1607.
    [119]gundy JL,Fenselau C.Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms.Anal Chem.2001 73:751-757.
    [120]Wiener MC,van Hock AN.A lectin screening method for membrane glycoproteins: application to the human CH1P28 water channel(AQP-1).Anal Biochem.1996 241:267-268.
    [121]Bunkenborg J,Pilch B J,Podtelejnikov AV,Wisniewski JR.Screening for N-glycosylated proteins by liquid chromatography mass spectrometry.Proteomics.2004 4:454-465.
    [122]Ghosh D,Krokhin O,Antonovici M,Ens W,Standing KG,Beavis RC,Wilkins JA.Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins.J Proteome Res.20043:841-850.
    [123]Xiong L,Andrews D,Regnier F.Colnparative proteomics of glycoproteins based on lectin selection and isotope coding.J Proteome Res.2003 2:618-625.
    [124]Zhang H,Li XJ,Martin DB,Aebersold R.Identification and quantification of N-linked glycoproteins using hydrazide chemistry,stable isotope labeling and mass spectrometry.Nat Biotechnol.2003 21:660-666.
    [125]Sun B,Ranish JA,Utleg AG,White JT,Yan X,Lin B,Hood L,Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics.Mol Cell Proteomics.2007 6:141-149.
    [t26]Yan J,Fang H,Wang B.Boronolectins and fluorescent boronolectins:an examination of the detailed chemistry issues important for the design.Med Res Rev 2005;25:490-520
    [127]Monzo A,Bonn GK,Guttman A.Boronic acid-lectin affinity chromatography.1.Simultaneous glycoprotein binding with selective or combined elution.Anal Bioanal Chem.2007389:2097-2102.
    [128]Mechref Y,Madera M,Novotny MV.Glycoprotein enrichment through lectin affinity techniques.Methods Mol Biol.2008 424:373-96.
    [129]Doucette A,Craft D,Li L.Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptides mass mapping of proteins from dilute solutions.Anal.Chem.2000 72:3355-3362
    [130]Lee J H,Kim Y,Ha M Y,Lee E K,Choo J.Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry.J.Am.Soc.Mass Spectrom.2005 16:1456-1460
    [131]Sparbier K,Koch S,Kessler I,Wenzel T,Kostrzewa M.Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles.J Biomol Tech.2005 16(4):407-413.
    [132]Larsen MR,Cordwell S J,Roepstorff P.Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry.Proteomics.2002 2:1277-1287.
    [133]Madera M.Mechref Y,Klouckova I.Novotny MV.High-sensitivity profiling of glycoproteins from human blood serum through multiple-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry.J Chromatogr B Analyt Technol Biomed Life Sci.2007845:121-137.
    [134]Madera M,Mechref Y,Klouckova I,Novotny MV.Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry.J Proteome Res.2006 5:2348-2363.
    [135]Madera M,Mechref Y,Novotny MV.Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides.Anal Chem.200577:4081-4090.
    [136]Wang Y,Wu SL,Hancock WS.Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap—Fourier transforrn mass spectrometry.Glycobiology.2006 16:514-523.
    [137]Yang Z,Hancock WS.Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column.J Chromatogr A.2004 1053:79-88.
    [138]Kuno A,Uchiyama N,Koseki-Kuno S,Ebe Y,Takashima S,Yamada M,Hirabayashi J.Evanescent-field fluorescence-assisted lectin microarray:a new strategy for glycan profiling.Nat Methods.2005 2:851-856.
    [139]Liang X,Lubman D M,Rossi D T,Nordblom G D,Barksdale C M.On-probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry.Anal.Chem.199870:498-503.
    [140]Brockman AH,Dodd BS,Orlando R.A desalting approach for MALDI-MS using on-probe hydrophobic self-assembled monolayers.Anal Chem.1997 69(22):4716-4720.
    [141]Zhang YH,Wang XY,Shah W,Wu BY,Fan HZ,Yu XJ,Tang Y,Yang PY.Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis.Angew Chem Int Ed Engl.2005 44(4):615-617.
    [142]Dalpathado DS,Desaire H.Glycopeptide analysis by mass spectrometry.Analyst.2008Jun;133(6):731-8.
    [143]Lattard V,Fondeur-Gelinotte M,Gulberti S,Jacquinet JC,Boudrant J,Netter P,Magdalou J,Ouzzine M,Fournel-Gigleux S.Purification and characterization of a soluble form of the recombinant human galactose-betal,3-glucuronosyltransferase I expressed in the yeast Pichia pastoris.Protein Expr Purif.2006 47:137-143.
    [144]Kussmann M,Lassing U.Sturmer CA,Przybylski M,Roepstorff P.Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of the neural cell adhesion protein neurolin purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis or acidic precipitation.J Mass Spectrom.1997 32:483-493.
    [145]Hagglund P,Bunkenborg J,Elortza F,Jensen ON,Roepstorff P.A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation.J Proteome Res.2004 3:556-566.
    [146]Larsen MR,Cordwell SJ,Roepstorff P.Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry.Proteomics.2002 2:1277-1287.
    [147]Zhou M,Veenstra T.Mass spectrometry:m/z 1983-2008.Biotechniques.2008Apr;44(5):667-8,670.
    [148]Fuchs B,Schiller J.MALDI-TOF MS analysis of lipids from cells,tissues and body fluids.Subcell Biochem.2008;49:541-65.
    [149]Zhou Y,Aebersold R,Zhang H.Isolation of N-linked glycopeptides from plasma.Anal Chem.2007 79:5826-5837.
    [150]Liu T,Qian WJ,Gritsenko MA,Camp DG,2nd,Monroe ME,Moore RJ,Smith RD.Human plasma N-glycoproteome analysis by immunoaffinity subtraction,hydrazide chemistry,and mass spectrometry.J Proteome Res.2005 4:2070-2080.
    [151]Yang Z,Hancock WS,Chew TR,Bonilla L.A study of glycoproteins in human serum and plasma reference standards(HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS.Proteomics.2005 5:3353-3366.
    [152]Hanisch FG.O-glycosylation of the mucin type.Biol Chem.2001 382:143-149.
    [153]Rademaker GJ,Pergantis SA,Blok-Tip L,Langridge JI,Kleen A,Thomas-Oates JE.Mass spectrometric determination of the sites of O-glycan attachment with low picomolar sensitivity.Anal Biochem.1998 257:149-160.
    [154]Haynes PA,Aebersold R.Simultaneous detection and identification of O-GlcNAc-modified glycoproteins using liquid chromatography-tandem mass spectrometry.Anal Chem.200072:5402-5410.
    [155]Mirgo rodskaya E,Roep sto rff P,Zubarev RA.Localizat ion of O 2glyco sylat ion Sites in Pep t ides by Elect ron Cap ture D issociat ion in a Fourier T ransfo rm Ion Cyclo t ron ResonanceM ass Spec2 t rometer.A nal Chem.1999 71(20):4431-4436
    [156]Catalina MI,Koeleman CA,Deelder AM,Wuhrer M.Electron transfer dissociation of N-glycopeptides:loss of the entire N-glycosylated asparagine side chain.Rapid Commun Mass Spectrom.2007 21:1053-1061.
    [157]Mormann M,Paulsen H,Peler-Katalinic J.Electron capture dissociation of O-glycosylated peptides:radical site-induced fragmentation of glycosidic bonds.Eur J Mass Spectrom(Chichester,Eng).2005 11:497-511.
    [158]Hakansson K,Cooper H J,Emmett MR,Costello CE,Marshall AG,Nilsson CL.Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information.Anal Chem.2001 73:4530-4536.
    [159]Hogan JM,Pitteri S J,Chrisrnan PA,McLuckey SA.Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation.J Proteome Res.2005 4:628-632.
    [160]Durham M,Regnier FE.Targeted glycoproteomics:serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome.J Chromatogr A.2006 1132:165-173.
    [161]Irungu J,Go EP,Zhang Y,Dalpathado DS,Liao HX,Haynes BF,Desaire H.Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein.J Am Soc Mass Spectrom.2008 19:1209-1220.
    [162]Sihlbom C,Davidsson P,Emmett MR,Marshall AG,L.NC.Glycoproteomics of cerebrospinal fluid in neurodegenerative disease Int J Mass Spectrom.2004 234:145-152.
    [163]Lochnit G,Geyer R.An optimized protocol for nano-LC-MALDI-TOF-MS coupling for the analysis of proteolytic digests of glycoproteins.Biomed Chromatogr.2004 18:841-848.
    [164]CancillaM ark T,Penn Sharron G,L ebrilla Car2 lito B.Alkaline Degradation of Oligo saccharides Coup led With M at fix A ssisted Laser Deso rp t ion lonizat ion2Fourier T ransfo rm Ion Cyclo tron Res2 onance M ass Spect romet ry:A M ethod fo r Se2 quencing O ligo saccharides.A nal Chem.1998 70(4):663-672,
    [165]Zhang J,Lamotte L,Dodds ED,Lebrilla CB.Atmospheric pressure MALD1 Fourier transform mass spectrometry of labile otigosaccharides.Anal Chem.2005 77(14):4429-4438.
    [166]Levin Y,Schwarz E,Wang L,Leweke FM,Bahn S.Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples.J Sep Sci.2007 30:2198-2203.
    [167]Gygi SP,Rist B,Gerber SA,Turecek F,Gelb MH,Aebersold R.Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.Nat Biotechnol.1999 17:994-999.
    [168]Haqqani AS,Kelly JF,Stanimirovic DB.Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags.Methods Mol Biol,2008 439:225-240.
    [169]Aggarwal K,Choe LH,Lee KH.Shotgun proteomics using the iTRAQ isobaric tags.Brief Funct Genomic Proteomic.2006 5:112-120.
    [170]Kaii H,Saito H,Yamauchi Y,Shinkawa T,Taoka M,Hirabayashi J,Kasai K,Takahashi N,Isobe T.Lectin affinity capture,isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins.Nat Biotechnol.2003 21:667-672.
    [171]Kaji H,Yamauchi Y,Takahashi N,lsobe T.Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging.Nat Protoc.2006 1:3019-3027.
    [172]Becker GW.Stable isotopic labeling of proteins for quantitative proteomic applications Brief Funct Genomic Proteomic.2008 7(5):371-382.
    [173]Patton WF.Detection technologies in proteome analysis.J Chromatogr B Analyt Technol Biomed Life Sci.2002 771(1-2):3-31.
    [174]Colangelo CM,Williams KR.Isotope-coded affinity tags for protein quantification.Methods Mol Biol.2006 328:151-158.
    [175]Zhou H,Ranish JA,Watts JD,Aebersold R.Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry.Nat Biotechnol.2002 20(5):512-515.
    [176]Zhou H,Boyle R,Aebersold R.Quantitative protein analysis by solid phase isotope tagging and mass spectrometry.Methods Mol Biol.2004 261:511-518.
    [177]Lu Y,Bottari P,Turecek F,Aebersold R,Gelb MH.Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags.Anal Chem.2004 Jul 15;76(14):4104-11.
    [178]Lu Y,Bottari P,Aebersold R,Turecek F,Gelb MH.Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags.Methods Mol Biol.2007;359:159-76.
    [179]Martin B,Brenneman R,Becker KG,Gucek M,Cole RN,Maudsley S.iTRAQ analysis of complex proteome alterations in 3×TgAD Alzheimer's mice:understanding the interface between physiology and disease.PLoS ONE.2008 3:e2750.
    [180]Song X,Bandow J,Sherman J,Baker JD,Brown PW,McDowell MT,Molloy MP.iTRAQ experimental design for plasma biomarker discovery.J Proteome Res.2008 7:2952-2958.
    [181]Han H,Pappin D J,Ross PL,McLuckey SA.Electron transfer dissociation of iTRAQ labeled peptide ions.J Proteome Res.2008 Sep;7(9):3643-8.
    [182]D'Ascenzo M,Choe L,Lee KH.iTRAQPak:an R based analysis and visualization package for 8-plex isobaric protein expression data.Brief Funct Genomic Proteomic.2008 7:127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700