气体信号分子硫化氢对帕金森病模型鼠的神经保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化氢(H_2S)是一种内源性气体信号分子,参与哺乳动物众多生物学功能的调节。因此,H_2S与一氧化氮和一氧化碳一起被称作“气体递质”。近十年来,人们对于H_2S在中枢神经系统(central nervous system, CNS)和心血管系统中作用的研究日益深入,发现H_2S作为脑内一种新的神经调质,促进海马长时程增强效应,调节细胞内钙离子稳态和pH水平,调节多种重要的生理功能。已证实H_2S代谢异常参与缺血性脑卒中、阿尔茨海默症(AD)、亨廷顿舞蹈病(HD)和反复发作的热性惊厥等中枢神经系统疾病的发生发展。研究也已阐明H_2S参与脑内氧化应激、神经炎症和细胞凋亡的调节,可能与帕金森病(Parkinson’s disease, PD)等神经退行性疾病的病理机制相关,但至今尚未见确切报道。
     PD是一种严重危害中老年人健康、以黑质-纹状体多巴胺(DA)能神经元进行性丢失为主要病理特征、发病率仅次于AD的第二大类神经退行性疾病。在我国65岁以上人群中PD的发病率约2%,占世界PD患者总数的40%以上,且有逐年增高的趋势。预期未来10年内我国罹患PD的人数将占全球患者总数的60%以上。半个多世纪以来,左旋多巴替代疗法一直是临床治疗PD的主要手段。然而,左旋多巴仅能缓解症状,并不能阻止PD的病理进程,且长期使用还可导致许多严重的不良反应。针对DA能神经元损伤的病理机制,尽管已提出兴奋性毒性、线粒体功能障碍、氧化应激、炎症等学说,但导致DA能神经元损伤的确切机制目前仍不清楚,这已经成为制约研发理想治疗药物和临床治疗学突破的瓶颈。显然,加强PD的病因学研究,阐明PD中多巴胺能神经元进行性变性、坏死的病理机制,探索神经保护的新策略,显得十分紧迫和必要。研究已表明AD患者相关脑区内H_2S产生和代谢异常,提示H_2S可能参与了AD的发生、发展,其机制涉及H_2S抗氧化、抗凋亡及抗炎和促炎的双重作用。本实验室前期研究发现,应用外源性H_2S可抑制LPS诱导的小胶质细胞活化和鱼藤酮诱导的神经元线粒体功能障碍。而小胶质细胞活化介导的神经炎症和线粒体功能障碍激活的神经元凋亡是PD发生的重要病理机制。尽管研究提示H_2S可能与PD相关,但目前尚未获得直接的支持证据。
     本文工作首先研究内源性H_2S与6-OHDA诱导的PD大鼠模型的病理相关性,研究给予外源性H_2S对PD模型大鼠行为学和病理学损伤的影响及其作用机制。第二部分工作应用原代培养的大鼠星形胶质细胞建立氧化损伤细胞模型,研究H_2S对星形胶质细胞损伤的保护作用,阐明H_2S对谷氨酸摄取功能的影响及机制。第三部分工作应用野生型(wild-type,WT)小鼠、Kir6.2敲除(Kir6.2 knockout,Kir6.2-/-)小鼠和线粒体解耦联蛋白2敲除(UCP2 knockout,UCP2~(-/-))小鼠,建立亚急性MPTP/p PD小鼠模型,研究H_2S对PD小鼠病理学和神经递质水平的影响,阐明H_2S对PD发挥神经保护作用的靶点和可能的分子机制。本文工作的研究结果为H_2S参与PD病程的发生、发展提供直接的支持证据,并阐明外源性H_2S在PD神经损伤中发挥多靶点的保护作用,为PD的临床治疗学提供新的思路和策略。
     目的:研究、阐明H_2S与PD的相关性及外源性H_2S对PD模型大鼠的神经保护作用。
     方法:建立单侧纹状体立体定位注射6-OHDA诱导的PD大鼠模型,通过皮下注射阿扑吗啡诱导动物对侧旋转行为。筛选出成功的PD大鼠给予NaHS(1.68 mg/kg和5.6 mg/kg,i.p.)治疗3周,动态观测行为学症状的变化。给药结束后,处死大鼠、灌注取脑并收集新鲜脑组织。醋酸锌法测定相关脑区H_2S浓度;免疫组织化学染色观察中脑黑质和纹状体TH神经元损伤;应用Western-blotting法检测上述脑区酪氨酸羟化酶表达;应用MDA试剂盒测定中脑脂质过氧化产物MDA含量。培养SH-SY5Y神经元细胞株,分离纯化胞浆蛋白和胞膜蛋白,应用Western-blotting法检测NADPH氧化酶胞膜亚基gp91的表达及胞浆亚基p47从胞浆向胞膜转运情况。
     结果:1)单侧纹状体内注射6-OHDA四周后,阿扑吗啡诱导的PD模型大鼠出现明显的健侧旋转行为,表明模型建立成功;相较于伪手术组大鼠,6-OHDA模型大鼠患侧纹状体内H_2S浓度显著降低(P<0.05),健侧亦有下降趋势,但无显著性差异(P>0.05),提示脑内内源性H_2S与PD的发生、发展密切相关。2)NaHS治疗3周显著抑制模型大鼠对侧旋转症状进行性加重,且显著改善6-OHDA诱导的患侧黑质致密部和纹状体内多巴胺能神经元减少;同时,Western blotting分析发现NaHS逆转上述脑区酪氨酸羟化酶(TH)表达的下调。3)NaHS显著减轻6-OHDA引起的纹状体内MDA合成增加,提示H_2S对PD模型大鼠的神经保护作用与其抗氧化应激损伤相关;整体和离体研究均证实NaHS显著抑制NADPH氧化酶膜亚基gp91表达上调和胞浆亚基p47的转运,且该作用依赖抑制ERK1/2磷酸化。
     结论:
     1、脑内H_2S水平与6-OHDA诱导的PD大鼠模型的发生、发展相关。
     2、外源应用H_2S能够改善模型动物行为学和病理学损伤,发挥神经保护作用。
     3、H_2S神经保护作用的机制涉及抑制NADPH氧化酶活化,减轻氧化应激损伤。
     目的:研究H_2S对原代培养的SD大鼠星形胶质细胞损伤的保护作用及其对谷氨酸摄取功能的影响,阐明H_2S对PD的神经损伤发挥保护作用的细胞与分子机制。
     方法:分离、培养SD大鼠脑内星形胶质细胞,给予内源性氧化物质H_2O_2,建立损伤模型,研究H_2S对H_2O_2诱导的星形胶质细胞损伤作用的调节。MTT法和LDH检测研究H_2O_2和H_2S对星形胶质细胞活力的影响。GSH和ROS水平测定观察H_2S的抗氧化应激作用。应用同位素标记的谷氨酸摄取实验检测H_2S对星形胶质细胞谷氨酸再摄取功能的影响。应用Western-blotting法观察星形胶质细胞谷氨酸转运体GLT-1在细胞内的转运(trafficking)状态以及调节其转运的MAPK信号通路的活化情况。
     结果:1)H_2S供体NaHS呈浓度依赖性地减轻H_2O_2(200μM)引起的星形胶质细胞活力下降和LDH释放增加;NaHS(100μM)预处理15分钟逆转H_2O_2引起的细胞内抗氧化物质还原型谷胱甘肽(GSH)的合成减少。上述作用均可被特异性谷氨酸摄取抑制剂PDC所取消;同时,NaHS改善H_2O_2引起的胞内ROS蓄积和ATP生成减少。2)H_2S合成酶CBS抑制剂AOAA加重H_2O_2所致星形胶质细胞活力下降、LDH释放增加以及裂解型PARP蛋白表达上调,提示内源性H_2S参与细胞内抗氧化损伤作用。3)NaHS预处理逆转H_2O_2损伤的星形胶质细胞[3H]谷氨酸摄取功能,且促进谷氨酸转运体GLT-1从胞浆向胞膜转运。同时发现ERK1/2磷酸化抑制剂PD98059具有相似的作用。NaHS显著抑制H_2O_2激活的ERK1/2磷酸化,表明H_2S通过MAPK信号通路影响GLT-1的转运。
     结论:
     1、离体研究发现H_2S增强SD大鼠星形胶质细胞谷氨酸摄取功能,促进胞内抗氧化物质GSH合成,可能是H_2S对氧化应激损伤发挥保护作用的主要机制之一。
     2、硫化氢抑制谷氨酸转运体氧化失活,促进其从胞浆向胞膜转运,并保障主动摄取所需的能量,从而调节星形胶质细胞谷氨酸摄取功能。
     目的:应用野生型(wild-type,WT)、Kir6.2敲除(Kir6.2 knockout,Kir6.~(2-/-))和UCP2敲除(UCP2 knockout,UCP~(2-/-))小鼠,建立亚急性MPTP/p PD小鼠模型,从整体、细胞及分子水平研究、阐明H_2S对PD的神经保护作用及其机制。
     方法:应用MPTP(20 mg·kg~(-1))皮下注射,间隔1小时腹腔注射丙磺舒(250 mg·kg~(-1)),连续给药5天,制备亚急性PD小鼠模型。给药结束后2天进行5-溴脱氧尿核苷(5-bromodeoxyuridine,BrdU,50 mg·kg~(-1),i.p. every 2 h,共4次)标记。NaHS(5.6 mg·kg~(-1)·day~(-1), i.p.)在MPTP首次给药前3天应用,连续给药8天。造模结束后3.5天处死动物,收集标本。应用免疫组织化学结合体视学计数、ImageJ软件分析黑质致密部(substantia nigra pars compacta, SNpc)DA能神经元损伤;同时检测黑质致密部星形胶质细胞和小胶质细胞增殖活化;室管膜下层(subventricular zone, SVZ)和颗粒细胞下层(subgranular zone, SGZ)神经再生情况;应用高效液相色谱法(HPLC)检测纹状体脑区单胺类及氨基酸类神经递质及其代谢产物水平的变化。离体培养小鼠中脑神经元,应用免疫细胞化学染色检测MPP+所致神经元数目及突起长度损伤;应用Western-blotting分析内质网应激启动的GRP78、CHOP和Caspase12及溶酶体自噬标志物LC3的表达。
     结果:1)在亚急性MPTP/p PD模型中,Kir6.~(2+/+)和Kir6.~(2-/-)两种基因型小鼠中脑TH神经元损伤,胶质细胞活化,神经再生及纹状体单胺类和氨基酸类递质水平变化均无显著性差异(p>0.05)。2)NaHS预处理提高模型中Kir6.~(2+/+)和Kir6.~(2-/-)两种基因型小鼠的存活率,且显著改善两种基因型小鼠黑质致密部TH神经元减少、星形胶质细胞和小胶质细胞的增殖活化;减轻SGZ区神经干细胞增殖的抑制(p<0.05);但对纹状体DA及其代谢产物水平改变无显著影响(p>0.05)。3)NaHS改善MPP+诱导的两种基因型中脑TH神经元数目和平均突起长度减少。其机制涉及NaHS抑制MPP+引起的内质网应激中蛋白伴侣分子GRP78、转录因子CHOP、效应分子Caspase12和溶酶体自噬标志物LC3的表达上调,并抑制下游NF-κB信号通路的激活。4)线粒体内膜解耦联蛋白2(uncoupling protein 2,UCP2)敲除取消NaHS对亚急性MPTP模型小鼠SNc区TH神经元的保护作用,同时取消NaHS改善MPP+导致离体培养的中脑TH神经元数目和平均突起长度减少,LDH释放增加的作用,提示H_2S的神经保护作用依赖UCP2。
     结论:
     1、H_2S对MPTP/p PD模型小鼠的神经损伤具有确切的保护作用。
     2、H_2S的神经保护作用不依赖Kir6.2/K-ATP通道,线粒体内膜上的UCP2可能是H_2S的作用靶点。
     3、H_2S抑制ROS引起的内质网应激及下游凋亡通路,发挥神经保护作用。
     综上所述,本文工作的主要创新之处在于:
     1、阐明内源性H_2S与PD的发生、发展密切相关本文研究发现神经毒素诱导的PD模型大鼠相关脑区内H_2S水平显著降低,提示脑内H_2S水平降低参与了PD的发生发展过程,为H_2S与PD的相关性提供了直接的实验证据。
     2、发现外源性H_2S对PD的神经损伤具有保护作用通过在体和离体研究,发现应用外源性H_2S对PD模型动物出现的行为学症状、TH神经元丢失、星形胶质细胞功能障碍、小胶质细胞增殖活化和神经干细胞增殖抑制均有显著的改善作用,在学术界首次报道H_2S作为一种神经保护剂对PD神经损伤具有确切的保护作用,为临床防治PD提供了新的思路和策略。
     3、揭示H_2S对PD模型动物的神经保护作用不依赖K-ATP通道本文研究发现敲除表达于神经元的K-ATP通道孔道形成亚基Kir6.2,不能取消H_2S对PD模型小鼠神经损伤的保护作用,表明H_2S对PD小鼠的神经保护作用不依赖K-ATP通道。而线粒体UCP2敲除则能取消H_2S对中脑TH神经元的保护作用,提示H_2S的作用靶点可能是位于K-ATP通道上游的UCP2。该发现不仅揭示了H_2S保护作用的机制,也为PD的神经保护和研发理想治疗药物提供了有益的靶标。
Hydrogen sulfide (H_2S) was known to be a toxic gas and an environmental hazard for many decades. However, it is now recognized that H_2S may serve as a gaseous mediator, which is endogenously produced to influence biological functions in mamalian. Together with nitric oxide and carbon monoxide, they form the group of mediators that has been termed the‘gasotransmitters’. The past decade has seen an exponential growth of scientific interest in the physiological and pathological significance of H_2S especially with respect to its role in the central nervous system (CNS) and the cardiovascular system. In the CNS, H_2S facilitates long-term potentiation (LTP) and regulates intracellular calcium concentration and pH level in brain cells. Intriguingly, H_2S produces anti-oxidant, anti-inflammatory and anti-apoptotic effects that may have relevance to neurodegenerative disorders. Abnormal generation and metabolism of H_2S have been reported in the pathogenesis of ischemic stroke, Alzheimer’s disease (AD), and recurrent febrile seizure. Exogenously applied H_2S is demonstrated to have value for the treatment of febrile seizure. However, whether endogenous H_2S is involved in the progress of PD and the therapeutic effects of H_2S on PD are still unclear so far. Therefore, more attention should be focus on its neuroprotective effects and the underlying cellular and molecular mechanisms in neurodegeneration.
     Parkinson’s disease (PD), the second most popular neurodegenerative disorder, is characterized by selective degeneration of dopamine neurons in the substantia nigra and aggregation of Lewy bodies (LBs) in neuron. The incidence rate of the disease increases along with aging, and more than 2% of the population aged over 65 years are attacked by the disease. In current, the first chosen for clinical treatment of PD is administration of L-DOPA, which alleviates the symptoms only and can not retard dopaminergic neuron degeneration. Although various hypotheses, including genetic factors, mitochondrial dysfunction, oxidative stress, excitotoxicity, neuroinflammation and apoptosis had been proposed to be involved in the pathogenesis of PD, the exact mechanisms governing dopaminergic neuron loss remain unclear. The predominant obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration.
     Therefore, the most important concern should be focused on the investigation of effective targets for PD treatment in future study. Previous studies reported that the level of H_2S is decreased in hippocampus of AD patients, suggesting H_2S be involved in the progress of AD. Our previous investigations also demonstrated that exogenous H_2S inhibited LPS stimulated microglial activation and rotenone induced mitochondrial dysfunction. Moreover, both microglial inflammation and mitochondrial apoptosis are triggers for the development of PD. All of these studies reveal that H_2S has potential influence in neurodegeneration. So far, however, there is no direct evidences support the hypothesis that H_2S exerts neuroprotective effect in Parkinson’s disease.
     Base on these findings, the aim of present studies is to investigate the role of H_2S in PD model. We first established 6-OHDA lesioned PD rat model to investigate the endogenous H_2S level in injured striatum and the neuroprotective effect of exogenous H_2S on neural injury in PD rat model. Secondly, we explored the regulatory effect of H_2S on glutamate uptake function in primary cultured astrocytes in vitro. Finally, Kir6.2 knockout mice were used to establish PD mouse model by subcutaneous injection of MPTP. We observed the protective effects of H_2S on neurotransmitter and pathological alterations in PD mice and demonstrated the potential molecular targets for H_2S. The results suggested that H_2S may serve as a neuroprotectant in neurotoxin-induced neurodegeneration via multiple mechanisms and therefore has potential therapeutic value for treatment of PD.
     AIM: The present study was designed to examine the endogenous H_2S level in injured striatum of PD rats and investigate the therapeutic effect of H_2S on behavioral symptom and loss of TH neuron in PD model.
     METHODS: Unilateral injection of 6-OHDA in striatum (AP: +3.0 mm; ML: +1.0 mm; DV: -4.5 mm) was performed to establish rat PD model. Apomorphine was subcutaneously injected to induce contralateral rotations, which were recorded with a video camera at weekly intervals, considering as the behavioral symptom of PD model. NaHS (1.68 mg/kg and 5.6 mg/kg) was systemic administrated in successful PD rats for 3 weeks to examine the therapeutic effect of H_2S. Endogenous H_2S level was measured with zinc acetate trapping method. Immunohistochemistry was performed to detect the staining of tyrosine hydroxylase (TH) in substantia nigra and striatum. Western blotting confirmed the expression of TH in SN and striatum. The product of lipid peroxidation, malondialdehyde (MDA), was measured by commercial assay kit. SH-SY5Y cells were cultured to carry out cell fractionation. The membrane and cytosolic fractions were probed with antibody against gp91, p47 and ERK1/2.
     RESULTS: 1) Apomorphine induced marked contralateral rotations in the rats accepted unilateral injection of 6-OHDA, suggesting that the animal PD model was established successfully. The endogenous H_2S level was significantly reduced in the lesioned SN of PD rat, indicating that H_2S be involved in the development of PD. 2) Systemic administration of NaHS (1.68 and 5.6 mg/kg, i.p.) for 3 weeks dramatically alleviated the progression of movement dysfunction and attenuated the loss of dopaminergic neurons in the SN and striatum. Western blotting confirmed that NaHS reversed the downregulation of TH expression in SN and striatum. 3) NaHS inhibited the elevated MDA level in injured striatum of PD rat. Furthermore, NaHS specifically suppressed 6-OHDA evoked NADPH oxidase activation by inhibiting upregulation of gp91 in cytomembrane and trafficking of p47. CONCLUSION:
     1. Reduction of endogenous H_2S level is involved in the development of PD rat model.
     2. H_2S has potential therapeutic value for behavioral symptom and loss of dopaminergic neurons in 6-OHDA lesioned rats.
     3. H_2S exerts anti-oxidative role via inhibition of NADPH oxidase activation.
     AIM: The present study was designed to investigate the effect of hydrogen sulfide (H_2S), a novel neuromodulator, on hydrogen peroxide (H_2O_2)-induced glutamate uptake impairment and cellular injuries in primary cultured rat cortical astrocytes.
     METHODS: Primary cultured SD rat astrocytes were used to establish H_2O_2 injured cellular model. MTT assay was employed to examine cell viability and LDH measurement was applied to detect cellular injury. GSH and ROS level were measured to reflect the anti-oxidative effect of H_2S in astrocytes. Experiment of [3H] labeled glutamate uptake was performed to investigate the effect of H_2S on H_2O_2 injured astrocytic glutamate transporter. Western blotting was used to analysis the phosphorylation of ERK1/2, expression of total ERK1/2, trafficking of GLT~(-1) from cytoplasma to cytomembrane.
     RESULTS: 1) H_2O_2 (200μM) significantly decreased astrocytic cell viability and stimulated massive LDH release. NaHS attenuated H_2O_2 induced decline of cell survival in a concentration dependent manner and reversed H_2O_2 decreased intracellular GSH production. The protective effect of H_2S could be abolished by PDC, which is specific inhibitor for glutamate uptake. NaHS also attenuated ROS accumulation and ATP deficiency induced by H2O2. 2) CBS inhibitor, AOAA, aggravated H2O2 induced reduction of cell viability, increase of LDH release and cleaved PARP expression, indicating that endogenous H_2S exerts anti-oxidative effect. 3) NaHS reversed H2O2 impaired [3H]-glutamate uptake function, and enhanced the trafficking of GLT~(-1) from cytoplasma to cytomembrane. PD98059, an ERK1/2 inhibitor, exerted similar effect on GLT~(-1) trafficking. Moreover, NaHS suppressed H2O2 evoked phosphorylation of ERK1/2, promoting GLT~(-1) transport via inhibition of MAPK signal pathway. CONCLUSION:
     1. H_2S has protective effect on oxidative stress-induced astrocyte impairment via enhancing glutamate uptake function.
     2. H_2S may promote glutamate uptake activity via decreasing ROS generation, enhancing ATP production and suppressing ERK1/2 activation.
     Part III The neuroprotective effects of hydrogen sulfide in MPTP mouse model of Parkinson’s disease
     AIM: To investigate the role and the mechanism of H_2S on MPTP-induced degeneration of dopaminergic neurons in MPTP/p PD model using Kir6.2 or UCP2 deficiency mice.
     METHODS: Wild type, Kir6.~(2-/-) and UCP~(2-/-) mice were treated with MPTP (20 mg·kg~(-1) s.c.) and probenecid (250 mg·kg~(-1) i.p.) daily for 5 days. NaHS (5.6 mg·kg~(-1)·day~(-1), i.p.) was administered to mice 3 days before the first injection with MPTP and last for 8 days totally. BrdU (50 mg·kg~(-1) i.p, every 2 h, total 4 times) was injected one day before sacrifice. Mice were killed 3.5 days after the final injection of MPTP. Immunohistochemistry was performed to examine tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), macrophage~(-1) antigen (Mac~(-1)) and 5-bromodeoxyuridine (BrdU) expression. The total numbers of TH, GFAP and Mac~(-1) positive cells in the SNc and BrdU-positive cells in the subventricular zone (SVZ) and subgranular zone (SGZ) were obtained stereologically using the optical fractionator method. HPLC with electrochemical detectionwas used to measure striatal levels of different neurotransmitters, including DA, DOPAC, HVA, 5-HT, 5-HIAA, glutamate and GABA. Mesencephalic primary neuron was cultured to detect the neurotoxicity induced by MPP+. The levels of GRP78, CHOP, caspase12, LC3 and NF-κB were determined by Western blotting.
     RESULTS: 1) There was no significant difference (p>0.05) in MPTP/p induced impairment of neral pathology and neurotransmitters between Kir6.~(2+/+) and Kir6.~(2-/-) mice. 2) Pretreatment with NaHS (5.6 mg/kg) decreased mortality induced by MPTP/p and attenuated loss of TH neuron, activation of astrocytes and microglia in SNc and inhibition of cell proliferation in SGZ of both Kir6.~(2+/+) and Kir6.~(2-/-) mice (p<0.05). However, NaHS had no effect on decreased dopamine level in striatum of PD mouse (p>0.05). 3) Pretreatment with NaHS protected primary mesencephalic neurons against MPP+-induced cytotoxicity in both Kir6.~(2+/+) and Kir6.~(2-/-) neurons. The mechanisms for the effect of NaHS are involved in suppressing MPP+ induced upregulation of GRP78, CHOP, caspase12 and LC3 expression. NaHS also inhibited activation of NF-kB pathway by reducing p65 transported into nucleus. 4) UCP2 knockout abolished the neuroprotective effects of H_2S on MPP+-induced damage of TH neurons in both in vivo and in vitro study, suggesting that UCP2 may be the target for H_2S.
     CONCLUSION:
     1. H_2S alleviates the loss of TH neuron, the activation of astrocytes and microglia and attenuates the inhibition of cell proliferation in MPTP/p mouse model, suggesting that H_2S may exert neuroprotective effects on neurodegeneration.
     2. The neuroprotective effect of H_2S is independent on Kir6.2/K-ATP channel in MPTP/p mouse model. However, UCP2 located in mitochondrial membrane may be the molecular target for H_2S.
     3. H_2S inhibits endoplasmic reticulum stress and downstream pathway, exerting neuroprotective effects. In summary, the major contributions of the present study lie in:
     1. Endogenous H_2S decline participates in the initiation and progress of PD. The level of endogenous H_2S decreases significantly in striatum of neurotoxin induced PD animal model. This work proposes the direct evidences that H_2S is involved in the development of PD.
     2. Exogenous H_2S has neuroprotective effects in neurotoxin induced PD model. H_2S alleviates the behavioral symptom and attenuates the loss of TH neuron, the activation of astrocytes and microglia and the inhibition of cell proliferation in PD animal model. We demonstrate for the first time that H_2S may serve as a neuroprotectant to treat and prevent neurotoxin-induced neurodegeneration and therefore has potential therapeutic value for treatment of PD.
     3. The neuroprotective effect of H_2S is independent on K-ATP channel. Previous studies reported that Kir6.2/K-ATP channel that locates in neuron mediates the neuroprotective effects of H_2S in in-vitro research. It’s found in this investigation that Kir6.2 knockout can not abolish the protective effect of H_2S on neural damage in both in-vivo and in-vitro study, indicating the neuroprotective effect of H_2S is independent on K-ATP channel. However, UCP2 knockout abolishes H_2S protecting dopaminergic neurons against MPP+-induced injury, suggesting that UCP2 located in mitochondrial membrane may be the molecular target for H_2S.
引文
1. Reiffenstein, R.J., Hulbert, W.C. & Roth, S.H. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32, 109-134 (1992).
    2. Elrod, J.W., et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104, 15560-15565 (2007).
    3. Hosoki, R., Matsuki, N. & Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237, 527-531 (1997).
    4. Lu, M., et al. Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21, 993-1002 (2010).
    5. Li, L., Bhatia, M. & Moore, P.K. Hydrogen sulphide--a novel mediator of inflammation? Curr Opin Pharmacol 6, 125-129 (2006).
    6. Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16, 1066-1071 (1996).
    7. Kimura, H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267, 129-133 (2000).
    8. Kombian, S.B., Reiffenstein, R.J. & Colmers, W.F. The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J Neurophysiol 70, 81-96 (1993).
    9. Han, Y., et al. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res 53, 216-219 (2005).
    10. Lee, S.W., et al. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54, 116-124 (2006).
    11. Yong, Q.C., Choo, C.H., Tan, B.H., Low, C.M. & Bian, J.S. Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochem Int 56, 508-515 (2010).
    12. Nagai, Y., Tsugane, M., Oka, J. & Kimura, H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18, 557-559 (2004).
    13. Schreier, S.M., et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox Res 17, 249-256 (2010).
    14. Wong, P.T., et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J Neuropathol Exp Neurol 65, 109-115 (2006).
    15. Qu, K., Chen, C.P., Halliwell, B., Moore, P.K. & Wong, P.T. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37, 889-893 (2006).
    16. Morrison, L.D., Smith, D.D. & Kish, S.J. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease. J Neurochem 67, 1328-1331 (1996).
    17. Clarke, R., et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55, 1449-1455 (1998).
    18. Han, Y., et al. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem Biophys Res Commun 327, 431-436 (2005).
    19. Belardinelli, M.C., Chabli, A., Chadefaux-Vekemans, B. & Kamoun, P. Urinary sulfur compounds in Down syndrome. Clin Chem 47, 1500-1501 (2001).
    20. Andrich, J., et al. Hyperhomocysteinaemia in treated patients with Huntington's disease homocysteine in HD. Mov Disord 19, 226-228 (2004).
    21. Boutell, J.M., Wood, J.D., Harper, P.S. & Jones, A.L. Huntingtin interacts with cystathionine beta-synthase. Hum Mol Genet 7, 371-378 (1998).
    22. Kabil, O. & Banerjee, R. Redox biochemistry of hydrogen sulfide. J Biol Chem 285, 21903-21907 (2010).
    23. Whiteman, M., et al. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326, 794-798 (2005).
    24. Lu, M., Hu, L.F., Hu, G. & Bian, J.S. Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45, 1705-1713 (2008).
    25. Kimura, Y., Goto, Y. & Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12, 1-13 (2010).
    26. Kimura, Y. & Kimura, H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18, 1165-1167 (2004).
    27. Lee, M., et al. Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem 285, 17318-17328 (2010).
    28. Hu, L.F., Wong, P.T., Moore, P.K. & Bian, J.S. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100, 1121-1128 (2007).
    29. Hu, L.F., et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell 9, 135-146 (2010).
    30. Tang, X.Q., et al. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35, 180-186 (2008).
    31. Tiong, C.X., Lu, M. & Bian, J.S. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161, 467-480 (2010).
    32. Yin, W.L., He, J.Q., Hu, B., Jiang, Z.S. & Tang, X.Q. Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85, 269-275 (2009).
    33. Zhang, L.M., Jiang, C.X. & Liu, D.W. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34, 1984-1992 (2009).
    34. Hu, L.F., Lu, M., Wu, Z.Y., Wong, P.T. & Bian, J.S. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75, 27-34 (2009).
    35. Gelb, D.J., Oliver, E. & Gilman, S. Diagnostic criteria for Parkinson disease. Arch Neurol 56, 33-39 (1999).
    36. Zhang, Z.X., et al. Parkinson's disease in China: prevalence in Beijing, Xian,and Shanghai. Lancet 365, 595-597 (2005).
    37. Zimmermann, K.C., Bonzon, C. & Green, D.R. The machinery of programmed cell death. Pharmacol Ther 92, 57-70 (2001).
    38. Logroscino, G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ Health Perspect 113, 1234-1238 (2005).
    39. Dawson, T.M. Parkin and defective ubiquitination in Parkinson's disease. J Neural Transm Suppl, 209-213 (2006).
    40. Eriksen, J.L., Wszolek, Z. & Petrucelli, L. Molecular pathogenesis of Parkinson disease. Arch Neurol 62, 353-357 (2005).
    41. Miller, R.L., James-Kracke, M., Sun, G.Y. & Sun, A.Y. Oxidative and inflammatory pathways in Parkinson's disease. Neurochem Res 34, 55-65 (2009).
    42. Olanow, C.W. The pathogenesis of cell death in Parkinson's disease--2007. Mov Disord 22 Suppl 17, S335-342 (2007).
    43. Simpkins, N. & Jankovic, J. Neuroprotection in Parkinson disease. Arch Intern Med 163, 1650-1654 (2003).
    44. Allain, H., Bentue-Ferrer, D. & Akwa, Y. Disease-modifying drugs and Parkinson's disease. Prog Neurobiol 84, 25-39 (2008).
    45. Schapira, A.H. & Olanow, C.W. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA 291, 358-364 (2004).
    46. Fahn, S. & Sulzer, D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 1, 139-154 (2004).
    47. Costantini, L.C., Cole, D., Chaturvedi, P. & Isacson, O. Immunophilin ligands can prevent progressive dopaminergic degeneration in animal models of Parkinson's disease. Eur J Neurosci 13, 1085-1092 (2001).
    48. Chen, J.J. & Swope, D.M. Pharmacotherapy for Parkinson's disease. Pharmacotherapy 27, 161S-173S (2007).
    49. Kennedy, J.L., Farrer, L.A., Andreasen, N.C., Mayeux, R. & St George-Hyslop, P. The genetics of adult-onset neuropsychiatric disease:complexities and conundra? Science 302, 822-826 (2003).
    50. Breese, G.R. & Traylor, T.D. Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 42, 88-99 (1971).
    51. Saner, A. & Thoenen, H. Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol Pharmacol 7, 147-154 (1971).
    52. Javoy, F., Sotelo, C., Herbet, A. & Agid, Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 102, 201-215 (1976).
    53. Jonsson, G. Chemical neurotoxins as denervation tools in neurobiology. Annu Rev Neurosci 3, 169-187 (1980).
    54. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889-909 (2003).
    55. Grant, R.J. & Clarke, P.B. Susceptibility of ascending dopamine projections to 6-hydroxydopamine in rats: effect of hypothermia. Neuroscience 115, 1281-1294 (2002).
    56. Truong, L., Allbutt, H., Kassiou, M. & Henderson, J.M. Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 169, 1-9 (2006).
    57. Zahm, D.S. Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon. Brain Res 552, 164-169 (1991).
    58. Przedborski, S., et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67, 631-647 (1995).
    59. Sauer, H. & Oertel, W.H. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59, 401-415 (1994).
    60. Ungerstedt, U. & Arbuthnott, G.W. Quantitative recording of rotationalbehavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24, 485-493 (1970).
    61. Lane, E.L., Cheetham, S.C. & Jenner, P. Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson's disease? Exp Neurol 197, 284-290 (2006).
    62. Reavill, C., Jenner, P. & Marsden, C.D. Differentiation of dopamine agonists using drug-induced rotation in rats with unilateral or bilateral
    6-hydroxydopamine destruction of ascending dopamine pathways. Biochem Pharmacol 32, 865-870 (1983).
    63. Schallert, T., Fleming, S.M., Leasure, J.L., Tillerson, J.L. & Bland, S.T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777-787 (2000).
    64. Schapira, A.H. Mitochondrial complex I deficiency in Parkinson's disease. Adv Neurol 60, 288-291 (1993).
    65. Dawson, T.M. & Dawson, V.L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822 (2003).
    66. Chan, P., Di Monte, D.A., Langston, J.W. & Janson, A.M. (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther 280, 439-446 (1997).
    67. Petroske, E., Meredith, G.E., Callen, S., Totterdell, S. & Lau, Y.S. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106, 589-601 (2001).
    68. Karunakaran, S., et al. Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson's disease: protection by alpha-lipoic acid. FASEB J 21, 2226-2236 (2007).
    69. Lau, Y.S., Trobough, K.L., Crampton, J.M. & Wilson, J.A. Effects of probenecid on striatal dopamine depletion in acute and long-term1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Gen Pharmacol 21, 181-187 (1990).
    70. Chan, C.S., et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447, 1081-1086 (2007).
    71. Liss, B., et al. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8, 1742-1751 (2005).
    72. Meredith, G.E., Halliday, G.M. & Totterdell, S. A critical review of the development and importance of proteinaceous aggregates in animal models of Parkinson's disease: new insights into Lewy body formation. Parkinsonism Relat Disord 10, 191-202 (2004).
    73. Meredith, G.E., et al. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson's disease. Brain Res 956, 156-165 (2002).
    74. Ascherio, A., et al. Pesticide exposure and risk for Parkinson's disease. Ann Neurol 60, 197-203 (2006).
    75. Dick, F.D., et al. Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. Occup Environ Med 64, 666-672 (2007).
    76. Betarbet, R., et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3, 1301-1306 (2000).
    77. Hoglinger, G.U., et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84, 491-502 (2003).
    78. Sherer, T.B., Kim, J.H., Betarbet, R. & Greenamyre, J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179, 9-16 (2003).
    79. Fleming, S.M., et al. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187, 418-429 (2004).
    80. Brooks, A.I., Chadwick, C.A., Gelbard, H.A., Cory-Slechta, D.A. & Federoff,H.J. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823, 1-10 (1999).
    81. Kuter, K., et al. Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 1155, 196-207 (2007).
    82. McCormack, A.L., et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10, 119-127 (2002).
    83. Manning-Bog, A.B., et al. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277, 1641-1644 (2002).
    84. Fernagut, P.O., et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 61, 991-1001 (2007).
    85. Herrera, A.J., Castano, A., Venero, J.L., Cano, J. & Machado, A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7, 429-447 (2000).
    86. Iravani, M.M., et al. The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 22, 317-330 (2005).
    87. Qin, L., et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462 (2007).
    88. Hwang, D.Y., et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 25, 2132-2137 (2005).
    89. Sgado, P., et al. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci U S A 103, 15242-15247 (2006).
    90. Sonnier, L., et al. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27, 1063-1071(2007).
    91. Fleming, S.M., Fernagut, P.O. & Chesselet, M.F. Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2, 495-503 (2005).
    92. Masliah, E., et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265-1269 (2000).
    93. Tofaris, G.K., et al. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci 26, 3942-3950 (2006).
    94. Kirik, D., et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22, 2780-2791 (2002).
    95. Lo Bianco, C., Ridet, J.L., Schneider, B.L., Deglon, N. & Aebischer, P. alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci U S A 99, 10813-10818 (2002).
    96. Dawson, T.M. & Dawson, V.L. Neuroprotective and neurorestorative strategies for Parkinson's disease. Nat Neurosci 5 Suppl, 1058-1061 (2002).
    97. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660 (2008).
    98. Lie, D.C., et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22, 6639-6649 (2002).
    99. Tattersfield, A.S., et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 127, 319-332 (2004).
    100. Baker, S.A., Baker, K.A. & Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20, 575-579 (2004).
    101. Sailor, K.A., Ming, G.L. & Song, H. Neurogenesis as a potential therapeutic strategy for neurodegenerative diseases. Expert Opin Biol Ther 6, 879-890(2006).
    102. Armstrong, R.J. & Barker, R.A. Neurodegeneration: a failure of neuroregeneration? Lancet 358, 1174-1176 (2001).
    103. Grote, H.E. & Hannan, A.J. Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 34, 533-545 (2007).
    104. Hoglinger, G.U., et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7, 726-735 (2004).
    105. Geraerts, M., Krylyshkina, O., Debyser, Z. & Baekelandt, V. Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 25, 263-270 (2007).
    106. Okano, H., Sakaguchi, M., Ohki, K., Suzuki, N. & Sawamoto, K. Regeneration of the central nervous system using endogenous repair mechanisms. J Neurochem 102, 1459-1465 (2007).
    107. Ye, Z.C. & Sontheimer, H. Modulation of glial glutamate transport through cell interactions with the extracellular matrix. Int J Dev Neurosci 20, 209-217 (2002).
    108. Kim, W.G., et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20, 6309-6316 (2000).
    109. Streit, W.J., Conde, J.R., Fendrick, S.E., Flanary, B.E. & Mariani, C.L. Role of microglia in the central nervous system's immune response. Neurol Res 27, 685-691 (2005).
    110. Kim, S.U. & de Vellis, J. Microglia in health and disease. J Neurosci Res 81, 302-313 (2005).
    111. Wu, D.C., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22, 1763-1771 (2002).
    112. Hirsch, E.C., Hunot, S., Damier, P. & Faucheux, B. Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration? Ann Neurol 44, S115-120 (1998).
    113. Yoo, M.S., et al. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease. Brain Res Mol Brain Res 110, 76-84 (2003).
    114. Bove, J., Prou, D., Perier, C. & Przedborski, S. Toxin-induced models of Parkinson's disease. NeuroRx 2, 484-494 (2005).
    115. Uversky, V.N. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318, 225-241 (2004).
    116. Tolwani, R.J., Jakowec, M.W., Petzinger, G.M., Green, S. & Waggie, K. Experimental models of Parkinson's disease: insights from many models. Lab Anim Sci 49, 363-371 (1999).
    117. McDonald, D.R., Brunden, K.R. & Landreth, G.E. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 17, 2284-2294 (1997).
    118. Jekabsone, A., Mander, P.K., Tickler, A., Sharpe, M. & Brown, G.C. Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: a cell culture study. J Neuroinflammation 3, 24 (2006).
    119. Nikolova, S., Lee, Y.S. & Kim, J.A. Rac1-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic Res 39, 1295-1304 (2005).
    120. Qin, L., Liu, Y., Qian, X., Hong, J.S. & Block, M.L. Microglial NADPH oxidase mediates leucine enkephalin dopaminergic neuroprotection. Ann N Y Acad Sci 1053, 107-120 (2005).
    121. Block, M.L., et al. Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J 20, 251-258 (2006).
    122. Kim, Y.S., et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21,179-187 (2007).
    123. Dewas, C., Fay, M., Gougerot-Pocidalo, M.A. & El-Benna, J. The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils. J Immunol 165, 5238-5244 (2000).
    124. Karlsson, A., Nixon, J.B. & McPhail, L.C. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J Leukoc Biol 67, 396-404 (2000).
    125. Bardwell, L. Mechanisms of MAPK signalling specificity. Biochem Soc Trans 34, 837-841 (2006).
    126. Nishimoto, S. & Nishida, E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7, 782-786 (2006).
    127. Thiruchelvam, M., Prokopenko, O., Cory-Slechta, D.A., Buckley, B. & Mirochnitchenko, O. Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem 280, 22530-22539 (2005).
    128. Hyslop, P.A., Zhang, Z., Pearson, D.V. & Phebus, L.A. Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res 671, 181-186 (1995).
    129. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J Neurochem 97, 1634-1658 (2006).
    130. Yu, D.Y., Cringle, S.J., Alder, V.A. & Su, E.N. Intraretinal oxygen distribution in rats as a function of systemic blood pressure. Am J Physiol 267, H2498-2507 (1994).
    131. Mosley, K., Wembridge, D.E., Cattell, V. & Cook, H.T. Heme oxygenase is induced in nephrotoxic nephritis and hemin, a stimulator of heme oxygenase synthesis, ameliorates disease. Kidney Int 53, 672-678 (1998).
    132. Sun, X.L., et al. KATP channel openers facilitate glutamate uptake by GluTs in rat primary cultured astrocytes. Neuropsychopharmacology 33, 1336-1342 (2008).
    133. Takuma, K., Baba, A. & Matsuda, T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72, 111-127 (2004).
    134. Trotti, D., Danbolt, N.C. & Volterra, A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19, 328-334 (1998).
    135. Almeida, A.M., Bertoncini, C.R., Borecky, J., Souza-Pinto, N.C. & Vercesi, A.E. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate. An Acad Bras Cienc 78, 505-514 (2006).
    136. Dringen, R. Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7, 1223-1233 (2005).
    137. Duarte, T.L., Almeida, G.M. & Jones, G.D. Investigation of the role of extracellular H2O2 and transition metal ions in the genotoxic action of ascorbic acid in cell culture models. Toxicol Lett 170, 57-65 (2007).
    138. Cho, Y. & Bannai, S. Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55, 2091-2097 (1990).
    139. Bannai, S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261, 2256-2263 (1986).
    140. Bannai, S. & Tateishi, N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol 89, 1-8 (1986).
    141. Whiteman, M., et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 90, 765-768 (2004).
    142. Ogita, K. & Yoneda, Y. Characterization of Na+-dependent binding sites of [3H]glutamate in synaptic membranes from rat brain. Brain Res 397, 137-144 (1986).
    143. Brookes, N. Specificity and reversibility of the inhibition by HgCl2 of glutamate transport in astrocyte cultures. J Neurochem 50, 1117-1122 (1988).
    144. Aschner, M., Eberle, N.B., Miller, K. & Kimelberg, H.K. Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling. Brain Res 530, 245-250 (1990).
    145. Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 23, 2899-2910 (2003).
    146. Daniels, K.K. & Vickroy, T.W. Reversible activation of glutamate transport in rat brain glia by protein kinase C and an okadaic acid-sensitive phosphoprotein phosphatase. Neurochem Res 24, 1017-1025 (1999).
    147. Gonzalez, M.I., Lopez-Colom, A.M. & Ortega, A. Sodium-dependent glutamate transport in Muller glial cells: regulation by phorbol esters. Brain Res 831, 140-145 (1999).
    148. Lortet, S., et al. Effects of PKA and PKC modulators on high affinity glutamate uptake in primary neuronal cell cultures from rat cerebral cortex. Neuropharmacology 38, 395-402 (1999).
    149. Aronica, E., et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17, 2106-2118 (2003).
    150. Gonzalez, M.I., Bannerman, P.G. & Robinson, M.B. Phorbol myristate acetate-dependent interaction of protein kinase Calpha and the neuronal glutamate transporter EAAC1. J Neurosci 23, 5589-5593 (2003).
    151. Boehmer, C., et al. Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J Neurochem 97, 911-921 (2006).
    152. Li, L.B., et al. Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem 97, 759-771 (2006).
    153. Figiel, M., Maucher, T., Rozyczka, J., Bayatti, N. & Engele, J. Regulation of glial glutamate transporter expression by growth factors. Exp Neurol 183, 124-135 (2003).
    154. Zelenaia, O., et al. Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57, 667-678 (2000).
    155. Kimura, H. Hydrogen sulfide: its production, release and functions. Amino Acids (2010).
    156. Bannenberg, G.L. & Vieira, H.L. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opin Ther Pat 19, 663-682 (2009).
    157. Elsey, D.J., Fowkes, R.C. & Baxter, G.F. Regulation of cardiovascular cell function by hydrogen sulfide (H(2)S). Cell Biochem Funct 28, 95-106 (2010).
    158. Kapoor, A. & Thiemermann, C. Hydrogen sulfide, neurogenic inflammation, and cardioprotection: a tale of rotten eggs and vanilloid receptors. Crit Care Med 38, 728-730 (2010).
    159. Szabo, C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6, 917-935 (2007).
    160. Whiteman, M. & Moore, P.K. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 13, 488-507 (2009).
    161. Zhao, W., Zhang, J., Lu, Y. & Wang, R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20, 6008-6016 (2001).
    162. Cheng, Y., Ndisang, J.F., Tang, G., Cao, K. & Wang, R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287, H2316-2323 (2004).
    163. Fiorucci, S., et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42, 539-548 (2005).
    164. Zhong, G.Z., et al. Hydrogen sulfide opens the KATP channel on rat atrial and ventricular myocytes. Cardiology 115, 120-126 (2010).
    165. Dawe, G.S., Han, S.P., Bian, J.S. & Moore, P.K. Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152, 169-177 (2008).
    166. Li, L., Rose, P. & Moore, P.K. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51, 169-187 (2011).
    167. Jiang, B., Tang, G., Cao, K., Wu, L. & Wang, R. Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 12, 1167-1178 (2010).
    168. Mustafa, A.K., et al. H2S signals through protein S-sulfhydration. Sci Signal 2, ra72 (2009).
    169. Tang, G., Wu, L. & Wang, R. Interaction of Hydrogen Sulfide with Different Ion Channels. Clin Exp Pharmacol Physiol (2009).
    170. Thomzig, A., Pruss, H. & Veh, R.W. The Kir6.1-protein, a pore-forming subunit of ATP-sensitive potassium channels, is prominently expressed by giant cholinergic interneurons in the striatum of the rat brain. Brain Res 986, 132-138 (2003).
    171. Thomzig, A., et al. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci 18, 671-690 (2001).
    172. Zhou, F., et al. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 12, 1559-1570 (2008).
    173. Kaufman, R.J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13, 1211-1233 (1999).
    174. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519-529 (2007).
    175. Schroder, M. & Kaufman, R.J. The mammalian unfolded protein response. Annu Rev Biochem 74, 739-789 (2005).
    176. Shi, Y., et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control.Mol Cell Biol 18, 7499-7509 (1998).
    177. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274 (1999).
    178. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326-332 (2000).
    179. Zhu, J.H., et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170, 75-86 (2007).
    180. Ryu, E.J., et al. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22, 10690-10698 (2002).
    181. Holtz, W.A. & O'Malley, K.L. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278, 19367-19377 (2003).
    182. Kashemsant, N. & Chan, C.B. Impact of uncoupling protein-2 overexpression on proinsulin processing. J Mol Endocrinol 37, 517-526 (2006).
    183. Yasuno, K., et al. Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 144B, 250-253 (2007).
    184. Csordas, G., et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174, 915-921 (2006).
    185. Blanc, J., et al. Protective role of uncoupling protein 2 in atherosclerosis. Circulation 107, 388-390 (2003).
    186. Echtay, K.S., Winkler, E., Frischmuth, K. & Klingenberg, M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 98, 1416-1421 (2001).
    187. Matarrese, P., et al. Mitochondrial membrane hyperpolarization hijacks activated T lymphocytes toward the apoptotic-prone phenotype: homeostatic mechanisms of HIV protease inhibitors. J Immunol 170, 6006-6015 (2003).
    188. Vogler, S., et al. Association of a common polymorphism in the promoter of UCP2 with susceptibility to multiple sclerosis. J Mol Med 83, 806-811 (2005).
    189. Park, J.Y., et al. Oleic acid induces endothelin-1 expression through activation of protein kinase C and NF-kappa B. Biochem Biophys Res Commun 303, 891-895 (2003).
    190. Esteves, T.C. & Brand, M.D. The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochim Biophys Acta 1709, 35-44 (2005).
    191. Hong, Y., Fink, B.D., Dillon, J.S. & Sivitz, W.I. Effects of adenoviral overexpression of uncoupling protein-2 and -3 on mitochondrial respiration in insulinoma cells. Endocrinology 142, 249-256 (2001).
    192. Wang, X., et al. Changes in fat mass after initiation of maintenance dialysis is influenced by the uncoupling protein 2 exon 8 insertion/deletion polymorphism. Nephrol Dial Transplant 22, 196-202 (2007).
    193. Hurtaud, C., Gelly, C., Chen, Z., Levi-Meyrueis, C. & Bouillaud, F. Glutamine stimulates translation of uncoupling protein 2mRNA. Cell Mol Life Sci 64, 1853-1860 (2007).
    1. Reiffenstein, R.J., Hulbert, W.C. & Roth, S.H. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32, 109-134 (1992).
    2. Elrod, J.W., et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104, 15560-15565 (2007).
    3. Hosoki, R., Matsuki, N. & Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237, 527-531 (1997).
    4. Lu, M., et al. Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21, 993-1002 (2010).
    5. Li, L., Bhatia, M. & Moore, P.K. Hydrogen sulphide--a novel mediator of inflammation? Curr Opin Pharmacol 6, 125-129 (2006).
    6. Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16, 1066-1071 (1996).
    7. Qu, K., Lee, S.W., Bian, J.S., Low, C.M. & Wong, P.T. Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int 52, 155-165 (2008).
    8. Tan, B.H., Wong, P.T. & Bian, J.S. Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56, 3-10 (2010).
    9. Dombkowski, R.A., Russell, M.J. & Olson, K.R. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286, R678-685 (2004).
    10. Li, L., et al. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42, 706-719 (2007).
    11. Li, L., et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117, 2351-2360 (2008).
    12. Chen, X., Jhee, K.H. & Kruger, W.D. Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279, 52082-52086 (2004).
    13. Awata, S., Nakayama, K., Suzuki, I., Sugahara, K. & Kodama, H. Changes in cystathionine gamma-lyase in various regions of rat brain during development. Biochem Mol Biol Int 35, 1331-1338 (1995).
    14. Wong, P.T., et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J Neuropathol Exp Neurol 65, 109-115 (2006).
    15. Belardinelli, M.C., Chabli, A., Chadefaux-Vekemans, B. & Kamoun, P. Urinary sulfur compounds in Down syndrome. Clin Chem 47, 1500-1501 (2001).
    16. Taoka, S., West, M. & Banerjee, R. Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites. Biochemistry 38, 2738-2744 (1999).
    17. Ratnam, S., et al. Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277, 42912-42918 (2002).
    18. Kimura, H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267, 129-133 (2000).
    19. Kim, N.K., Choi, B.O., Jung, W.S., Choi, Y.J. & Choi, K.G. Hyperhomocysteinemia as an independent risk factor for silent brain infarction. Neurology 61, 1595-1599 (2003).
    20. Enokido, Y., et al. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19, 1854-1856 (2005).
    21. Kruger, W.D., et al. Polymorphisms in the CBS gene associated with decreased risk of coronary artery disease and increased responsiveness to total homocysteine lowering by folic acid. Mol Genet Metab 70, 53-60 (2000).
    22. Vitvitsky, V., Thomas, M., Ghorpade, A., Gendelman, H.E. & Banerjee, R. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281, 35785-35793 (2006).
    23. Diwakar, L. & Ravindranath, V. Inhibition of cystathionine-gamma-lyaseleads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50, 418-426 (2007).
    24. Lee, M., et al. Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem 285, 17318-17328 (2010).
    25. Srivastava, S.K. & Beutler, E. A new fluorometric method for the determination of pyridoxal 5'-phosphate. Biochim Biophys Acta 304, 765-773 (1973).
    26. Ishigami, M., et al. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11, 205-214 (2009).
    27. Kabil, O. & Banerjee, R. Redox biochemistry of hydrogen sulfide. J Biol Chem 285, 21903-21907 (2010).
    28. Hu, L.F., Lu, M., Wu, Z.Y., Wong, P.T. & Bian, J.S. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75, 27-34 (2009).
    29. Whitfield, N.L., Kreimier, E.L., Verdial, F.C., Skovgaard, N. & Olson, K.R. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 294, R1930-1937 (2008).
    30. Lu, M., Hu, L.F., Hu, G. & Bian, J.S. Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45, 1705-1713 (2008).
    31. Goodwin, L.R., et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13, 105-109 (1989).
    32. Savage, J.C. & Gould, D.H. Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 526, 540-545 (1990).
    33. Kombian, S.B., Reiffenstein, R.J. & Colmers, W.F. The actions of hydrogensulfide on dorsal raphe serotonergic neurons in vitro. J Neurophysiol 70, 81-96 (1993).
    34. Han, Y., et al. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res 53, 216-219 (2005).
    35. Lee, S.W., et al. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54, 116-124 (2006).
    36. Yong, Q.C., Choo, C.H., Tan, B.H., Low, C.M. & Bian, J.S. Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochem Int 56, 508-515 (2010).
    37. Nagai, Y., Tsugane, M., Oka, J. & Kimura, H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18, 557-559 (2004).
    38. Lee, M., Schwab, C., Yu, S., McGeer, E. & McGeer, P.L. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 30, 1523-1534 (2009).
    39. Schreier, S.M., et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox Res 17, 249-256 (2010).
    40. Hu, L.F., Wong, P.T., Moore, P.K. & Bian, J.S. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100, 1121-1128 (2007).
    41. Hu, L.F., et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell 9, 135-146 (2010).
    42. Whiteman, M., et al. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326, 794-798 (2005).
    43. Kimura, Y., Goto, Y. & Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12, 1-13 (2010).
    44. Kimura, Y. & Kimura, H. Hydrogen sulfide protects neurons from oxidativestress. FASEB J 18, 1165-1167 (2004).
    45. Tang, X.Q., et al. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35, 180-186 (2008).
    46. Tiong, C.X., Lu, M. & Bian, J.S. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161, 467-480 (2010).
    47. Yin, W.L., He, J.Q., Hu, B., Jiang, Z.S. & Tang, X.Q. Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85, 269-275 (2009).
    48. Zhang, L.M., Jiang, C.X. & Liu, D.W. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34, 1984-1992 (2009).
    49. Brittain, T., Yosaatmadja, Y. & Henty, K. The interaction of human neuroglobin with hydrogen sulphide. IUBMB Life 60, 135-138 (2008).
    50. Cheung, N.S., Peng, Z.F., Chen, M.J., Moore, P.K. & Whiteman, M. Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology 53, 505-514 (2007).
    51. Mustafa, A.K., et al. H2S signals through protein S-sulfhydration. Sci Signal 2, ra72 (2009).
    52. Gadalla, M.M. & Snyder, S.H. Hydrogen sulfide as a gasotransmitter. J Neurochem 113, 14-26 (2010).
    53. Chiku, T., et al. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284, 11601-11612 (2009).
    54. Isobe, C., Murata, T., Sato, C. & Terayama, Y. Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer's disease and Parkinson's disease. Life Sci 77, 1836-1843 (2005).
    55. Zou, C.G., et al. Homocysteine promotes proliferation and activation of microglia. Neurobiol Aging 31, 2069-2079 (2010).
    56. Qu, K., Chen, C.P., Halliwell, B., Moore, P.K. & Wong, P.T. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37, 889-893 (2006).
    57. Tay, A.S., Hu, L.F., Lu, M., Wong, P.T. & Bian, J.S. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 167, 277-286 (2010).
    58. Morrison, L.D., Smith, D.D. & Kish, S.J. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease. J Neurochem 67, 1328-1331 (1996).
    59. Clarke, R., et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55, 1449-1455 (1998).
    60. Gupta, V.B., Indi, S.S. & Rao, K.S. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer's disease. Phytother Res 23, 111-115 (2009).
    61. Benavides, G.A., et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104, 17977-17982 (2007).
    62. Han, Y., et al. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem Biophys Res Commun 327, 431-436 (2005).
    63. Cutajar, M.C. & Edwards, T.M. Evidence for the role of endogenous carbon monoxide in memory processing. J Cogn Neurosci 19, 557-562 (2007).
    64. Ichinohe, A., et al. Cystathionine beta-synthase is enriched in the brains of Down's patients. Biochem Biophys Res Commun 338, 1547-1550 (2005).
    65. Andrich, J., et al. Hyperhomocysteinaemia in treated patients with Huntington's disease homocysteine in HD. Mov Disord 19, 226-228 (2004).
    66. Boutell, J.M., Wood, J.D., Harper, P.S. & Jones, A.L. Huntingtin interacts with cystathionine beta-synthase. Hum Mol Genet 7, 371-378 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700