沙漠化现状定量评价遥感信息模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙漠化属于全球性环境恶化现象,国家需要及时准确地掌握其动态以便进行科学防治。但遥感技术在沙漠化监测与评价方面存在很多问题,例如评价指标选取不恰当、权重不客观、指标反演精度低等,至今仍缺乏一套被广泛认同的实用的定量评价指标体系。不同的地区和地物类型主导因子或许相同,但各因子对沙漠化的影响程度一定有差异。目前国内还没有以地物类型为基础的沙漠化遥感定量评价研究报道,如何从地物类型的角度对沙漠化进行遥感定量评价?解决这一问题将有助于认识土地退化过程的机制和成因等内容,有利于建立沙漠化评价指标体系。本论文以京津风沙源治理工程区为例,分别探讨了多光谱和高光谱遥感对干旱半干旱区土地沙漠化进行评价的具体方法,得到的主要结果归纳如下:
     1.提出将线性光谱混合分解模型、植被指数和专家知识相结合的地物信息分层次提取模型,实现了地物信息高精度分层次提取。
     2.筛选出区分树种信息的多光谱遥感指标,并引用改进的SVM算法提取了退耕还林地树种信息。结果表明,该方法平均精度较传统方法提高9.2%,对快速评价工程质量有重要意义。
     3.将纹理、空间信息融入到高光谱影像地物信息提取中。通过反射率光谱分析,结合纹理特征对地物信息进行提取,并采用基于空间信息的方法进一步对植被类型进行分类,平均分类精度较最大似然法提高17.8%。分析了高光谱遥感树种分类可行性,选取差异较大的波段及光谱特征参量,引用改进的BP神经网络模型完成林地树种信息提取。
     4.建立了基于地物类型的沙漠化评价遥感指标体系,明确了“基准”的确定方法,在分析大量实测数据的基础上提出了一种新的指标权重计算方法。经过验证,本文模型较传统模型的评价精度提高,评价结果更接近土地沙漠化的真实状况。
     5.提出了利用高分辨率卫星影像修正线性光谱混合分解模型分解的TM影像的植被分量,建立提取干旱半干旱地区植被覆盖度的模型。结果表明,该模型不仅提供了更纯的植被光谱信息,而且降低了对土壤背景的敏感度,更适合于中等分辨率卫星影像量化干旱半干旱地区植被覆盖度。
     6.利用高光谱遥感数据对森林蓄积量进行预测研究,确定了与蓄积量之间相关系数达到极显著水平的19个特征参数;比较了目前流行的多种高光谱植被盖度提取方法,结果表明基于一阶微分的PLSR模型效果最好。
     7.提出了通过高光谱影像分解剔除植被光谱干扰,从而更合理地预测土壤含水量的具体方法;分析了最小噪声变换回归模型和主成分回归模型预测土壤含沙量的能力。
Desertification belongs to the deteriorative phenomenon of global environment. Its dynamic changes should be monitored timely and accurately by the county in order to control the desertification scientifically. The remote sensing technology has a lot of problems in terms of desertification evaluation, such as improper evaluation indexes selection, subjective weight, the low index inversion precision, and so on. A quantitative evaluation index system that is widely recognized and practical is still lacked. Perhaps the factors in a leading role are the same in different regions and different land use types, but the influence degree of the factors to the desertification must have differences. At present, there is still no remote sensing quantitative evaluation research report of desertification based on the land use interiorly. How to evaluate desertification quantitatively using remote sensing from the point of view of land use? To solve this problem will help to know the content of the mechanism and genesis in the process of land degradation and help to establish desertification evaluation index system. In this paper, taking Beijing-Tianjin sandstorm source control project district as an example, the specific desertification evaluation methods of multispectral and hyperspectral remote sensing based on land use in arid and semiarid regions were discussed respectively. The mainly achieved results were summarized as follows:
     1. The stratified remote sensing information extraction model of land use combining linear spectral mixture model, vegetation index and expert knowledge was put forward. The model achieves stratified extraction of land use information with high precision.
     2. The multispectral remote sensing indexes distinguishing tree species were sifted, and the improved SVM algorithm was also quoted to extract tree species information in returning farmland to forest region. The results have shown that the average accuracy was increased by 9.2%than that of the traditional method. The method in this paper has the important meaning to the fast evaluation of the project quality of returning farmland to forest.
     3. Texture features and spatial information were blended in land use information extraction of hyperspectral images. The land use type information of hyperspectral images was extracted by spectral analysis of the reflectance and texture features. And then the vegetation types were further classified using the method of spatial information. The results show that the average classification accuracy is increased by 17.8%than that of maximum likelihood method. The feasibility of tree species classification of hyperspectral remote sensing was analyzed, and the bands and spectral characteristic parameters that have great differences were selected. At last, the improved BP neural network model was quoted to complete the tree species information extraction of forest land.
     4. The remote sensing index system of desertification evaluation based on land use was set up firstly and the determination method of the "standards" was determined. A new index weight calculation method was put forward on the basis of analyzing large quantities of measured data. The evaluation accuracy of the model in this paper was higher than that of the traditional model and the evaluation results were closer to the real condition of desertification.
     5. A model that was fit for the extraction of vegetation coverage in arid zones was presented. In this model, TM image was decomposed by linear spectral mixture mode and then the vegetation component of TM image was amended by the high-resolution satellite image. The result shows that the model can not only provide more pure vegetation spectrum information but also reduce the sensitivity to the soil background, so it is more suitable for quantifying vegetation coverage of arid and semi-arid regions by medium-resolution satellite images.
     6. In this study, nineteen characteristic parameters that had significant level correlation coefficients with forest volume were selected to forecast forest volume. A variety of hyperspectral vegetation coverage extraction methods that are currently popular were compared. The conclusion is that the partial least-squares regression model based on first order differential is the best.
     7. The specific method that eliminated interferences of vegetation spectrum by decomposing hyperspectral imaging to predict soil water content more reasonably was put forward. The prediction ability of soil sediment concentration of the minimum noise fraction regression model and the principal component regression model were analyzed.
引文
1. 保家有,李晓松,吴波.基于沙地植被指数的荒漠化评价方法[J].东北林业大学学报,2008,36(1):69~72.
    2. 陈艳华,张万昌.地理信息系统支持下的山区遥感影像决策树分类[J].国土资源遥感,2006(1):69-74.
    3. 程博,田淑芳,杨巍然.内蒙古多伦县土地利用动态遥感监测应用研究[J].资源调查与环境,2003,24(1):45-50.
    4. 崔卫国,文倩,刘艳艳,等.基于DEM的醴陵市土地利用空间格局分析[J].资源科学,2008,30(2):228-234.
    5. 邓立斌,李际平.基于人工神经网络的杉木可变密度蓄积量收获预估模型[J].西北林学院学报,2002,17(4):87-89.
    6. 丁国栋.荒漠化评价指标体系的研究——以毛乌素沙区为例[D].北京:北京林业大学,北京1998.
    7. 丁国栋,赵廷宁,范建友,等.荒漠化评价指标体系研究现状述评[J].北京林业大学学报,2004,26(1):92-96.
    8. 丁建丽,塔西甫拉提·特依拜,熊黑刚,等.塔里木盆地南缘绿洲荒漠化动态变化遥感研究[J].遥感学报,2002,6(1):2-3.
    9. 丁丽霞,工志辉,葛宏立.基于包络线法的不同树种叶片高光谱特征分析[J].浙江林学院学报,2010,27(6):809-814.
    10.董玉样,刘毅华.土地沙漠化监测指标体系的探讨[J].干旱环境监测,1992,6(3):179-182.
    11. Dregne H E沙漠化指征[J].世界沙漠研究,1980(3):1-4
    12.杜明义,郭达志,武文波.基于RS与GIS的阜新地区土地荒漠化时空演变规律研究[J].十旱区研究,2001,18(4):34-39.
    13.杜明义,金倩.基于决策树的荒漠化遥感分类技术[J].矿山测量,2005(2):49-51.
    14.杜明义,武文波,郭达志.多源地学信息在土地荒漠化遥感分类中的应用研究[J].中国图形图像学报,2002,7(7):740-743.
    15.杜培军,陈云浩,方涛,等.高光谱遥感数据光谱特征的提取与应用[J].中国矿业大学学报,2003,32(5):500-504.
    16.范文义.荒漠化程度评价高光谱遥感信息模型[J].林业科学,2002,38(2):61-67.
    17.方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的碳循环[J].地球科学,2006,36(3):533-543.
    18.高尚武,王葆芳,朱灵益,等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998, 34(2):1-10.
    19.高志海,孙保平,丁国栋.荒漠化评价研究综述[J].中国沙漠,2004,24(1):17-22.
    20.高志海,魏怀东,丁峰.TM影像VI提取植被信息技术研究[J].干旱区资源与环境,1998,12(3):98-104.
    21.耿修瑞,张霞,陈正超,等.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报,2004,23(4):299-302.
    22.巩彩兰,尹球,匡定波.城市生态环境基础状况遥感信息提取研究——以上海市中心城区为例[J].红外与毫米波学报,2007,26(6):441-448.
    23.宫鹏,浦瑞良.不同季相针叶树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.
    24.宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.
    25.郭航,张晓丽.基于遥感技术的植被分类研究现状与发展趋势[J].世界林业研究,2007,20(3):14-19.
    26.洪军,葛剑平,蔡体久,等.基于地形限制特征的泾河流域遥感地表覆被分类[J].植物生态学报,2005,29(6):927-933.
    27.侯长谋,杨燕琼,黄平,等.基于RS_GIS的马尾松林分蓄积量判读模型研究[J].林业资源管理,2002,(5):55-57.
    28.胡孟春.科尔沁土地沙漠化分类定量指标初步研究[J].中国沙漠,1991,11(3):57-60.
    29.胡新博,王承军,顾祥,等.新疆荒漠、半荒漠草地的遥感应用研究[J].草食家畜,1996(3):33-37.
    30.胡振琪,杨玲,王广军.草原露天矿区草地沙化的遥感分析——以霍林河矿区为例[J].中国矿业大学学报,2005,34(1):6-10.
    31.黄家柱.卫星遥感土地利用调查精度研究[J].国土资源遥感,2002(3):12-15.
    32.黄建文,鞠洪波,赵峰,等.利用遥感进行退耕还林成活率及长势监测方法的研究[J].遥感学报,2007,11(6):899-905.
    33.黄启厅,史舟,潘桂颖,等.沙质土壤热红外高光谱特征及其含沙量预测研究[J].光谱学与光谱分析,2011,31(8):2195-2199.
    34.黄昕,张良培,李平湘.基于小波的高分辨率遥感影像纹理分类方法研究[J].武汉大学学报·信息科学版,2006,31(1):66-69.
    35.霍艾迪,张广军,武苏里,等.国内外荒漠化动态监测与评价研究进展与存在问题[J].干旱地区农业研究,2007,25(2):206-211.
    36.纪娜,李锐,李静.MNF和SVM在遥感影像计算机分类中的应用[J].水土保持通报,2009,29(6):153-158.
    37.贾宝全,慈龙骏,高志海,等.绿洲荒漠化及其评价指标体系的初步探讨[J].干旱区研究, 2001,18(2):19-24.
    38.贾永红.人工神经网络在多源遥感影像分类中的应用[J].测绘通报.2000(7):7-8.
    39.琚存勇,蔡体久.用泛化改进的BP神经网络估测森林蓄积量[J].林业科学,2006,42(12),59-62.
    40.康相武,马欣,吴绍洪.基于景观格局的区域沙漠化程度评价模型构建[J].地理研究,2007,26(3):297-303.
    41.邝生爱,田淑芳,程博.农牧交错带土地沙化遥感监测[J].国土资源遥感,2002(2):10-14.
    42.李宝林,周成虎.东北平原西部沙地沙质荒漠化的遥感监测研究[J].遥感学报,2002,6(2):117-122.
    43.李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现[M].科学出版社,2006.
    44.李凤秀,张柏,刘殿伟,等.洪河自然保护区乌拉苔草生物量高光谱遥感估算模型[J].湿地科学,2008,6(1):51-59.
    45.李健英,常学礼.科尔沁沙地上地沙漠化与景观结构变化的关系分析[J].中国沙漠,2008,28(4):622-626.
    46.李静,赵庚星,杨佩国.基于知识的垦利县土地利用/覆被遥感信息提取技术研究[J].科学通报,2006(51):183-188.
    47.李晓琴,张振德,张佩民.格尔木上地荒漠化遥感动态监测研究[J].国土资源遥感,2006(2):61-63.
    48.李晓松,高志海,李增元,等.基于高光谱混合像元分解的干旱地区稀疏植被覆盖度估测[J].应用生态学报,2010,21(1):152-158.
    49.李晓松,李增元,高志海,等.基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估测[J].中国沙漠,2011,31(1):162-167.
    50.李晓松,李增元,吴波.基于光谱混合分析的毛乌素沙地汕蒿群落覆盖度提取[J].遥感学报,2007,11(6):923-930.
    51.廖楚生,王长耀,丁式江,等.基于地质统计学影像纹理的海南矿区荒漠化监测[J].北京科技大学学报,2006,28(8):709-714.
    52.林剑,王润生,,鲍光淑,等.基于空间模糊纹理光谱的多光谱遥感图像分类方法[J].中国图像图形学报,2006,11(2):186-190.
    53.刘丹丹,范文义.植被盖度的定量反演中植被指数的应用研究[J].林业勘查设计,2004,(4):50-51.
    54.刘丹丹,马俊海,衣德萍.土地利用现状更新调查中大气校正对反演植被盖度影响的研究[J].黑龙江工程学院学报(自然科学版),2006,20(2):23-26.
    55.刘芳,尹球,张增祥,等.城市生态环境基础质量遥感评价因子与评价模型研究[J].红外与毫米波学报,2008,27(3):219-223.
    56.刘全友,童依平.北方农牧交错带土地利用现状对生态环境变化的影响——以内蒙古多伦县为例[J].生态学报,2003,23(5):1025-1030.
    57.刘秀英,林辉,熊建利,等.森林树种高光谱波段的选择[J].遥感信息,2005(80):41-45.
    58.刘玉平.荒漠化评价的理论框架[J].干旱区资源与环境,1998,12(3):74-82
    59.刘占宇,黄敬峰,吴新宏,等.草地生物量的高光谱遥感估算模型[J].农业工程学报,2006,22(2):111-115.
    60.刘志华,常禹,陈宏伟.基于遥感、地理信息系统和人工神经网络的呼中林区森林蓄积量估测[J].应用生态学报,2008,19(9):1891-1896.
    61.吕子君,卢欣石,辛晓平.中国北方草原沙化现状与趋势[J].草地学报,2005,13(增):24-27.
    62.马小计,杨自安,刘韶峰,等.辽宁锦州市土地利用动态遥感监测方法应用研究[J].地质与勘探,2008,44(1):97-101.
    63.马心璐,任志远,王永丽.支持向量机在高光谱遥感图像植被分类中的应用[J].农业系统科学与综合研究,2009,25(2):204-207.
    64.牛宝茹.基于遥感信息的沙漠化灾害程度定量提取研究[J].灾害学,2005,20(1):18-21.
    65.牛宝茹,刘俊蓉,王政伟.十旱半十旱地区植被覆盖度遥感信息提取研究[J].武汉大学学报·信息科学版,2005,30(1):27-30.
    66.潘东晓,虞勤国,赵元洪.遥感图像的神经网络分类法[J].国土资源遥感.1996(3):49-55.
    67.潘耀忠,陈志军,聂娟,等.基于多源遥感的土地利用动态变化信息综合监测方法研究[J].地球科学进展,2002,17(2):182~187.
    68.齐立夫.模糊等价关系的动态聚类法及在城市分类中的应用[J].工程科技,2009,(3):146-147.
    69.任军号,吉沛琦,耿跃.SOM神经网络改进及在遥感图像分类中的应用[J].计算机应用研究,2011,28(3):1170-1172.
    70.申卫博,工国栋,张社奇,等.景观生态学及熵模型在荒漠化监测与评价中的应用[J].环境科学研究,2005,18(6):106-109.
    71.孙武,南忠仁,李保生,等.荒漠化指标体系设计原则的研究[J].自然资源学报,2000,15(2):160-163
    72.孙晓霞,张继贤,刘正军.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,2006,31(1):62-63.
    73.谭琨,杜培军.基于支持向量机的高光谱遥感影像分类[J].红外与毫米波学报,2008,27(2):123-128.
    74.唐浩,廖与禾,孙峰,等.具有模糊隶属度的模糊支持向量机算法[J].西安交通大学学报,2009,43(7):40-43.
    75.全慧杰,冯仲科,张彦林.树种在遥感信息上的差异分析[J].北京林业大学学报,2007, 29(增刊2):160~163.
    76.童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:74-79.
    77.王改良,武妍.用入侵的自适应遗传算法训练人工神经网络[J].红外与毫米波学报,2010,29(2):136-139.
    78.王红岩,高志海,王琫瑜,等.基于TM遥感影像丰宁县森林地上生物量估测研究[J].安徽农业科学,2010,38(32):18472-18474.
    79.王建,李文君,宋冬梅,等.近30年来民勤土地荒漠化变化遥感分析[J].遥感学报,2004,8(3):280-288.
    80.王君厚,孙司衡.荒漠化类型划分及其数量化评价体系[J].干旱环境监测,1996,10(3):130-137.
    81.王蕾,黄华国,张晓丽,等.基于知识规则的马尾松林遥感信息提取技术研究[J].北京林业大学学报,2007,29(3):124-130.
    82.王立海,赵正勇,杨旗.利用GIS对吉林针阔混交林TM遥感图像分类方法的初探[J].应用生态学报,2006,17(4):577-582.
    83.王莉雯,牛铮,卫亚星.基于MODIS NDVI的新疆潜在荒漠化区域探测[J].红外与毫米波学报,2007,26(6):456-460.
    84.王琳,刘文灿,和海霞,等.内蒙古中部地区土地荒漠化遥感调查及环境质量评价[J].现代地质,2006,20(3):505-512.
    85.王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,16(1):108-111.
    86.王涛,吴薇,王熙章.沙质荒漠化的遥感监测与评估——以中国北方沙质荒漠化区内的实践为例[J].第四纪研究,1998(2):108-118.
    87.王晓慧,李增元,高志海,等.沙化土地信息提取研究[J].林业科学,2005,41(3):82-87.
    88.王秀珍,黄敬峰,李云梅,等.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
    89.工雪军,杨建新,孙玉军.晋陕蒙接壤地区土地利用格局动态遥感研究与预测[J].水土保持学报,2002,16(4):58-61.
    90.工圆圆,陈云浩,李京.基于支持向量机(SVM)特征加权/选择的光谱匹配算法[J].光谱学与光谱分析,2009,29(3):735-739.
    91.工志辉,丁丽霞.基于叶片高光谱特性分析的树种识别[J].光谱学与光谱分析,2010,30(7):1825-1829.
    92.工智文.基于改进BP神经网络的车牌字符识别[J].微电子学与计算机,2011,28(9):66-69.
    93.工智文,李绍滋,刘美珍,等.基于科斯塔斯环法的载波提取的设计[J].微电子学与计算 机,2010,27(10):193-196.
    94.韦锐,张佩芳.云南省屏边县土地利用/土地覆盖时空动态研究[J].中国农业气象,2008,29(1):100-103.
    95.吴代晖,范闻捷,崔要奎,等.高光谱遥感监测土壤含水量研究进展[J].光谱学与光谱分析,2010,30(11):3067-3071.
    96.吴芳,贾永红.基于PCA-BPNN的多光谱遥感影像分类[J].地理空间信息,2006,4(1):15-17.
    97.吴志杰,陈松林.基于TM遥感影像的闽西山区土地利用景观格局分析[J].华东理工学院学报,2007,30(2):171-176.
    98.肖海燕,曾辉,昝启杰,等.基于高光谱数据与专家决策提取红树林群落类型信息[J].遥感学报,2007,11(4):531-537.
    99.肖鹏峰,刘顺喜,冯学智,等.中分辨率遥感图像土地利用与覆被分类的方法及精度评价[J].国土资源遥感,2004(4):41-45.
    100.邢东兴,常庆瑞.基于光谱分析的果树树种辨识研究[J].光谱学与光谱分析,2009,29(7):1937-1940.
    101.熊轶群,吴健平.面向对象的城市绿地信息提取方法研究[J].东北师范大学学报(自然科学版),2006(4):84-90.
    102.杨存建,刘纪远,张增祥,等.遥感和GIS支持下的中国退耕还林还草决策分析[J].遥感学报,2002,6(3):205-210.
    103.杨胜天,李茜,刘昌明,等.应用“北京一号”遥感数据计算官厅水库库滨带植被覆盖度[J].地理研究,2006,25(4):570-578.
    104.杨胜天,刘昌明,杨志峰,等.南水北调西线调水工程区的自然生态环境评价[J].地理学报,2002,57(1):11~18.
    105.杨伟,陈晋,松下文经,等.基于相关系数匹配的混合像元分解算法[J].遥感学报,2008,12(3):454-461.
    106.杨晓晖,慈龙骏.基于遥感技术的荒漠化评价研究进展[J].世界林业研究,2006,19(6):11-17.
    107.雍国玮,石承苍,邱鹏飞.川西北高原若尔盖草地沙化及湿地萎缩动态遥感监测[J].山地学报,2003,21(6):758-762.
    108.于祥,赵冬至,张丰收,等.红树林高光谱分析技术研究[J].滨州学院学报,2006,22(6):53-56.
    109.袁宏波,王辉,李晓兵,等.玛曲县天然草地沙化动态及现状分析[J].甘肃农业大学学报,2006,41(1):73-78.
    110.张海龙,蒋建军,解修平,等.近25年来西安地区土地利用变化及驱动力研究[J].资源科学,2006,28(4):71-77.
    111.张宏,林先成,李世强.荒漠化评价指标体系的等级系统研究[J].四川师范大学学报(自然科学版),2005,28(3):358-361
    112.张锦水,潘耀忠,韩立建.光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J].遥感学报,2007,11(4):500-510.
    113.张凯,王润元,王小平,等.黄土高原春小麦地上鲜生物量高光谱遥感估算模型[J].生态学杂志,2009,28(6):1155-1161.
    114.张立峰,徐长金.北方高寒半干旱农牧交错带资源环境障碍与农牧生产力开发[J].资源科学,1999,21(5):62-65.
    115.张萍.北京森林碳储量研究[D].北京:北京林业大学博士论文,2009.
    116.张晓娟,杨英健,盖利亚,等.基于CART决策树与最大似然比法的植被分类方法研究[J].遥感信息,2010(2):88-92.
    117.赵清,郑国强,黄巧华.基于神经网络模型技术的南京市主城区城市森林遥感调查[J].地理研究,2006,25(3):468-476.
    118.赵银娣,张良培,李平湘.一种纹理特征融合分类算法[J].武汉大学学报·信息科学版,2006,31(3):278-281.
    119.郑光,田庆久,陈镜明,等.结合树龄信息的遥感森林生态系统生物量制图[J].遥感学报,2006,10(6):932-940.
    120.周从斌,范建容.金沙江干热河谷土地荒漠化评价的植被指标分析[J].云南地理环境研究,2002,14(1):80-84.
    121.周前详,敬忠良.基于非线性神经网络的高清晰高光谱遥感图像分类器设计与应用[J].宇航学报,2005(26):126-129.
    122.朱震达,刘恕.关于沙漠化概念及发展程度的判断[J].中国沙漠,1984,4(3):12-137.
    123.庄晨辉,陈铭潮,李峥.遥感技术在土地沙化监测中的应用[J].福建林学院学报,2006,26(4):324-327.
    124. Alfredo D C, Emilio C and Camarasaw A. Satellite remote sensing analysis to monitor desertification processing the crop range-land boundary of argentina[J]. Journal of Arid Environments,2002(52):121-133.
    125. Andrew J E and John F M. Quantifying vegetation change in semiarid environments:Precision and accuracy of spectral mixture analysis and the normalized difference vegetation Index[J]. Remote Sensing of Environment,2000(73):87-102.
    126. Arun D K. Neural-Fuzzy models for multispectral image analysis[J]. Applied Intelligence,1998, 8(2):173-187.
    127. Asner G P and Lobell D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation[J]. Remote Sensing of Environment,2000(74):99-112.
    128. Binaghi E. Gallo I and Pepe M. A neural adaptive model for feature extraction and recognition in high resolution remote sensing imagery[J]. International Journal of Remote Sensing,2003, 24(20):3947-3959.
    129. Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales:An evaluation of some hyperspectral approaches[J]. Remote Sensing of Environment,1998,66(3): 273-285.
    130. Boyd D S, Foody G M and Curran P J. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths[J]. International Journal of Remote Sensing,1999,20(5):1017-1023.
    131. Buddenbaum H, Schlerf M and Hill J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods[J]. International Journal of Remote Sensing, 2005,26(24):5453-5465.
    132. Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery,1998,2(2):121-167.
    133. Cesmeli E. Texture segmentation using gaussian markov random field sand legion[C]. The IEEE International Conference on Neural Networks, Houston, Texas, USA,1997.
    134. Yang C H and Anderson G L. Airborne videography to identify spatial plant growth variability for grain sorghum[J]. Precision Agriculture,1999(1):67-79.
    135. Chi M M, Feng R and Lorenzo B. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem[J]. Advances in Space Research,2008, 41(11):1793-1799.
    136. Cohen Y and Shoshany M. Analysis of convergent evidence in an evidential reasoning knowledge-based classification[J]. Remote Sensing of Environment,2005,96:518-528.
    137. Collado A D, Chuvieco E and Camarasa A. Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina[J]. Journal of Arid Environments,2002,52(1):121-133.
    138. Dana K J, Van Ginneken B, Nayar N K, et al. Reflectance and texture of real world surfaces[J]. ACM Trans Graphics,1999,18(1):1-34.
    139. Zheng D L, Rademacherb J, Chena J, et al. Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northern Wisconsin, USA [J]. Remote Sensing of Environment, 2004(93):402-411.
    140. De Jong S M S, Pebesma E J and Lacaze B. Above-ground biomass assessment of mediterranean forests using airborne imaging spectrometry[J]. International Journal of Remote Sensing,2003,24(7):1505-1520.
    141. Dirmeyer P A and Shukla J. Albedo as a modulator of climate response to tropical deforestation[J]. Journal of Geophysical Research,1994(99):20863-20878.
    142. Drake N A, Mackin S and Settle J J. Mapping vegetation, soils, and geology in semi-arid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery[J]. Remote Sensing of Environment,1999(68):12-25.
    143. Duncan J, Stow D, Franklin J, et al. Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin, New Mexico[J]. International Journal of Remote Sensing,1993,14(18):3395-3416.
    144. Dymond J R, Stephens P R, Newsome P F, et al. Percent vegetation cover of a degrading rangeland from SPOT[J]. International Joural of Remote Sensing,1992,13(11):1999-2007.
    145. Ehlers M, Jadkowski M A, Howard R R, et al. Application of a remote sensing——GIS evaluation of urban expansion 2013SPOT data for regional growth analysis and local planning[J]. Photogrammetric Engineering and Remote Sensing,1990,56(1):175-180.
    146. Elmore A J, Mustard J F, Manning S J, et al. Quantifying vegetation change in semi-arid environments:Precision and accuracy of spectralmixture analysis and the normalized difference vegetation index[J]. Remote Sensing of Environment,2000,73:87-102.
    147. Elvidge C D and Chen Z. Comparison of broadband and narrow-band red and near-infrared vegetation indices[J]. Remote Sensing of Environment,1995(54):38-48.
    148. Foody G M, Boyd D S and Cutler M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between Regions[J]. Remote Sensing of Environment, 2003,85 (4):463-474.
    149. Franco-Lopez H, Ek A R and Bauer M E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method[J]. Remote Sensing of Environment,2001,77 (3):251-274.
    150. Friedl M A and Brodley C E. Decision tree classification from remotely sensed data[J]. Remote Sensing of Environment,1997(61):399-409.
    151. Friedl M A, Brodley C E and Strahler A H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Transactionson Geosciencesand Remote Sensing,1999,37(2):969-979.
    152. Gad S and Kusky T. Lithological mapping in the eastern desert of Egypt, the barramiya area, using landsat thematic mapper(TM)[J]. Journal of African Earth Sciences,2006(44):196-202.
    153. Gestel T V. Financial time series prediction using least squares support vector machines within the evidence framework[J]. IEEE Trans on Neural Networks,2001,12(4):809-821.
    154. Giles M F, Mark E C, Julia M, et al. Mapping the biomass of Bornean tropical rain forest from remotely sensed data[J]. Global Ecology& Biogeography,2001(10):379-387.
    155. Grainger A. Smith M S, Squires V R, et al. Desertification and climate change:the case for greater convergence[J]. Mitigation and Adaptation Strategies for Global Change,2000(5):361- 377.
    156. Griedl M A and Brodeley C E. Decision tree classification of land cover from remotely sensing data[J]. Remote Sensing Environment,1997(61):399-409.
    157. Gutman G and Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998,19(8):1533-1543.
    158. Hakan A and Tuluhan Y K. Monitoring environmental changes in the Mediterranean coastal landscape:the case of Cukurova, Turky[J]. Environmental Management,2005,35(5):607-619.
    159. Hame T, Salli A, Andersson K, et al. A new methodology for the estimation of biomass of conifer dominated boreal forest using NOAA AVHRR data[J]. Photogrammetric Engineering& Remote Sensing,1997,18(15):3211-3243.
    160. Hansen M C, Defries R S and Townshend J R G. Towards an operational MODIS continuous field of percent tree cover agorithm:examples using AVHRR and MODIS data[J]. Remote Sensing of Environment,2002(83):303-319.
    161. Hansen M C, Defries R S, Townshend J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000,21(6):1331-1364.
    162. Harris P M and Ventura S J. The integration of geographic data with remotely sensed imagery to improve classification in an urban area[J]. Photogrammetric Engineering and Remote Sensing, 1995,61(5):993-998.
    163. Henry N L H. Review:Climate change, drought and desertification[J]. Journal of Arid Environments,1996,34(2):133-185.
    164. Holm A M R, Cridland S W and Roderinck M L. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of western Australia[J]. Remote Sensing of the Environment,2003(85):145-158.
    165. Ishiyama T, Nakajlma Y, Kajiwara K, et al. Extraction of vegetation cover in an arid area based on satellite data[J]. Adv Space Res,1997,19(9):1375-1378.
    166. Jefferson F and John B V. Land-use and land-cover change in Montane mainland southeast asia[J]. Environmental Management,2005,36(3):394-403.
    167. Jiang H, Strittholt J R, Frost P A, et al. The classification of late seral forests in the Pacific Northwest, USA using Landsat ETM+imagery[J]. Remote Sensing of Environment,2004(91): 320-331.
    168. Joshi P K, Rawat G S, Padilya H, et al. Biodiversity characterization in Nubra Valley, Ladakh with special reference to plant resource conservation and bioprospecting[J]. Biodiversity and Conservation,2006,15(13):4253-4270.
    169. Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management,2005,77:96-109.
    170. Krasnopolsky V M and Chevallier F. Some neural network applications in environmental sciences. Part Ⅱ:Advancing computational efficiency of environmental models[J]. Neural Networks,2003(16):335-348.
    171. Kremer R G and Running S W. Community type differentiation using NOAA/AVHRR data within a sagebrush-steppe ecosystem[J]. Remote Sensing of Environment,1993(46):311-318.
    172. Lanfredi M, Lasaponara R, Simoniello T, et al. Multiresolution spatial characterization of land degradation phenomena in southern Italy from 1985 to 1999 using NO A A-AVHRR NDVI data[J]. Geophysical Research Letters,2003,30(2):1069.
    173. Lawrence R L and Wright A. Rule-based classification system using classification and regression tree(CART) analysis[J]. Photogrammetric Engineering and Remote Sensing,2001, 67(10):1137-1142.
    174. Leung T and Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons[J]. International Journal of Computer Vision,2001,43(1):29-44.
    175. Lin C F and Wang S D. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks,2002,13(2):464-471.
    176. Luis H S J and Raul P H. Mapping the spatial distribution of plant diversity indices in a tropical forest using multi-spectral satellite image classification and field measurements[J]. Biodiversity and Conservation,2004(13):2599-2621.
    177. Luoga E J, Witkowski E T F and Balkwill K. Land cover and use changes in relation to the institutional framework and tenure of land and resources in eastern Tanzania Miombo woodlands[J]. Environment, Development and Sustainability,2005(7):71-93.
    178. Masellif F and Rembold F. Integration of LAC and GAC NDVI data to improve vegetation monitoring in semi-arid environments[J]. Int J Remote Sensing,2002,23(12):2475-2488.
    179. Mas J F. Mappping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks, Estuarine[J]. Coastal and Shelf Science,2004(59):219-230.
    180. Mc Gwire K, Minor T and Fenstermaker L. Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments[J]. Remote Sensing of Environment,2000(72):360-374.
    181. Mohammad A A, Shi Z, Ahmad Y, et al. Application of GIS and remote sensing in soil degradation assessments in the Syrian coast[J]. Journal of Zhejiang University (Agric& Life sci), 2002,26(2):191-196.
    182. Mouat D, Lancaster J, Wade T, et al. Desertification evaluated using an integrated environmental assessment model[J]. Environmental Monitoring and Assessment,1997(48):139-156.
    183. Muukkonen P and Heiskanen J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J]. Remote Sensing of Environment,2005,99(4): 434-447.
    184. Okin G S and Gillete D A. Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes [J]. Journal of Geophysical Research,2001,106 (D9):9673-9683.
    185. Olsson L. On the causes of famine-drought, desertification and market failure in the Sudan[J]. Ambio,1993(22):395-403.
    186. Panda R and Chatterji B N. Unsupervised texture segmentation using tuned filter sin gaborian space[J]. Pattern Recognition Letters,1997,18(5):445-453.
    187. Pan M S, Yan J B and Xiao Z H. Vehicle license plate character segmentation[J]. International Journal of Automation and Computing,2008,5(4):425-432.
    188. Paola J D and Schowengerdt R A. A detailed comparison of back-propagation neural network and maximum-likelihood classifiers for urban land use classification[J]. IEEE Transactions Geosciences Remote Sensing,1995,33(4):981-996.
    189. Prasad S T, Ronald B S and Eddy D P. Hyperspectral vegetation indices and their relationship with agricultural crop characteristics[J]. Remote Sensing Environment,2000(71):158-182.
    190. Qi F, Cheng G and Mikami M. The carbon of sandy lands in China and its global significance[J]. Climatic Change,2001(48):535-549.
    191. Ray T W and Murray B C. Nonlinear spectral mixing in desert vegetation[J]. Remote Sensing of Environment,1996(55):59-64.
    192. Rogers S K and Kabrisky M. An introduction to biological and artificial neural networks for pattern recognition [M]. Washington:SPIE Opt Eng Press,1991.
    193. Rubio J L and Bochet E. Desertification indicators as diagnosis criteria for desertification risk assessment in Europec[J]. Journal of Arid Environments,1998(39):113-120.
    194. Settle J J and Drake N A. Linear mixing and the estimation of ground cover proportions[J]. International Journal of Remote Sensing,1993(14):1159-1177.
    195. Shrestha D P and Zinck J A. Land use classification in mountainous areas:integration of image processing, digital elevation data and field knowledge(application to Nepal)[J]. International Journal of Applied Earth Observation and Geoinformation,2001,3(1):78-85.
    196. Simard M. Saatchi S S, Grandi G D, et al. The use of decision tree and multiscale texture for classification of JERS-1SAR data over tropical forest[J]. IEEE Transactions on Geosciences and Remote Sensing,2000,38(5):2310-2321.
    197. Smith G M and Fuller R M. An intergrated approach to land cover classification:an example in the Island of Jersey [J]. International Journal of Remote Sensing,2001,22(16):3123-3142.
    198. Smith M O, Ustin S L, Adams J B, et al. Vegetation in deserts:I. A regional measure of abundance from multispectral images[J]. Remote Sensing of Environment,1990(31):1-26.
    199. Soojeong M, David J N, Paulf H, et al. Urban cover mapping using digital, high-spatial resolution aerial imagery[J]. Urban Ecosystems,2001(5):243-256.
    200. Sulong I and Mohd-Lokman H. Mangrove mapping using Landsat imagery and aerial photographs:Kemaman district, Terengganu, Malaysia[J]. Environment, Development and Sustainability,2002(4):135-152.
    201. Suykens J A K and Vandewalle J. Least square support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
    202. Symeonakis E and Drake N. Monitoring desertification and land degradation over sub-Saharan Africa[J]. International Journal of Remote Sensing,2004,25(3):573-592.
    203. Tanser F C and Palmer A R. The application of a remotely-sensed diversity index to monitor degradation patterns in a semi-arid, heterogeneous, south African landscape[J]. Journal of Arid Environments,1999,43(4):4,477-484.
    204. Tatem A J, Lewis H G, Atkinson P M, et al. Super-resolution land cover pattern prediction using a hopfield neural network[J]. Remote Sensing of Environment,2002,79(1):1-14.
    205. Terence P B, Sandra M C and Robert G. W. Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America[J]. Wetlands Ecology and Management, 2004(12):563-573.
    206. Toby N C and David A R. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment,1997,62(3):241-252.
    207. Torres-Torriti M, Jouan A and Gabor V. GMRF features for SAR imagery classification[C]. The IEEE International Conference on Image Processing, Thessaloniki,2001.
    208. Townshend J R G and Justice C O. Analysis of dynamics of african vegetation using the normalized difference vegetation index[J]. International Journal of Remote Sensing,1986(12): 1224-1242.
    209. Treitz P M, Howard P J and Gong P. Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe:A case study[J]. Photogrammetric Engineering and Remote Sensing,1992,58(2):439-448.
    210. Tripathy G K, Ghosh T K, Shah S D, et al. Monitoring of desertification process in Karnataka state of India using multi-temporal remote sensing and ancillary information using GIS[J]. International Journal of Remote Sensing,1996,17(2):2243-2257.
    211. Trotter C M, Dymond J R and Goulding C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM[J]. International Journal of Remote Sensing,1997,18(10): 2209-2223.
    212. Turner B L, Skole D, Sanderson S, et al. Land use and land cover change[J]. Earth Science Frontiers,1997,4(1):26-34.
    213. Valle H F D, Elissalde N O, Gagliardini D A, et al. Status of desertification in the patagonian region:assessment and mapping from satellite imagery[J]. Arid Soil Research and Rehabilitation, 1998,12(2):95-122.
    214. Wang J and Li W J. Primary study on the multi-layer remote sensing information extraction of desertification land types by using decision tree technology[C]. International geosciense and remote sensing symposium. Institute of Electrical and Electronics Engineers Inc,2002:2513-2515.
    215. Wilson E H and Sader S A. Detection of forest harvest type using multiple dates of landsat TM imagery[J]. Remote Sensing of Environment,2002(80):385-396.
    216. Wittich K P and Hansing O. Area averaged vegetative cover fraction estimated from satellite data[J]. International Joural of Biometerology,1995,38(3):209-215.
    217. Wu C and Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment,2003,84(4):493-505.
    218. Xie M, Li S, Jiang F, et al. Methane emissions from terrestrial plants over China and their effects on methane concentrations in lower troposphere[J]. Chinese Science Bulletin,2009,54(2):304-310.
    219. Yang P. Remote sensing of savanna vegetation changes in Eastern Zambia 1972-1989[J]. International Journal of Remote Sensing,2000,21(2):301-322.
    220. Yang X, Zhang K, Jia B, et al. Desertification assessment in China:an overview[J]. Journal of Arid Environments,2005(63):517-531.
    221. Zhao Y, Liu Z G and Xu L. Change of landscape pattern and its influence on environment in Dongling district, Shenyang city, China[J]. Journal of Environmental Sciences,1996,8(4):466-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700