基于脱氢枞酸芳环的芳胺荧光衍生物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光材料以其驱动电压低、响应速度快、分辨率高等优点,已成为当今光电信息功能材料领域的研究热点之一;而且随着超分子化学的快速发展,荧光分子探针在生命科学的应用开始受到人们的重视,设计、合成新型的荧光衍生物逐渐成为当今有机合成领域的研究热点。本文围绕脱氢枞酸芳胺荧光衍生物的合成、荧光性能以及它们在空穴传输材料和肿瘤细胞荧光成像方面的应用展开研究,取得如下研究成果:
     1.通过C-N偶联的方法设计、合成了7个脱氢枞酸二芳胺(5a~5g)和8个脱氢枞酸三芳胺(6a~6h)两个系列新型化合物。二芳胺化合物的合成采用钯催化的C-N偶联工艺,首次替代文献报道的铜催化的N-芳基化反应。物质结构通过元素分析、IR、1H NMR、13CNMR、MS及X射线衍射等确证。详细研究了它们的紫外可见吸收光谱、荧光光谱、量子产率和荧光寿命,以及在不同极性溶剂中的荧光发射光谱特征。发现它们的紫外吸收波长在275-345nm,最大荧光发射波长在348-448nm范围内。具有萘环和联苯基团的长共轭体系的化合物以及芳环上连接供电子取代基的化合物荧光发射波长具有较大红移。而且溶剂的极性对所有二芳胺系列化合物(5a~5g)和具有萘环(6f)和联苯基团(6b,6h)的部分三芳胺化合物的荧光发射波长有较大影响,而对其它三芳胺化合物的发射波长影响不明显。所有化合物在不同极性溶剂中呈现不同的荧光强度。
     2.利用Gaussian03程序,采用密度泛函DFT/B3LYP方法首次对两个系列脱氢枞酸芳胺化合物的分子构型和分子前线轨道HOMO、LUMO图以及能级进行全优化,分析了分子结构与荧光性能之间的关系。发现含有大的共轭体系的萘环、联苯环的化合物以及芳环上连接甲氧基、甲基和溴原子取代基团的化合物具有较小的带隙,而且随着取代基数目的增加,其带隙值变小。从化合物电子跃迁能量的角度分析,预测了这样的化合物将具有更好的荧光性能,这一预测也得到了试验结果的验证。
     3.对三芳胺系列化合物进行了热稳定性、电化学性能分析,通过循环伏安法测得了物质的氧化还原电位,计算出HOMO、LUMO轨道能级,表明该化合物具有比较好的热稳定性、合适的HOMO能级(-5.26eV to-4.63eV),可以作为多层OLED器件的空穴传输材料。将化合物6a~6h作为空穴传输材料应用到OLED器件中,通过对器件的亮度-电压、电流密度-电压和发光效率-电流密度特性的测试,发现由6a,6d~6h制得的器件具有较低的启动电压、较高的最大亮度和发光效率,其综合性能优于经典的空穴传输材料N,N′-二苯基-N,N′-双-(1-萘基-1,1′-联苯)-4,4′-二胺(NPB)。
     4.首次对两个系列化合物5a~5g和6a~6h作为荧光分子探针,进行了光稳定性、细胞毒性以及肿瘤细胞成像的研究。结果表明,两个系列化合物(浓度为2.0μM)对A549、7721、7901、Hela肿瘤细胞进行处理,细胞的存活率均大于90%,毒性很低;化合物5a、5b、5e、5g和6a、6b、6d、6e、6g具有较好的光稳定性,而5f、6c、6f及6h光稳定性较差。荧光显微镜成像结果表明,5a、5b、5e、5g和6a、6b、6d、6e、6g均能被肿瘤细胞摄取,呈现较强荧光。5f、6c、6f及6h在肿瘤细胞中孵育后,观察不到细胞内的荧光。可能是由于这些化合物光稳定性较差,虽然被细胞摄取,但在显微镜光源照射下,丧失荧光。同时还发现,化合物在细胞中呈现的荧光强度不一致,细胞质中的强度较高,细胞核中较弱,说明化合物富集在细胞质中,有望作为细胞质探针开发应用。
Organic electroluminescent materials have attracted much attention in the research ofoptoelectronic information materials for the various advantages of lower turn-on voltage、fastresponse and high resolution, and so on. In additional, with the rapid development ofsupramolecular chemistry, the application of fluorescent molecular probe in life sciences hasattracted much attention. To design and synthesize some novel fluorescent derivatives havegradually become the focus of the organic synthesis field. In this dissertation, synthesis andfluorescent properties of dehydroabietic-based arylamines were investigated, and theirapplications as hole transporting materials in OLEDs and as fluorescent molecular probes intumor cells were performed, and some important results were obtained as follows:
     Firstly, two series of novel compounds comprising arylamine and dehydroabietic acidgroups were synthesized via C-N cross-coupling. For the first time, the diarylamines weresynthesized through C-N coulpling using palladium catalysts, instead of N-arylation reactionusing copper catalysts. The compounds were characterized by elemental analysis, FT-IR,NMR,mass spectrometry and X-ray diffraction. Their absorption、fluorescent spectra, quantum yield,lifetime, and fluorescent emission in solvents of different polority were studied.They haveabsorption maximum wavelength ranging from275-345nm,fluorescence emission rangingfrom348-448nm. The introduction of nathaphene and biphenyl moieties and electron-donorgroup causes a large red-shift of fluorescence emission spectra and increase of intensity. Anincrease of the solvent polarity causes a significant red-shift of the emission spectra of alldiarylamine compounds(5a~5g) and several triarylamine compounds with naphthalene(6f) andbisphenyl(6b,6h) moiety. However, the other triarylamine compounds only show minorresponses to solvent polarity. All compounds exsit different fluorescent intensity in differentpolarity solvents.
     Secondly, molecular configuration and HOMO、LUMO levels of compounds wereoptimized by DFT/B3LYP using Gaussian03. The relation bettween molecular structures andfluorescent properties was analysed. The results show the compounds with big conjugatedlength or substituents of electron-donor group exhibit narrower energy gap, which could havebetter fluorescent properties.The predicted results are in agreement with the experimentalvalues.
     Thirdly, the thermal properties and electrochemical of6a~6h were investigated bythermogravimetric analysis (TGA), differential scanning calorimetry(DSC), and cyclicvoltammetry (CV), respectively. The compounds present suitable HOMO levels (in a range of-4.63to-5.11eV) for hole injection, which is confirmed by theoretical calculations. Allcompounds are thermally stable. Organic light-emitting diode devices having6a、6d-6h as ahole transporting layer show better performance of maximum brightness, lower turn-on voltage,and maximum luminous efficiency than a comparable device NPB. These compounds could beexcellent candidates for applications in OLED devices.
     Finally, the fluorescence properties, photostability, cell toxicity and in vitro fluoresceneimaging of all compounds have been investigated. The percentage of cell survival aftertreatment of compounds5a~5g and6a~6h (2.0μM) to HeLa, SMMC-7721, SGC-7901andA549cells are above90%using the untreated cells as control, showing it has very lowcytotoxicity at this concentration. Fluorescence intensity of compounds5a、5b、5e、5g、6a、6b、6d、6e and6g have not obviously decrease as increase in irradiation duration, showing theirgood photostability. As seen from fluorescent imaging, compounds5a、5b、5e、5g、6a、6b、6d、6e and6g are all successfully taken up by all of the cells and strong blue fluorescencesignals are detected in these cells, suggesting it can be used as an effective fluorescent probe invitro. However, the cells treated with compounds5f、6c、6f and6h have no observedfluorescence sigal, which could be due to their lower photostability under the irradiation ofmicroscopy. In additional, after entrapping inside the tumor cells, the fluorescence intensity arenot uniform, the fluorescence intensity in cytoplasm is much stronger than in nuclear which indicating that the compounds accumulated in cytoplasm. Above properties indicate that thesecompoumds have potential to be used as cytoplasm fluorescent probes in biological diagnose.
引文
[1]朱道本,功能材料化学进展,化学工业出版社,2005,13-18
    [2] M. Pope, H. P. Kallmann, P. Magnate. Electroluminescence in Organic Crystals. J. Chem. Phys.,1963,38:2042-2043
    [3] W. Helfrich, G. L. Schneider. Recombination Radiation in Anthracene Crystals. Phys. Rev. Lett.,1965,14:229-231
    [4] C.W. Tang, S.A.Van Slyke. Organic Electroluminescent Diodes. Appl. Phys. Lett.,1987,51(12):913-915
    [5]徐清,陈红征,等.三芳胺类空穴传输材料研究新进展.功能材料,2005,36(11):1659-1663
    [6] Y. linai, M. Ishida, M. A. Kaklmoto. Synthesis and Properties of New Triphenylamine-containingAromatic Polyimides Based on N,N’-bis(4aminophenyl)-N,N’-diphenyl-4,4’-biphenyldiamine, HighPerform Polym.,2003,15(3):281-290
    [7]马昌期,王雪松,等.有机电致发光空穴传输材料研究进展.化学进展,2003,15(6):495-504
    [8] K. Naito, A. Miura. Molecular Design for Nonpolymeric Organic Dye Glasses with Thermal Stability:Relations between Thermodynamic Parameters and Amorphous Properties. J. Phys. Chem.,1993,97(23):6240-6248
    [9] D. F. O'Brien, P. E. Burrows, et a1. Hole Transporting Materials with High Glass Transition Temperaturesfor Use in Organic Light-Emitting Devices. Adv. Mater.,1998,10(13):1108-1112
    [10] A.P. de Silva, h. Q.N. Gunatatne, T. Gunnlauggson, et al. Signaling Recognition Events withFluorescent Sensors and Switches. Chem.Rev.,1997,97,1515-1566.
    [11] K. H. Xu, B. Tang, H. Huang, et al. Strong red fluorescent probes suitable for detecting hydrogenperoxide generated by mice peritoneal macrophages. Chem. Commun.,2005,48:5974-5976
    [12] B. Tang, H. Huang, K. H. Xu, et al. Highly sensitive and selective near-infrared fluorescent probe forzinc and its application to macrophage cells. Chem. Commun.,2006,34:3609-3611
    [13]龙云飞.有机小分子光谱探针在铜离子和DNA分析中的应用.西南大学,博士学位论文,2007
    [14] B. Tang, Z. Z. Chen, N. Zhang. Synthesis and characterization of a novel cross-linking complex ofbeta-cyclodextrin-o-vanillin furfuralhydrazone and highly selective spectrofluorimetric determinationof trace gallium. Talanta,2006,68:575-580
    [15] K. H. Xu, X. Liu, B. Tang, et al. Design of a phosphinate-based fluorescent probe for superoxidedetection in mouse peritoneal macrophages. Chem. Eur. J.,2007,13:1411-1416
    [16] B.Tang, F. Liu, K. H. Xu, et al. A novel metallobridged bis(beta-cyclodextrin)s fluorescent probe for thedetermination of glutathione. FEBS Journal,2008,275:1510-1517
    [17] B. Tang, X. Liu, K. H. Xu, et al. A dual near-infrared pH fluorescent probe and its application inimaging of HepG2cells. Chem. Commun.,2007,36:3726-3728
    [18] B. Tang, Y. L. Xing, P. Li, et al. A rhodamine-based fluorescent probe containing a Se-N bond fordetecting thiols and its application in living cells. J. Am. Chem. Soc.,2007,129:11666-11667
    [19] X. J. Peng, J. J. Du, J. L. Fan, et al. A selective fluorescent sensor for imaging Cd2+in living cells. J. Am.Chem. Soc.,2007,129:1500-1501
    [20] K. H. Xu, X. Liu, B. Tang. A phosphinate-based red fluorescent probe for imaging the superoxideradical anion generated by RAW264.7macrophages. ChemBioChem.,2007,8:453-458
    [21] S. Kenmoku, Y. Urano, H. Kojima, et al. Development of a highly specific rhodamine-basedfluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J.Am. Chem. Soc.,2007,129:7313-7318
    [22] Y. Koide, Y. Urano, S. Kenmoku, et al. Design and synthesis of fluorescent probes for selectivedetection of highly reactive oxygen species in mitochondria of living cells. J. Am. Chem. Soc.,2007,129:10324-10325
    [23] B. C. Dickinson, C. J. Chang. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in theMitochondria of Living Cells. J. Am. Chem. Soc.,2008,130:9638-9639
    [24] B. Tang, L. J. Cui, K. H. Xu, et al. A sensitive and selective near-infrared fluorescent probe for mercuricions and its biological imaging applications. ChemBioChem.,2008,9:1159-1164
    [25] Z. N. Sun, F. Q. Liu, Y. Chen, et al. A highly specific bodipy-based fluorescent probe for the detectionof hypochlorous acid. Org. Lett.,2008,10:2171-2174
    [26] B. Tang, I. H. Cao, K. H. Xu, et al. A new nanobiosensor for glucose with high sensitivity andselectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantumdots and an nanoparticles. Chem. Eur. J.,2008,14:3637-3644
    [27] B. Tang, J. Y. Niu, C. G. Yu, et al. Highly luminescent water-soluble CdTe nanowires as fluorescentprobe to detect copper(II). Chem. Commun.,2005,33:4184-4186
    [28]混旭.荧光纳米粒子探针的制备及其应用研究.陕西师范大学,博士学位论文,2008
    [29] J. C. G. Bunzli, A. S. Chauvin, C. D. B. Vandevyver, et al. Lanthanide bimetallic helicates for in vitroimaging and sensing. Ann. N. Y. Acad. Sci.,2008,1130:97-105
    [30] A. S. Chauvin, S. Comby, B. Song, et al. A versatile ditopic ligand system for sensitizing theluminescence of bimetallic lanthanide bio-imaging probes. Chem. Eur. J.,2008,14:1726-1739
    [31] A. Picot, A. D’A1eo, P. L. Baldeck, et al. Long-lived two-photon excited luminescence of water-solubleeuropium complex: Applications in biological imaging using two-photon scanning microscopy. J. Am.Chem. Soc.2008,130:1532-1533
    [32]邢佩佩张海燕李娜佟丽丽徐克花唐波.稀土配合物荧光探针在活细胞成像研究中的新进展.分析科学学报,2009,25(6):721-725
    [33] P. Conlon, C. J. Yang, Y. Wu, et al. Pyrene excimer signaling molecular beacons for probing nucleicacids. J. Am. Chem. Soc.,2008,130:336-346
    [34] Y. R. Wu, C. J. Yang, L. L. Moroz, et al. Nucleic acid beacons for long-term real-time intracellularmonitoring. Ana1. Chem.,2008,80:3025-3028
    [35] T. N. Grossmann, L Roglin, O. Seitz. Triplex Molecular Beacons as Modular Probes for DNA Detection.Angew. Chem. Int. Ed.,2007,46:5223-5225
    [36]张海燕,邢佩佩,李娜,徐克花,唐波.蛋白质标记荧光探针的研究及其进展,分析科学学报,2009,25(5):593-597
    [37] Y. Li, H. W. Li, L. J. Ma, et al. A unique protein labeling system based on melittin and thenon-covalent binding-induced pyrene excimer. Chemical Communications,2010,46:3768-3770
    [38] T. Hirano, K. Kikuchi, Y. Urano, et a1. Improvement and biological applications of fluorescent probesfor zinc, ZnAFs. J. Am. Chem. Soc.,2002,124:6555-6562
    [39] D. A. Pearec, N. Jotterand, I. S. Carrieo, et al. Derivaitves of8-hydroxy-2-methylquinoline are powerfulprototypes for zinc sensors in biological systems. J. Am. Chem. Soc.,2001,123(21):5160-5161
    [40]范伟贞,马杰,陈建平,林丽榕,黄荣彬.识别细胞内金属离子的有机荧光探针研究进展.化学试剂,2012,34(8):673-684
    [41] M. Adamczyk, C. Chan, J. Fino, et al. Synthesis of5-and6-hydroxymethylfluorescein phosphoramidites. Org. Chem.,2000,65(2):596-601
    [42]苏美红,聂丽华,马会民. pH荧光探针的研究进展.分析科学学报,2005,21(2):210-214
    [43] B. Liu, K.M. Wang, W. H. Tan, et.al. Real-time monitoring uracil removal by uracil-DNA glycolsylaseusing FRET probe.Anal Biochem.2007,366(2):237-243
    [44] C. Baleizao, N. Pires, B. Gigante. Friedel-Crafts Reactiona in Ionic Liquids: the Counter-ion eEffect onthe Dealkylation and Acylation of Methyl Dehydroabietate.Tetrahedron Letters,2004,45:4375-4377
    [45]许雪棠,段文贵,黄媚,等.离子液体中12-苯甲酰基脱氢枞酸甲酯(4)的合成.化学通报,2008,71(2):138-143
    [46]韦瑞松,段文贵,许雪棠,等.离子液体在脱氢枞酸甲酯F.C烷基化反应中的应用.广西大学学报:自然科学版,2009,34(2):197-200
    [47]刘陆智,王朝阳,吴秀荣,等.脱氢枞酸基Friedel-Crafts反应产物的合成研究.广西师范大学:自然科学版,2008,26(4):82-85
    [48] M.C.S.M.Silvia, J.D.S.Amando. Synthesis of Flavonoid-type Compounds from Methyl Dehydro-abietates. Monatsh Chem,2008,139:1119-1126
    [49] I. A. Tolmacheva, A. V. Tarantin, A. A. Boteva, et al. Synthesis and Biological Activity ofNitrogen-containing Derivatives of Methyl Dehydroabietate. Pharmaceutical Chemistry Journal,2006,40(9):489-493
    [50] Y. M. Cui, E. Yasutomi, Y. Otani, et al. Design, Synthesis and Characterization of PodocarpateDerivatives as Openers of BK Channels. Bioorg. Med Chem Lett,2008,18(19),5197-5200
    [51] Y. M. Cui, E. Yasutomi, Y. Otani, et al. Novel oxime and oxime ether derivatives of12,14-dichlorodehydroabietic acid: Design, synthesis, and BK channel-opening activity. Bioorganic&Medicinal Chemistry Letters,2008,18:6386-6389
    [52]吴强,张业,童碧海,等. Br2-MnO2法合成12-溴脱氢枞酸及其甲酯.广西师范大学学报:自然科学版,2008,26(1):62-65
    [53] H. Gao, Z. Q. Song, S. B. Shang. Methyl12-Bromodehydroabietate. Acta Cryst.,2010, E66, o1207
    [54]雷茜,冯少波,王凯,等.7-羰基-12-脱氢枞酸甲酯硫醚的合成.化学试剂,2008,30(4):283-284,306
    [55]张业,林宁,童碧海,等.一些含氮杂环的脱氢枞酸甲酯衍生物的合成.有机化学,2008,28(11):1932-1936
    [56]高诚伟,徐丰,何创,等.脱氢枞酸甲酯选择性硝化反应的研究.化学与生物工程,2008,25(6):33-37
    [57]冯少波,雷茜,张业,等.脱氢枞酸甲酯类衍生物的合成.有机化学,2007,27(11):1414-1419
    [58]童碧海,农容丰,王恒山,等.两种脱氢枞酸基喹啉衍生物的合成与表征.精细化工,2005,22(5):398-400
    [59]张业,潘英明,王恒山,等.脱氢枞酸甲酯喹啉衍生物的合成与表征.林产化学与工业,2007,27(2):25-28
    [60] T. Fonseca, B. Gigante, L. Thomas, et al. A Short Synthesis of Phenanthro[2,3-d]imidazoles fromDehydroabietic Acid. Application of the Methodology as a Convenient Route to Benzimidazoles.Tetrahedron,2001,57:1793-1799
    [61] T. Fonseca, B. Gigante, M. M. Marques, et al. Synthesis and Antiviral Evaluation of Benzimidazoles,Quinoxalines and Indoles from Dehydroabietic Acid. Bioorganic&Medicinal Chemistry,2004,12(1):103–112
    [62]冯少波,张业,周琪,等.新型脱氢枞酸基苯并咪唑类衍生物的合成及其氯离子识别性能.化学学报,2008,66(12):1490-1496
    [63]李芳耀.基于脱氢枞酸芳环二胺合成手性荧光衍生试剂的研究.广西师范大学硕士研究论文,2006
    [64]张业,王恒山,潘英明,等. l2-溴-l3,l4-脱氢枞酸甲酯氧化呋咱的合成与表征.化学试剂,2005,27(8):493-496
    [65]王恒山,张业,李芳耀,等.脱氢枞酸甲酯呋咱衍生物的合成与表征.精细化工,2005,22(9):709-711
    [66]潘英明,张业,王恒山,等.一些新型呋咱衍生物的合成.有机化学,2006,26(3):314-317
    [67] Y. M. Pan, Y. Zhang, H. S.Wang. Synthesis and Crystal Structure of Methyl12-bromo-13,14-Furoxan-deisopropyldehydroabietate. Chinese J.struct.chem.,2006,25(10):1209-1212
    [68]童碧海.脱氢枞酸骨架上芳杂环的构建及其荧光性质研究.广西师范大学硕士学位论文,2005
    [69]农容丰,童碧海,王恒山.新型耐热改性剂脱氢枞酸甲酯马来酰亚胺的合成及其表征.国际网上化学学报,2004,6(8):53
    [70] Y. M. Cui, E. Yasutomi, Y. Otani, et al. Novel BK Channel Openers Containing Dehydroabietic AcidSkeleton:Structure–activity Relationship for Peripheral Substituents on Ring C. Bioorganic&Medicinal Chemistry Letters,2008,(18):5201–5205
    [71] M. A. Esteves, N. Narender. Synthetic Derivatives of Abietic Acid with Radical Scavenging Activity. JNat Prod,2001,64:761-766
    [72] M. A. Esteves, M. J. Btites, M. J. Marcelo-curto. Secondary Amines from Dehydroabietic Acid asAntioxidant Additives. Key Engineering Materials Vols,2002,(230/231/232):404-407
    [73] S. Jipa, R. Setnescu. Synergistic Effects on Thermal Stability of Ethylene-propylene ElastomersStabilized with Hidered Phenols and Secondaryamines. Polymer Testing,2002,21:149-153
    [74] S. Jipa, T. Zaharescu, L. M. Gorghiu, et al. LDPE Protected by Secondary Amines of DehydroabieticMethyl Ester Derivatives. Polymer Testing,2004,23:911-917
    [75] H. D. Burrows, A. E. Casstror, M. A. Esteves, et al. Novel Organic Hole Transport Layers for MolecularElectronic Systems. Materials science forum vols,2006,(514/515/516):8-12
    [76] J. Morgado, L. Alcacer, M. A. Esteves, et al. New Stylbene-based Arylamines with Dehydroabietic AcidMethyl Ester Moieties for Organic Light-emitting Diodes. Thin Solid Films,2007,(515):7697–7700
    [77] B. Gigante, M.A. Esteves, N. Pires, et al. Synthesis, Spectroscopy, Photophysics and ThermalBehaviour of Stilbene-based Triarylamines with Dehydroabietic Acid Methyl Ester Moieties. New JChem,2009,33:877-885
    [78] H. D. Burrows, S. M. Fonseca, B. Gigante, et al. Fluorescence Study of Dehydroabietie Acid-basedBipolar Arylamine-quinoxalines. J Fluorescence,2006,(16):227-231
    [79] G. Bermardo, M. A. Stevese, M. Guerreiro, et al. Luminescence Properties of Bipolar Stylbeneamine-quinoxalines. Optical Materials,2008,(31):320-327
    [80] B. Gigante, C. Santos, A. M. Silva. Catechols from Abietic Acid: Synthesis and Evaluation as BioactiveCompounds. Bioorganic&Medicinal Chmistry,2003,11:1631-1638
    [81] Y. Matsushita, Y. Iwakiri, S. Yoshida. Synthesis of12-deoxyroyleanone, Cryptoquinone,11,14-dihydroxy-8,11,13-abietatrien-7-one, and Related Derivatives from Dehydroabietic Acid.Tetrahedronletters,2005,46(21):3629-3632
    [82] T. Masahiro, I. Kosaku. Efficient ortho-oxidation of Phenol and Synthesis of anti-MRSA and anti-VRECompound Abietaquinone Methide from Dehydroabietic Acid. Chem. Pharm. Bull.2006,54(10):1412-1417
    [83] A.Tahara, H. Akita. Diterpenoids. XXX. Reaction of Methyl Dehydroabietate Derivatives withAluminum Chloride under Effect of Electron-donating Group. Chem Pharm Bull,1975,23(9):1976-1983
    [84] H. B. Robert, C. O. Caristian. Substitution of the iso-Propyl Residue of Dehydroabietane Derivatives Aretro-Friedel-Crafts Reaction?. Synth Comm,1988,18(15):1753-1756.
    [85] R. C. Cambie, R. A. Franich. A New Synthesis of Methyl13-Hydroxypodocarpa-8,11,13-trien-18oateoi a Nitrodeisopropylation of Methyl12-Acetylabieta-8,11,13-trien-18-oate Chem.Comm.,1970,14:845-846
    [86] C. Baleizao, N. Pires, B. Gigante. Friedel–Crafts Reactions in Ionic Liquids: the counter-ion Effect onthe Dealkylation and Acylation of Methyl Dehydroabietate. Tetrahedron Letters,2004,45:4375-4377
    [87] C. Pereira, F. Alvarez, et al. Stereoselectivity of the deisopropylation of methyl dehydroabietate. StudSurf Sci Cata,1993,78:581-586
    [88] H.S.Wang, X. R. Wu, Y. M. Pan, Y. Zhang. Methyl cis-deisopropyldehydroabietate Acta Cryst.,2006,E62, o3166-o3167
    [89] B. Gigante, A. M. Lobo, S. Prabhakar. New Selective Synthesis of Oxidized Diterpene Resin AcidDerivatives Synthetic Communications,1991,21:1959-1966
    [90] H. Akita, K. Mori, A. Tahara. Diterpenoids. XLV. Ozonolysis of Phenolic Dehydroabietic AcidDerivatives. Chem Pharm Bull,1977,25:974
    [91] T. Matsumoto, Y. Tanaka. Rearrangement of the Angular Methyl Group in Dehydroabietic AcidDerivatives. Chem Pharm Bull,1993,41(11):1960-1964
    [92] T. Matsumoto, Y. Takeda. Skeletal Rearrangement of the Dehydroabietic Acid-derivative. Bull ChemSoc Jpn,1995,68:2349-2353
    [93] A. Tahara, M. Shimagaki. Formation of Steroidal Skeletion from Resin Acid. Chemistry Letters,1974,3(1):651-654
    [94] A.Tahara, M. Shimagaki, M. Itoh, et al. Diterpenoids. XXXVIII. Conversion of l-Abietic Acid intoSteroidal Skeletons: Formation of the D-Ring (1). Chem. Pharm. Bull.1975,23:3189-3202
    [95] A. Abad, C. Agullo, M. Arno, et al. Conversion of Dehydroabietic Acid into20-keto-C-aryl-18-norsteroids. Formation of the D ring. J Org Chem.,1988,53(16):3761-3765
    [96] T. Matsumoto, H. Terao, M. Wada, S. Mai. The Synthesis of Hyptol and its C-15Epimer from(+)-Dehydroabietic Asid. Bull Chem Soc Jpn,1991,64(9):2762-2765
    [97]越山,博喜.二芳胺制备方法[P]. JP:6100504,1994-04-12
    [98] F. Satoru, S. J. Kubo. Process for Producing a Diarylamine[P]. US:6218576,2001-04-17
    [99] M. S. Driver, J. F. Hartwig. A Second-generation Catalyst for Aryl Halide Aminnation: MixedSecondary Amines from Arylhalides and Primary Amines Catalyzed by (DPPF) PdCl2. J Am ChemSoc,1996,118(20):7217-7218
    [100] P. Szabo, Islington, D. E. Freeman, et al. Preparation of Unsymmetrical Diphenylamines [P]. US:4485260,1984-11-27
    [101] T. I. Martin, Burlington, J. M. Lennon, et al. Chemical process[P].US:4299983,1981-11-10
    [102] R. Gujadhur, D. Venkataraman, J. T. Kintigh. Formation of Aryl-nitrogen Bonds Using a SolubleCopper(I) Catalyst. Tetrahedron Letters,2001,42(29):4791-4793
    [103] F. Ullmann, J. Bielecki. Synthesis in the Biphenyl Series. I. Ber. Dtsch. Chem. Ges.,1901,34:2174-2185
    [104] J. March, M. B. Smith. Advanced Organic Chemistry, Johen Wiley&Sons, New York,2001, p.483
    [105] H. Kazuo, I. Katsumasa, K. Ryohei. Condensations of1,4-Cyclohexanediones and SecondaryAromatic Amines. II. N-Phenylation of Diarylamines. Bull. Chem. Soc. J p n.,1986,59:803-807
    [106] K. Sutaka, T. Akagawa. Poly(ethylene glycol)s and their Dimethyl Ethers as Catalysts for the Reactionof Aryl Halides with Diphenylamine in the Presence of Potassium Hydroxide, J.Org. Chem.,1989,54(6):1476-1479
    [107] Y. Toshihide, N. Masrkazua, K. Yasuyuki. Palladium-Catalyzed Synthesis of Triarylamines from ArylHalides and Diarylamines. Tetrahedron Letters,1998,39:2367-2370
    [108] G. M. Sheldrick, SADABS. University of G ttingen, Germany1996
    [109] G. M. Sheldrick. SHELXL97and SHELXS97. University of G ttingen, Germany1997
    [110]杨冰,李瑛,徐创霞,等.有机荧光材料研究进展.化学研究与应用,2003,15(1):11-15
    [111]杨定宇,蒋孟衡,涂小强.有机小分子发光材料的研究.化工新型材料,2007,35(11):4-7
    [112] J. D. McGhee, P. H. von Hippel. Theoretical Aspects of DNA-protein Interactions:Co-operative andNon-co-operative Binding of Large Ligands to a One-dimensional Homogeneous Lattice. J. Mol. Biol.,1974,86:469-489
    [113]申霖,徐昊,叶丹琴,吴晓明,华玉林,印寿根.以BAlq为主体的高效高色纯度的红色有机电致磷光器件.发光学报,2008,29(1):51-55
    [114] P. D. Anderson, D. M. Hercules. Electronic Spectra of8-Mercaptoquinoline. Anal. Chem.1966,38:1702-1709
    [115] G. Weber, F. J. Farris. Synthesis and Spectral Properties of a Hydrophobic Fluorescent Probe:6-Propionyl-2-(dimet hy1amino)napht halenet. Biochemistry,1979,18:3075-3078
    [116] E. Sawicki, T. W. Winfield, C. R.Sawicki. Solvent Effects in Photometric Analysis. Microchem. J.,1970,15:294
    [117] E. G. Kayser, et al. A Survey of Recent Literature on Cheiluminescence and Fluorescence in Solution,AD683673, Naval Ordnance Lab., Maryland, U. S. A.1968
    [118] L. Brand, et al. Probes of Structure and Function Macromolecules and Membrances, Chance, B. et al.Eds., Academic Press, New York,1971,17-39
    [119] S. G. Schulman, A. C. Capomacchia, M. S. Rietta. Lowest Excited Singlet State pkaValues of theIsomeric Aminopyridines. Anal. Chim. Acta,1971,56,91
    [120] D. R. Kanis, M. A. Ratner, T. J.Marks. Design and Construction of Molecular Assemblies with LargeSecond-order Optical Nonlinearities. Quantum Chemical Aspects. Chem. Rev.1994,94:195-242
    [121] C. Dehu, F. Meyers, J. L. Bredas. Donor-acceptor Diphenylacetylenes: Geometric Structure, ElectronicStructure, and Second-order Nonlinear Optical Properties. J. Am. Chem. Soc.1993,115:6198-6206
    [122] C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti Correlation-energy Formula into aFunctional of the Electron Density. Phys. Rev. B1988,37:785-789
    [123] A. D. Becke. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys.1993,98:5648-5653
    [124] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian03, Revision B.05; Gaussian Inc.: Pittsburgh,PA,2003
    [125] P. Kundu, K. R. J ustin Thomas, J. T. Lin, et al. High Tg Carbazole Derivatives as Blue EmittingHole-transporting Materials for Elect Roluminescent Devices. Advanced Functional Materials,2003,13:445-452
    [126]徐清.含三苯胺基团的有机空穴传输材料的合成与性能研究.浙江大学博士学位论文,2004
    [127] X. Gong, W. L. Ma. End-Capping as a Method for Improving Carrier Injection inElectrophosphorescent Light-Emitting Diodes. Adv. Funct. Mater.2004,14(4):393-397
    [128] M. S. Weaver, et a1. Recent Progress in Polymers for Electroluminescence:Microcavity Devices andElectron Transport Polymers.Thin Solid Films,1996,273:39
    [129]叶坚,陈红征,施敏敏,汪茫,有机电子传输材料研究新进展[J].自然科学进展,2002,2(8):800-805
    [130] C. Lambert, G. Noll. Intervalence Charge-transfer Bands in Triphenylamine-based Polymers. SyntheticMet.,2003,139(l):57
    [131] H. Detert,0.Sadovski,Triarylamines Connected via Phenylenevinylene Segments. Synthetic Met.,2003,138:185
    [132] A. E. Prigodich, D. S. Seferos, M. D. Massich,et al. Nano-flares for mRNA Regulation and Detection.ASC nano,2009,3(8):2147-2152
    [133] T. Hirano, K. Kikuchi, Y. Urano, et al. Highly Zinc-selective Fluorescent Sensor Molecules Suitablefor Biological Applications. J Am Chem Soc,2000,122(49):12399-12400
    [134] T. Hirano, K. Kikuchi, Y. Urano, et al. Improved Fluorescent Probes for Zinc, ZnAFs, Suitable for Biologica l Applications. J Am Chem Soc,2002,124(23):6555-6562
    [135] Y. Y. Su, Y. He, H. T. Lu, et al. The Cytotoxicity of Cadmium Based, Aqueous Phase Synthesized,Quantum Dots and its Modulation by Surface Coating. Biomaterials,2009,30:19-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700