含芳胺或吡咯并吡咯二酮的聚合物合成及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球面临的主要能源问题是化石燃料即将耗尽和能源危机,因此,21世纪全球的主要挑战是开发清洁、可持续利用能源和大力发展节能技术。有机太阳能电池(OSCs)因为能够有效利用清洁和可再生能源太阳能,所以很有希望替代化石燃料。有机发光二极管(OLED),由于其在节能上的应用,也吸引了人们的极大关注。
     本论文的出发点是:设计合成新型的有机太阳能供体材料和有机电致发光材料,系统研究材料分子结构与器件性能关系。研究内容主要包括:
     1.设计合成一种侧链挂接吡咯并吡咯二酮受体的侧链供体-受体(D-A)聚合物光伏材料(PBDT-TDPP-S)。聚合物PBDT-TDPP-S具有良好溶解性和较低的HOMO能级(5.34eV),同时,聚合物PBDT-TDPP-S具有较高和平衡的载流子迁移率。通过构建结构为ITO/PEDOT:PSS/PBDT-TDPP-S:PC71BM/LiF/Al的光伏器件,器件最大能量效率达到4.89%,其中,开路电压为0.84V,短路电流为10.04mA cm~(-2),更重要的是,器件填充因子达56%,是目前文献报道的侧链D-A型聚合物光伏材料最高值。
     2.设计合成一种侧链主链同时连接吡咯并吡咯二酮受体的三元共聚物光伏材料(PTh-BDT-2DTDPP)。聚合物PTh-BDT-2DTDPP具有宽光谱响应(300-850nm),通过构建结构为ITO/PEDOT:PSS/PTh-BDT-2DTDPP:PC61BM/LiF/Al的光伏器件,器件最大能量效率达到4.36%,其中,开路电压为0.78V,短路电流为10.47mAcm~(-2),填充因子达53%。
     3.设计合成两种侧链挂接三苯胺或噻吩功能基的苯并二噻吩-苯并吡嗪共聚物光伏材料。侧链挂接三苯胺功能基聚合物(P2)展现出更好光伏性能。通过构建结构为ITO/PEDOT:PSS/Polymer:PC71BM/LiF/Al的光伏器件,基于P2:PC71BM光伏器件的最大能量效率达到3.43%,其中开路电压为0.80V,短路电流为9.20mAcm~(-2),器件的能量效率为噻吩功能基修饰聚合物(P1)的2.29倍。
     4.设计合成一系列侧链挂接空穴传输咔唑功能基、电子传输噁二唑功能基和端基挂接苯基异喹啉铱红光配合物的聚芴类电致磷光材料。系统研究空穴传输功能基和电子传输功能基对材料的影响。聚合物PFCz3OXD7Ir(咔唑:噁二唑=3:7(M/M))具有最好电致发光性能,通过构建结构为ITO/PEDOT/PFCz3OXD7Ir/LiF/Al的发光器件,其器件最大电流效率达到0.59cd/A,启动电压为6.0V,最大亮度为917cd/m2。
     5.为了研究红色磷光配合物引入方式、电子供体咔唑功能基和电子受体噁二唑功能基对材料性能的影响,我们设计合成三种聚芴类电致磷光材料。通过构建结构为ITO/PEDOT/polymers/LiF/Al的发光器件,聚合物P1(红色磷光配合物挂接于芴的9位碳原子,侧链挂接空穴传输咔唑功能基和电子传输噁二唑功能基)具有最好性能,其器件最大电流效率达到0.72cd/A,最大亮度为1398cd/m~2,其电流效率和亮度为聚合物P2(磷光配合物挂接于聚合物端基,侧链挂接电子供体咔唑功能基和电子受体噁二唑功能基)性能的1.3和1.5倍。
A big global issue today is the upcoming depletion of fossil fuels and the energycrisis. Therefore, the challenges of21st century are to develop innovative materialsthat would provide new sources of clean sustainable energy and to develop newtechniques that can lead to efficient utilization of energy. Organic solar cells (OSCs)are a promising alternative to the fossil fuels for producing clean and renewableenergy from the sunlight and organic light-emitting diodes (OLEDs) have attracted agreat deal of attention because of their potential applications in energy-saving.This dissertation is focusing on the design and synthesis of new organicphotovoltaic materials and electroluminescent materials. The relationship between thestructure and the photoelectric properties were also studied. The results are as follows:
     1. A novel conjugated polymer of PBDT-TDPP-S was synthesized, which contains adonor unit of benzo[1,2-b:4,5-b']dithiophene in main chain and an acceptor unitof diketopyrrolopyrrole in side chain. This kind of side-chain donor-acceptor(D-A) polymer exhibited better solution processability, lower HOMO level(5.34eV) and more balanced carrier mobility relative to its correspondingmain-chain D-A conjugated polymers. With a configuration of ITO/PEDOT:PSS/PBDT-TDPP-S:PC71BM/LiF/Al. A power conversion efficiency (PCE) of4.89%,an open-circuit voltage (Voc) of0.84V, a short-circuit current (Jsc) of10.04mAcm~(-2)and a fill factor (FF) of56.0%was achieved. Importantly, the FF is thehighest reported to date for side-chain D-A conjugated copolymers.
     2. A new donor-acceptor-donor ternary copolymer PTh-BDT-2DTDPP wassynthesized, in which two diketopyrrolopyrrole units were simultaneouslyincorporated into the side and main chains. The PTh-BDT-2DTDPP exhibited abroad absorption spectrum from300nm to850nm.With a configuration of ITO/PEDOT:PSS/PTh-BDT-2DTDPP:PC61BM/LiF/Al. A maximum PCE of4.36%with a high Vocof0.78V, a Jscof10.47mA cm~(-2)and FF of53.0%was achieved.
     3. Two donor/acceptor(D/A)-based benzo[1,2-b:4,5-b′]dithiophene-alt-2,3-biphenylquinoxaline copolymers were synthesized pending different functional groups(thiophene or triphenylamine) in the4-positions of phenyl rings. The poly(4,8-bis((2-ethyl-hexyl)oxy)benzo[1,2-b:4,5-b]dithiophene)-alt-(2,3-bis(4-bis(N,N-bis(4-(octyloxy)phenylamino)-1,1-biphen-4-yl)quinoxaline)(P2) exhibited betterphotovoltaic performance than poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5- b]dithiophene)-alt-(2,3-bis(4-(5-octylthiophen-2-yl) phenyl)quinoxaline)(P1) inthe bulk-heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)/LiF/Al. A PCE of3.43%, a Vocof0.80V and a Jscof9.20mA cm~(-2)were achievedin the P2-based cell. Importantly, this PCE level is2.29times higher than that inthe P1-based cell.
     4. A series of donor(D)-acceptor(A)-based polyfluorene derivatives, which containcarrier-transporting units of carbazole and oxadiazole as the substitutes of the C-9position of fluorene and are end-capped with the red-emitting iridium bi(phenyl-isoquilonato)(picolinato) unit by unconjugated linkage, were synthesized andcharacterized. The molar ratios between the donor of carbazole and the acceptorof oxadiazole moieties were found to significantly influence photoluminescentefficiency, electrochemical and electroluminescent properties of these D-A-basedpolyfluorene derivatives. While the ratio increased to3:7, the PFCz3OXD7Irshowed the best device performance in the polymer light-emitting device with aconfiguration of ITO/PEDOT/polymers/LiF/Al. A turn-on voltage of6.0V, amaximum current efficiency of0.59cd/A and the highest luminance of917cd/m2were presented.
     5. To study influence of the donor(D)-acceptor(A) units and pendent mode ofphosphorescent moiety on the opto-electronic properties for its resultingcopolymers, two D-A-based polyfluorene derivatives (P1and P2) pending thered-emitting iridium bi(phenylisoquilonato)(picolinato)[Ir(Piq)2(pic)] unit and apolyfluorene derivative (P3) only pending Ir(Piq)2(pic) unit were synthesizedand characterized, in which the donor of carbazole, the acceptor of oxadiazole aregrafted into the C-9position of fluorene, the Ir(Piq)2(pic) unit is pended intoeither the C-9position or the end of fluorene by unconjugated linkage,respectively. With a configuration of ITO/PEDOT/polymers/LiF/Al, the P1showed best electroluminescent properties. The maximum current efficiency of0.72cd/A and the highest luminance of1398cd/m2were obtained in theP1-based device, which are1.3and1.5times higher than those in the P2-baseddevice, respectively.
引文
1. Zilberberg, K., Behrendt, A., Kraft, M., et al. Ultrathin interlayers of a conjugated polyelectrolytefor low work-function cathodes in efficient inverted organic solar cells. Organic Electronics,2013,14:951-957.
    2. Tait, J. G., Worfolk, B. J., Harris, B., et al. Spray coated high-conductivity PEDOT:PSStransparent electrodes for stretchable and mechanically-robust organic solar cells. Solar EnergyMaterials and Solar Cells,2013,110:98-106.
    3. Carlé, J. E., Andersen, T. R., Helgesen, M., et al. A laboratory scale approach to polymer solarcells using one coating/printing machine, flexible substrates, no ITO, no vacuum and nospincoating. Solar Energy Materials and Solar Cells,2013,108:126-128.
    4. Yu, J.-S., Jung, G. H., Kim, D., et al. Transparent conductive film with printable embeddedpatterns for organic solar cells. Solar Energy Materials and Solar Cells,2013,109:142-147.
    5. Al-Amar, M. M., Hamam, K. J., Burns, C., et al. A new method to improve the lifetime stability ofsmall molecule bilayer heterojunction organic solar cells. Solar Energy Materials and Solar Cells,2013,109:270-274.
    6. Angmo, D., Gevorgyan, S. A., Gupta, R., et al. Scalability and stability of very thin, roll-to-rollprocessed, large area, indium-tin-oxide free polymer solar cell modules. Organic Electronics,2013,14:984-994.
    7. Koidis, C., Logothetidis, S., Kapnopoulos, C., et al. Effect of process parameters on themorphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organicphotovoltaics. Solar Energy Materials and Solar Cells,2013,112:36-46.
    8. S ndergaard, R. R., H sel, M., Krebs, F., et al. Roll-to-Roll fabrication of large area functionalorganic materials. Journal of Polymer Science Part B: Polymer Physics,2013,51:16-34.
    9. Tumbleston, J. R., Stuart, A. C., You, W., et al. Fluorinated Polymer Yields High Organic SolarCell Performance for a Wide Range of Morphologies. Advanced Functional Materials,2013, DOI:10.1002/adfm.201300093
    10. Yao, K., Chen, L., Chen, Y., et al. Self-Organized Hole Transport Layers Based on PolythiopheneDiblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chemistry ofMaterials,2013, DOI:10.1021/cm400297p
    11. Yella, A., Lee, H. W., Chandiran, A. K., et al. Porphyrin-Sensitized Solar Cells with Cobalt(II/III)-Based Redox Electrolyte Exceed12Percent Efficiency. Science,2011,334:629-634.
    12. Bai, Y., Zhang, J., Wang, Y., et al. Engineering Organic Sensitizers for Iodine-Free Dye-Sensitized Solar Cells: Red-Shifted Current Response Concomitant with Attenuated ChargeRecombination. Journal of the American Chemical Society,2011,133:11442-11445.
    13. Cui, Y., Wu, Y., Zhou, G., et al. Incorporating Benzotriazole Moiety to Construct D-A-π-AOrganic Sensitizers for Solar Cells: Significant Enhancement of Open-Circuit Photovoltage withLong Alkyl Group. Chemistry of Materials,2011,23:4394-4401.
    14. Li, W., Wu, Y., Tian, H., et al. D-A-π-A Featured Sensitizers Bearing Phthalimide andBenzotriazole as Auxiliary Acceptor: Effect on Absorption and Charge Recombination Dynamicsin Dye-Sensitized Solar Cells. ACS Applied Materials&Interfaces,2012,4(3):1822-1830.
    15. Liu, J., Zhou, D., Wang, F., et al. Joint Photophysical and Electrical Analyses on the Influence ofConjugation Order in D-π-A Photosensitizers of Mesoscopic Titania Solar Cells. The Journal ofPhysical Chemistry C,2011,115:14425-14430.
    16. Chu, H.-C., Sahu, D., Padhy, H., et al. Structural planarity and conjugation effects of novelsymmetrical acceptor–donor–acceptor organic sensitizers on dye-sensitized solar cells. Dyes andPigments,2012,93:1488-1497.
    17. Haid, S., M. Marszalek, Sugihara, H., et al. Significant Improvement of Dye-Sensitized Solar CellPerformance by Small Structural Modification in π-Conjugated Donor-Acceptor Dyes. AdvancedFunctional Materials,2012,22(6):1291-1302.
    18. Kono, T., Murakami, T. N., Nishida, J. I., et al. Synthesis and photo-electrochemical properties ofnovel thienopyrazine and quinoxaline derivatives, and their dye-sensitized solar cell performance.Organic Electronics,2012,13:3097-3101.
    19. Wu, Y., Zhang, X., Tian, H., et al. Hexylthiophene-Featured D-A-π-A Structural IndolineChromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells. AdvancedEnergy Materials,2012,2:149-156.
    20. Zhang, M., Zakeeruddin, S. M., Comte, P., et al. Effect of Sensitizer Adsorption Temperature onthe Performance of Dye-Sensitized Solar Cells. Journal of the American Chemical Society,2011,133(24):9304-9310.
    21. Chung, I., Lee, B., He, J., et al. All-solid-state dye-sensitized solar cells with high efficiency.Nature,2012,485:486-489.
    22. Tang, C.W. Two-layer organic photovoltaic cell. Applied Physics Letters,1986,48:183-185.
    23. Sariciftci, N. S., Smilowitz, L., Heeger, A. J., et al. Photoinduced electron transfer from aconducting polymer to buckminsterfullerene. Science,1992,258:1474-1476.
    24. Yu, G., Gao, J., Hummelen, J. C., et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions. Science,1995,270:1789-1791.
    25. Kroon, R., Lundin, A., Henriksson, P., et al. Effect of electron-withdrawing side chainmodifications on the optical properties of thiophene-quinoxaline acceptor based polymers.Polymer,2013,54:1285-1288.
    26. Bilkay, T., Schulze, K., Schulze, K., et al. Solution processable TIPS-benzodithiophene smallmolecules with improved semiconducting properties in organic field effect transistors. OrganicElectronics,2013,14:344-353.
    27. J rgensen, M., Norrman, K. Krebs, F. C. et al. Stability of Polymer Solar Cells. AdvancedMaterials,2012,24:580-612.
    28. Koti, S., Sanjaykumar, S., Song, C. E., et al.3,8-Dialkoxynaphthodithiophene based copolymersfor efficient polymer solar cells. Solar Energy Materials and Solar Cells,2013,108:213-222.
    29. Krompiec, S., Filapek, M., Slodek, A., et al. An ambipolar behavior of novel ethynyl-bridgedpolythiophenes comprehensive study. Synthetic Metals,2013,165:7-16.
    30. Lee, C.-Y., Kim, B., Lee, M. W., et al. Synthesis and characterization of wide range lightabsorbing poly(dithieno[3,2-b:2,3-d]thiophene-alt-3,6-bis(thiophen-2-yl)-2,5-di-n-octyl-pyrrolo-[3,4-c] pyrrole-1,4-dione) for polymer solar cells. Synthetic Metals,2013,164:64-68.
    31. Son, S. K., Kim, B. S., Cho, J. H., et al. Synthesis and photovoltaic properties of low band gapquarterthiophenes-alt-diketopyrrolopyrroles polymers having high hole mobility. Solar EnergyMaterials and Solar Cells,2012,104:185-192.
    32. Aboubakr, H., Tamba, M. G., Belec, L., et al. Structure properties relationships of liquid crystalbent core organic semiconductors based on benzo[2,1-b:3,4-b]dithiophene-4,5-dione. Journal ofMaterials Chemistry,2012,22(43):23159-23168.
    33. Ashraf, R., McCulloch, I., James, D., et al. A new thiophene substituted isoindigo basedcopolymer for high performance ambipolar transistors. Chemical Communications,2012,48(33):3939-3941.
    34. Kim, G., Jo, S. B., Shim, C., et al. Synthesis and photovoltaic properties of benzo[1,2-b:4,5-b]dithiophene derivative-based polymers with deep HOMO levels. Journal of Materials Chemistry,2012,22:17709-17717.
    35. Osaka, I., Shinamura, S., Abe, T., et al. Naphthodithiophenes as building units for small moleculesto polymers; a case study for in-depth understanding of structure–property relationships in organicsemiconductors. Journal of Materials Chemistry C,2013,7:1297-1302.
    36. Ameri, T., Min, J., Baran, D., et al. Performance Enhancement of the P3HT/PCBM Solar Cellsthrough NIR Sensitization Using a Small-Bandgap Polymer. Advanced Energy Materials,2012,2:1198-1202.
    37. Chang, C.-Y., Cheng, Y.-J., Wu, J. S., et al. Combination of Molecular, Morphological, andInterfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells. AdvancedMaterials,2012,24:549-553.
    38. Cheng, Y.-J., Chen, C.-H. Lin, T. Y., et al. Dithienocyclopentathieno[3,2-b]thiophene HexacyclicArene for Solution-Processed Organic Field-Effect Transistors and Photovoltaic Applications.Chemistry-An Asian Journal,2012,7:818-825.
    39. Giguère, J.-B., Morin, J. F., Verolet, Q., et al.4,10-Dibromoanthanthrone as a New BuildingBlock for p-Type, n-Type, and Ambipolar π-Conjugated Materials. Chemistry-A European Journal,2013,19:372-381.
    40. Hsu, B., Duan, C., Huang, F., et al. Control of Efficiency, Brightness, and Recombination Zone inLight-Emitting Field Effect Transistors. Advanced Materials,2012,24:1171-1175.
    41. J rgensen, M., Norrman, K. Krebs, F. C. et al. Stability of Polymer Solar Cells. AdvancedMaterials,2012,24:580-612.
    42. Lee, J. B., Kim, K. H., Hong, C. S., et al. High-performance amorphous donor-acceptorconjugated polymers containing x-shaped anthracene-based monomer and2,5-bis(2-octyldodecyl)pyrrolo[3,4-c] pyrrole-1,4(2H,5H)-dione for organic thin-film transistors. Journal of PolymerScience Part A: Polymer Chemistry,2012,50:2809-2818.
    43. Li, S., Li, A., Chen, S. A., et al. A New Low-Bandgap Polymer Containing Benzene-FusedQuinoxaline: Significantly Enhanced Performance Caused by One Additional Benzene Ring.Macromolecular Rapid Communications,2013,34:227-233.
    44. Giguère, Q., Verolet, Q., Morin, J. F., et al.4,10-Dibromoanthanthrone as a New Building Blockfor p-Type, n-Type, and Ambipolar π-Conjugated Materials. Chemistry-A European Journal,2013,19:372-381.
    45. Hsu, B., Duan, C. Huang, F., et al. Control of Efficiency, Brightness, and Recombination Zone inLight-Emitting Field Effect Transistors. Advanced Materials,2012,24:1171-1175.
    46. Li, G., Zhu, R., Yang, Y. Polymer solar cells. Nature Photonics,2012,6(3):153-161.
    47. Li, S., Li, A., Yu, J., et al. A New Low-Bandgap Polymer Containing Benzene-Fused Quinoxaline:Significantly Enhanced Performance Caused by One Additional Benzene Ring. MacromolecularRapid Communications,2013,34:227-233.
    48. Ameri, T., Min, J., Li, N., et al. Performance Enhancement of the P3HT/PCBM Solar Cellsthrough NIR Sensitization Using a Small-Bandgap Polymer. Advanced Energy Materials,2012,2:1198-1202.
    49. Lee, J. B., Kim, K. H., Hong, C. S., et al. High-performance amorphous donor-acceptorconjugated polymers containing x-shaped anthracene-based monomer and2,5-bis(2-octyl-dodecyl)pyrrolo-[3,4-c]pyrrole-1,4(2H,5H)-dione for organic thin-film transistors. Journal ofPolymer Science Part A: Polymer Chemistry,2012,50:2809-2818.
    50. http://www.heliatek.com/
    51. Liu, F., Gu, Y., Wang, C., et al. Efficient Polymer Solar Cells Based on a Low BandgapSemi-crystalline DPP Polymer-PCBM Blends. Advanced Materials,2012,24:3947-3951.
    52. Long, G., X. Wan, et al. Isothianaphthene-Based Conjugated Polymers for Organic PhotovoltaicCells. Macromolecular Chemistry and Physics,2012,213:1596-1603.
    53. Zhang, W., Jin, H., Wang, D., et al. Jacketed homopolymer with bipolar dendritic side groups andits applications in electroluminescent devices. Journal of Polymer Science Part A: PolymerChemistry,2012,50:581-589.
    54. Hu, C., Wu, Z., Cao, K., et al. Synthesis and photovoltaic properties of new conjugated polymersbased on di(2-furyl)thiazolo[5,4-d]thiazole and benzo[1,2-b:4,5-b]dithiophene. Polymer,2013,54:1098-1105.
    55. He, N., Li, B., Zhang, H., et al. Synthesis, two-photon absorption and optical limiting propertiesof new linear and multi-branched bithiazole-based derivatives. Synthetic Metals,2012,162:217-224.
    56. Lin, L. Y., Tsai, C. H., Lin, F., et al.2,1,3-Benzothiadiazole-containing donor–acceptor–acceptordyes for dye-sensitized solar cells. Tetrahedron,2012,68:7509-7516.
    57. Wang, T., Han, J., Zhang, Z., et al. Bistriphenylamine-substituted fluoranthene derivatives aselectro-luminescent emitters and dye-sensitized solar cells. Tetrahedron,2012,68:10372-10377.
    58. Wang, X., Wen, Y., Luo, H., et al. Donor-acceptor copolymer based on dioctylporphyrin:Synthesis and application in organic field-effect transistors. Polymer,2012,53:1864-1869.
    59. Xie, H., Zhang, K., Duan, C., et al. New acceptor-pended conjugated polymers based on3,6-and2,7-carbazole for polymer solar cells. Polymer,2012,53:5675-5683.
    60. Zhang, G., Fu, Y., Qiu, L., et al. Synthesis and characterization of thieno[3,4-c]pyrrole-4,6-dioneand pyrrolo[3,4-c]pyrrole-1,4-dione-based random polymers for photovoltaic applications.Polymer,2012,53:4407-4412.
    61. Liu, X., Kim, H., Guo, L. J., et al. Optimization of thermally reduced graphene oxide for anefficient hole transport layer in polymer solar cells. Organic Electronics,2013,14:591-598.
    62. Liu, Y., Zhao, X., Andreasen, B., et al. All polymer photovoltaics: From small inverted devices tolarge roll-to-roll coated and printed solar cells. Solar Energy Materials and Solar Cells,2013,112:157-162.
    63. Shen, S., Gao, L., He, C., et al. A star-shaped oligothiophene with triphenylamine as core andoctyl cyanoacetate as end groups for solution-processed organic solar cells. Organic Electronics,2013,14:875-881.
    64. Zhou, W., Zhang, Z. G., Ma, L., Li, et al. Dithienocoronene diimide based conjugated polymers aselectron acceptors for all-polymer solar cells. Solar Energy Materials and Solar Cells,2013,112:13-19.
    65. Chen, C. P., Chen, Y. C., Yu, C. Y., et al. Increased open circuit voltage in a fluorinatedquinoxaline-based alternating conjugated polymer. Polymer Chemistry,2013,4:1161-1166.
    66. Peng, Q., Huang, Q., Hou, X., et al. Enhanced solar cell performance by replacing benzo-dithiophene with naphthodithiophene in diketopyrrolopyrrole-based copolymers. ChemicalCommunications,2012,48:11452-11454.
    67. Xu, X. D., Zhang, J., Chen, L. J., et al. Design and synthesis of branched platinum–acetylidecomplexes possessing a porphyrin core and their self-assembly behaviour. ChemicalCommunications,2012,48:11223-11225.
    68. Yang, X., Yanagida, M., Han, L., et al. Reliable evaluation of dye-sensitized solar cells. Energy&Environmental Science,2013,6:54-66.
    69. Zhou, Y., Shim, J. W., Khan, T. M., et al. High performance polymeric charge recombination layerfor organic tandem solar cells. Energy&Environmental Science,2012,5:9827-9832.
    70. Liu, F., Gu, Y., Wang, C., et al. Efficient Polymer Solar Cells Based on a Low BandgapSemi-crystalline DPP Polymer-PCBM Blends. Advanced Materials,2012,24:3947-3951.
    71. Long, G., Wan, X., Zhou, J., et al. Isothianaphthene-Based Conjugated Polymers for OrganicPhotovoltaic Cells. Macromolecular Chemistry and Physics,2012,213:1596-1603.
    72. Chang, C. Y., Cheng, Y. J., Hung, S. H., et al. Combination of Molecular, Morphological, andInterfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells. AdvancedMaterials,2012,24:549-553.
    73. Cheng, Y. J., Chen, C. H., Lin, T. Y., et al. Dithienocyclopentathieno[3,2-b]thiophene HexacyclicArene for Solution-Processed Organic Field-Effect Transistors and Photovoltaic Applications.Chemistry-An Asian Journal,2012,7:818-825.
    74. Yang, B., Guo, F., Yuan, Y., et al. Solution-Processed Fullerene-Based Organic Schottky JunctionDevices for Large-Open-Circuit-Voltage Organic Solar Cells. Advanced Materials,2013,25:572-577.
    75. Yang, T., Wang, M., Cao, Y., et al. Polymer Solar Cells with a Low-Temperature-AnnealedSol-Gel-Derived MoOx Film as a Hole Extraction Layer. Advanced Energy Materials,2012,2:523-527.
    76. Zhang, L., Zhang, Y., Wei, Q., et al. Effects of Block Length in Copolymers Based onRegioregular Oligo-thiophenes Linked With Electron-Accepting Units. Macromolecular RapidCommunications,2012,33:658-663.
    77. Zhou, Y., Ding, L., Shi, K., et al. A Non-Fullerene Small Molecule as Efficient Electron Acceptorin Organic Bulk Heterojunction Solar Cells. Advanced Materials,2012,24:957-961.
    78. He, Z. C. Zhong, M. Wu, H. B., et al. Nature Photonics,2012,6:593-597.
    79. Guo, X., Cui, C., Zhang, M., et al. High efficiency polymer solar cells based on poly(3-hexyl-thiophene)/indene-C70bisadduct with solvent additive. Energy&Environmental Science,2012,5:7943.-7949.
    80. Jiang, J. M., Yang, P. A., Lan, S. C., et al. Benzooxadiazole-based donor/acceptor copolymersimparting bulk-heterojunction solar cells with high open-circuit voltages. Polymer,2013,54:155-161.
    81. Kim, J. H., Kim, H. U., Song, C. E., et al. Benzotriazole-based donor–acceptor typesemiconducting polymers with different alkyl side chains for photovoltaic devices. Solar EnergyMaterials and Solar Cells,2013,108:113-125.
    82. Koti, R. S., Hong, S. J., Song, C. E., et al.3,8-Dialkoxynaphthodithiophene based copolymers forefficient polymer solar cells. Solar Energy Materials and Solar Cells,2013,108:213-222.
    83. Liu, X., Kim, H., Guo, L. J., et al. Optimization of thermally reduced graphene oxide for anefficient hole transport layer in polymer solar cells. Organic Electronics,2013,14:591-598.
    84. Min, J., Luponosov, Y. N., Ameri, T., et al. A solution-processable star-shaped molecule forhigh-performance organic solar cells via alkyl chain engineering and solvent additive. OrganicElectronics,2013,14:219-229.
    85. Yeh, N., Yeh, P., Organic solar cells: Their developments and potentials. Renewable andSustainable Energy Reviews,2013,21:421-431.
    86. Hu, X., Wang, M., Huang, F., et al.23%enhanced efficiency of polymer solar cells processedwith1-chloronaphthalene as the solvent additive. Synthetic Metals,2013,164:1-5.
    87. Ka, Y., Lee, E., Park, S. Y., et al. Effects of annealing temperature of aqueous solution-processedZnO electron-selective layers on inverted polymer solar cells. Organic Electronics,2013,14:100-104.
    88. Yusoff, M., Kim, H. P., Jang, J. et al. Inverted organic solar cells with TiOx cathode and grapheneoxide anode buffer layers. Solar Energy Materials and Solar Cells,2013,109:63-69.
    89. Park, B., Chul, J., Huh, Y. H., et al. Interface-engineering additives for inverted BHJ polymersolar cells. Solar Energy Materials and Solar Cells2013,110:15-23.
    90. Subbiah, J., Amb, C. M., Irfan, I., et al. High-Efficiency Inverted Polymer Solar Cells withDouble Interlayer. ACS Applied Materials&Interfaces,2012,4:866-870.
    91. Sun, J. Y., Tseng, W. H., Lan, S., et al. Performance enhancement in inverted polymerphotovoltaics with solution-processed MoOX and air-plasma treatment for anode modification.Solar Energy Materials and Solar Cells,2013,109:178-184.
    92. Wang, J., Lee, Y. J., Chadha, A. S., et al. Effect of Plasmonic Au Nanoparticles on InvertedOrganic Solar Cell Performance. The Journal of Physical Chemistry C,2013,117:85-91.
    93. Yuan, J., Huang, X., Dong, H., et al. Structure, band gap and energy level modulations forobtaining efficient materials in inverted polymer solar cells. Organic Electronics,2013,14:635-643.
    94. Zhong, S., Zhong, J. Q., Wang, X. Z., et al. Investigation of Interface Properties for ClAlPc/C60Heterojunction-Based Inverted Organic Solar Cell. The Journal of Physical Chemistry C,2012,116:2521-2526.
    95. Zilberberg, K., Behrendt, A., Kraft, M., et al. Ultrathin interlayers of a conjugated polyelectrolytefor low work-function cathodes in efficient inverted organic solar cells. Organic Electronics,2013,14:951-957.
    96. Gevaerts, V. S., Furlan, A., Wienk, M. M., et al. Solution Processed Polymer Tandem Solar CellUsing Efficient Small and Wide bandgap Polymer:Fullerene Blends. Advanced Materials,2012,24:2130-2134.
    97. Gilot, J., Wienk, M. M., Janssen, R. A. et al. Optimizing Polymer Tandem Solar Cells. AdvancedMaterials,2010,22: E67-E71.
    98. Kouijzer, S., Esiner, S., Frijters, C. H., et al. Efficient Inverted Tandem Polymer Solar Cells with aSolution-Processed Recombination Layer. Advanced Energy Materials,2012,2:945-949.
    99. Riede, M., Uhrich, C., Widmer, J., et al. Efficient Organic Tandem Solar Cells based on SmallMolecules. Advanced Functional Materials,2011,21:3019-3028.
    100. Sista, S., Park, M. H., Hong, Z., et al. Highly Efficient Tandem Polymer Photovoltaic Cells.Advanced Materials,2010,22:380-383.
    101. Campo, B. J., Bevk, D., Kesters, J., et al. Ester-functionalized poly(3-alkylthiophene) copolymers:Synthesis, physicochemical characterization and performance in bulk heterojunction organic solarcells. Organic Electronics,2013,14:523-534.
    102. Lan, S., Yang, P. C., Lin, S. H., et al. Poly(3-hexylthiophene):indene-C60bisadduct morphologyimprovement by the use of polyvinylcarbazole as additive. Solar Energy Materials and Solar Cells,2013,113:90-95.
    103. Lin, S. H., Lan, S., Sun, J. Y., et al. Influence of mixed solvent on the morphology of theP3HT:Indene-C60bisadduct (ICBA) blend film and the performance of inverted polymer solarcells. Organic Electronics,2013,14:26-31.
    104. Wang, F., Li, L., Xu, Q., et al. Improved performance of polymer solar cells based on P3HT andICBA using alcohol soluble titanium chelate as electron collection layer. Organic Electronics,2013,14:845-851.
    105. Xu, M. F., Cui, L. S., Zhu, X. Z., et al. Aqueous solution-processed MoO3as an effectiveinterfacial layer in polymer/fullerene based organic solar cells. Organic Electronics,2013,14:657-664.
    106. Chen, H. C., Chen, Y. H., Liu, C. C., et al. Prominent Short-Circuit Currents of FluorinatedQuinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of8.0%.Chemistry of Materials,2012,24:4766-4772.
    107. Colbert, A. E., Janke, E. M., Hsieh, S. T., et al. Hole Transfer from Low Band Gap Quantum Dotsto Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. The Journal of PhysicalChemistry Letters,2013,4:280-284.
    108. Fu, Y., Cha, H., Song, S., et al. Low-bandgap quinoxaline-based D-A-type copolymers: Synthesis,characterization, and photovoltaic properties. Journal of Polymer Science Part A: PolymerChemistry,2013,51:372-382.
    109. Guo, X., Zhang, M., Tan, J., et al. Influence of D/A Ratio on Photovoltaic Performance of aHighly Efficient Polymer Solar Cell System. Advanced Materials,2012,24:6536-6541.
    110. Iyer, A., Bjorgaard, J., Anderson, T., et al. Quinoxaline-Based Semiconducting Polymers: Effectof Fluorination on the Photophysical, Thermal, and Charge Transport Properties. Macromolecules,2012,45:6380-6389.
    111. Kroon, R., Gehlhaar, R., Steckler, T. T., et al. New quinoxaline and pyridopyrazine-basedpolymers for solution-processable photovoltaics. Solar Energy Materials and Solar Cells,2012,105:280-286.
    112. Kroon, R., Lundin, A., Lindqvist, C., et al. Effect of electron-withdrawing side chainmodifications on the optical properties of thiophene-quinoxaline acceptor based polymers.Polymer,2013,54:1285-1288.
    113. Lee, W. H., Kim, K., Lee, S. K., et al. Synthesis and characterization of diselenenoquinoxaline-based donor-acceptor polymers for organic photovoltaic cells. Synthetic Metals,2012,162:873-880.
    114. Qin, H., Li, L., Liang, T., et al. Donor-acceptor (donor) polymers with differently conjugated sidegroups at the acceptor units for photovoltaics. Journal of Polymer Science Part A: PolymerChemistry2013,51:1565-1572.
    115. Wu, H., Qu, B., Cong, Z., et al. A copolymer based on benzo[1,2-b:4,5-b]dithiophene andquinoxaline derivative for photovoltaic application. Reactive and Functional Polymers,2012,72:897-903.
    116. Dou, L., You, J., Yang, J., et al. Tandem polymer solar cells featuring a spectrally matchedlow-bandgap polymer. Nature Photonics,2012,6,180-185.
    117. Chen, H., Guo, Y., Yu, G., et al. Highly π-Extended Copolymers with DiketopyrrolopyrroleMoieties for High-Performance Field-Effect Transistors. Advanced Materials,2012,24:4618-4622.
    118. Dou, L., Chang, W. H., Gao, J., et al. A Selenium-Substituted Low-Bandgap Polymer withVersatile Photovoltaic Applications. Advanced Materials,2013,25:825-831.
    119. Dou, L., Gao, J., Richard, E., et al. Systematic Investigation of Benzodithiophene-andDiketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and TandemPolymer Solar Cells. Journal of the American Chemical Society,2012,134:10071-10079.
    120. Han, Y., Chen, L., Chen, Y., et al. Diketopyrrolopyrrole-based liquid crystalline conjugateddonor-acceptor copolymers with reduced band gap for polymer solar cells. Journal of PolymerScience Part A: Polymer Chemistry,2013,51:258-266.
    121. Kanimozhi, C., Yaacobi-Gross, N., Chou, K. W., et al. Diketopyrrolopyrrole-Diketo-pyrrolopyrrole-Based Conjugated Copolymer for High-Mobility Organic Field-Effect Transistors.Journal of the American Chemical Society,2012,134:16532-16535.
    122. Kronemeijer, A. J., Gili, E., Shahid, M., et al. A Selenophene-Based Low-BandgapDonor-Acceptor Polymer Leading to Fast Ambipolar Logic. Advanced Materials,2012,24:1558-1565.
    123. Lee, J., Han, A. R., Kim, J., et al. Solution-Processable Ambipolar Diketopyrrolopyrrole-Selenophene Polymer with Unprecedentedly High Hole and Electron Mobilities. Journal of theAmerican Chemical Society,2012,134:20713-20721.
    124. Li, W., Roelofs, W. C., Wienk, M. M., et al. Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control. Journal of the American Chemical Society,2012,134:13787-13795.
    125. Owczarczyk, Z. R., Braunecker, W. A., Garcia, A., et al.5,10-Dihydroindolo[3,2-b]indole-BasedCopolymers with Alternating Donor and Acceptor Moieties for Organic Photovoltaics.Macromolecules,2013,46:1350-1360.
    126. Yiu, A. T., Beaujuge, P. M., Lee, O. P., et al. Side-Chain Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in Efficient Solar Cells. Journal of theAmerican Chemical Society,2012,134:2180-2185.
    127. Wang, Y., Yang, F., Liu, Y., et al. New Alkylfuranyl-Substituted Benzo[1,2-b:4,5-b]dithiophene-Based Donor-Acceptor Polymers for Highly Efficient Solar Cells. Macromolecules,2013,46:1368-1375.
    128. Falzon, M. F., Wienk, M. M., Janssen, R. A., et al. Designing Acceptor Polymers for OrganicPhotovoltaic Devices. The Journal of Physical Chemistry C,2011,115:3178-3187.
    129. Min, J., Zhang, Z. G., Zhang, S., et al. Conjugated Side-Chain-Isolated D-A Copolymers Based onBenzo[1,2-b:4,5-b]dithiophene-alt-dithienylbenzotriazole:Synthesis and Photovoltaic Properties.Chemistry of Materials,2012,24:3247-3254.
    130. Price, S. C., Stuart, A. C., Yang, L., et al. Fluorine Substituted Conjugated Polymer of MediumBand Gap Yields7%Efficiency in Polymer-Fullerene Solar Cells. Journal of the AmericanChemical Society,2011,133:4625-4631.
    131. Tumbleston, J. R., Stuart, A. C., Gann, E., et al. Fluorinated Polymer Yields High Organic SolarCell Performance for a Wide Range of Morphologies. Advanced Functional Materials,2013, DOI:10.1002/adfm.201300093
    132. Biniek, L., Schroeder, B. C., Donaghey, J. E., et al. New Fused Bis-ThienobenzothienothiopheneCopolymers and Their Use in Organic Solar Cells and Transistors. Macromolecules,2013,46:727-735.
    133. Bronstein, H., Frost, J. M., Hadipour, A., et al. Effect of Fluorination on the Properties of aDonor-Acceptor Copolymer for Use in Photovoltaic Cells and Transistors. Chemistry of Materials,2013,25:277-285.
    134. Dibb, G. F., Jamieson, F. C., Maurano, A., et al. Limits on the Fill Factor in Organic Photovoltaics:Distinguishing Nongeminate and Geminate Recombination Mechanisms. The Journal of PhysicalChemistry Letters,2013,4:803-808.
    135. Fu, B., Baltazar, J., Kumar, S., et al. High Charge Carrier Mobility, Low Band Gap Donor-Acceptor Benzothiadiazole-oligothiophene Based Polymeric Semiconductors. Chemistry ofMaterials,2012,24:4123-4133.
    136. Stuart, A. C., Tumbleston, J. R., Zhou, H., et al. Fluorine Substituents Reduce ChargeRecombination and Drive Structure and Morphology Development in Polymer Solar Cells.Journal of the American Chemical Society,2013,135:1806-1815.
    137. Wang, M., Hu, X., Gong, X., et al. Donor-Acceptor Conjugated Polymer Based on Naphtho-[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. Journal of theAmerican Chemical Society,2011,133:9638-9641.
    138. Xu, Y.-X., Chueh, C.-C., Ding, F. Z., et al. Improved Charge Transport and Absorption Coefficientin Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly EfficientPolymer Solar Cells. Advanced Materials,2012,24:6356-6361.
    139. Zhang, L., Pei, K., Zeng, M., et al. Theoretical Investigations on Donor-Acceptor ConjugatedCopolymers Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for Organic Solar CellApplications. The Journal of Physical Chemistry C,2012,116:26154-26161.
    140. Zhou, E., Cong, J., Hashimoto, K., et al. A Benzoselenadiazole-Based Low Band Gap Polymer:Synthesis and Photovoltaic Application. Macromolecules,2013,46:763-768.
    141. Gong, X., Yang, T., Huang, F., et al. Inverted polymer solar cells with8.4%efficiency byconjugated polyelectrolyte. Energy&Environmental Science.2012,5,8208-8214.
    142. Chen, Y.-L., C.-Y. Chang, et al. Synthesis of a New Ladder-Type Benzodi(cyclopenta-dithiophene) Arene with Forced Planarization Leading to an Enhanced Efficiency of OrganicPhotovoltaics. Chemistry of Materials,2012,24:3964-3971.
    143. Cabanetos, C., ElLabban, A., Bartelt, J. A., et al. Linear Side-Chains in Benzo [1,2-b:4,5-b’]dithiophene-Thieno[3,4-c]pyrrole-4,6-dione Polymers Direct Self-Assembly&Solar CellPerformance. Journal of the American Chemical Society,2013, dx.doi.org/10.1021/ja400365b.
    144. Zhong, H., Z. Li, Deledalle, F., et al. Fused Dithienogermolodithiophene Low Band GapPolymers for High-Performance Organic Solar Cells without Processing Additives. Journal of theAmerican Chemical Society,2013,135:2040-2043.
    145. Small, C. E., So, F., Subbiah, J., et al. High-efficiency inverted dithienogermole-thienopyrrolo-dione-based polymer solar cells. Nature Photonics,2012,6,115-120.
    146. Cao, K., Wu, Z., Zhang, G., et al. A low bandgap polymer based on isoindigo andbis(dialkylthienyl) benzodithiophene for organic photovoltaic applications. Journal of PolymerScience Part A: Polymer Chemistry,2013,51:94-100.
    147. Lei, T., J.-H. Dou, Yang, Y., et al. Ambipolar Polymer Field-Effect Transistors Based onFluorinated Isoindigo: High Performance and Improved Ambient Stability. Journal of theAmerican Chemical Society,2012,134:20025-20028.
    148. Wang, E., Z. Ma, Wang, E. G., et al. An Easily Accessible Isoindigo-Based Polymer forHigh-Performance Polymer Solar Cells. Journal of the American Chemical Society,2011,133:14244-14247.
    149. Wu, T., Yu, C., Liu, Y., et al. Synthesis, Structures, and Properties of Thieno[3,2-b]thiophene andDithiophene Bridged Isoindigo Derivatives and Their Organic Field-effect TransistorsPerformance. The Journal of Physical Chemistry C,2012,116:22655-22662.
    150. Liao, C.-Y., Chen, C.-P., Cheng, C.-H., et al. Synthesis of conjugated polymers bearingindacenodithiophene and cyclometalated platinum(II) units and their application in organicphotovoltaics. Solar Energy Materials and Solar Cells,2013,109:111-119.
    151. Wong, W.-Y., X.-Z. Wang, He, Z., et al. Metallated conjugated polymers as a new avenue towardshigh-efficiency polymer solar cells. Nature Materials,2007,6(7):521-527.
    152. Yan, L., Y. Zhao, Wang, X. Z., et al. Platinum-Based Poly(Aryleneethynylene) PolymersContaining Thiazolothiazole Group with High Hole Mobilities for Field-Effect TransistorApplications. Macromolecular Rapid Communications,2012,33:603-609.
    153. Wong, W. Y., Ho, C. L., Organometallic photovoltaics: A new and versatile approach forharvesting solar energy using conjugated polymetallaynes. Accounts of chemical research,2010,43:1246-1256.
    154. He, Z., Zhong, C., Su, S., et al. Enhanced power-conversion efficiency in polymer solar cellsusing an inverted device structure. Nature Photonics,2012,6:593-597.
    155. Li X., W. C. Choy, Hou, J. H., et al. Dual Plasmonic Nanostructures for High PerformanceInverted Organic Solar Cells. Advanced Materials,2012,24:3046-3052.
    156. Huang, F., Chen, K. S, Yip, H. L., et al. Development of New Conjugated Polymers with Donor-π-Bridge-Acceptor Side Chains for High Performance Solar Cells. Journal of the AmericanChemical Society,2009,131:13886-13887.
    157. Li, H., Luo, H., Tan, S. T., et al. Synthesis and photovoltaic performances of conjugatedcopolymers with4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups.Journal of Materials Chemistry2012,22:22913-22921.
    158. Guo, X., Zhang, M., Hou, J. H., et al. Poly(thieno[3,2-b]thiophene-alt-bithiazole): A D-ACopolymer Donor Showing Improved Photovoltaic Performance with Indene-C60BisadductAcceptor. Macromolecules,2012,45:6930-6937.
    159. Ie, Y., J. Huang, Uetani, Y., et al. Synthesis, Properties, and Photovoltaic Performances ofDonor–Acceptor Copolymers Having Dioxocycloalkene-Annelated Thiophenes As AcceptorMonomer Units. Macromolecules,2012,45:4564-4571.
    160. Li, Z., Ding, J., Song, N., et al. Alternating copolymers of dithienyl-s-tetrazine and cyclopenta-dithiophene for organic photovoltaic applications. Chemistry of Materials,2011,23:1977-1984.
    161. Bian, L., Zhu, E., Tang, J., et al. Recent progress in the design of narrow bandgap conjugatedpolymers for high-efficiency organic solar cells. Progress in Polymer Science,2012,37,1292–1331.
    162. Roncali, J."Single Material Solar Cells: the Next Frontier for Organic Photovoltaics?" AdvancedEnergy Materials,2011,1:147-160.
    163. Sakthivel, P., Ban, T. W., Moon, S, J., et al. Synthesis and studies of methyl ester substitutedthieno-o-quinodimethane fullerene multiadducts for polymer solar cells. Solar Energy Materialsand Solar Cells,2013,113:13-19.
    164. Wang, N., Bao, X., Yang, R. Q., et al. Design and synthesis of indole-substituted fullerenederivatives with different side groups for organic photovoltaic devices. Organic Electronics,2013,14:682-692.
    165. Yamamoto, S., Orimo, A., Benten, H., et al. Molecular Understanding of the Open-Circuit Voltageof Polymer:Fullerene Solar Cells. Advanced Energy Materials,2012,2:229-237.
    166. He, Y., Chen, H. Y., Hou, J., et al. Indene-C60Bisadduct: A New Acceptor for High-PerformancePolymer Solar Cells. Journal of the American Chemical Society,2010,132:1377-1382.
    167. Bu, L., Guo, X., Yu, B., et al. Monodisperse Co-oligomer Approach toward Nanostructured Filmswith Alternating Donor-Acceptor Lamellae. Journal of the American Chemical Society,2009,131:13242-13243.
    168. Lin, Y., Li, Y., Zhan, X. W., et al. A Solution-Processable Electron Acceptor Based onDibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells. Advanced Energy Materials,2013,10.1002/aenm.201200911.
    169. Chien, C.-H., Liao, S.-F., Lai, C.-F., et al. Electrophosphorescent Polyfluorenes ContainingOsmium Complexes in the Conjugated Backbone. Advanced Functional Materials,2008,18:1430-1439.
    170. Ma, Z., Ding, J., Wang, L. X., et al. Red-Emitting Polyfluorenes Grafted with Quinoline-BasedIridium Complex: Simple Polymeric Chain, Unexpected High Efficiency. Advanced FunctionalMaterials,2010,20:138-146.
    171. Yang, X. H., Wu, F. I., Neher, D., et al. Efficient red-emitting electrophosphorescent polymers.Chemistry of Materials,2008,20:1629-1635.
    172. Zhang, K., Chen, Z., Yang, C., et al. First Iridium Complex End-Capped Polyfluorene: ImprovingDevice Performance for Phosphorescent Polymer Light-Emitting Diodes. The Journal of PhysicalChemistry C,2008,112:3907-3913.
    1. Guo, X., Cui, C., Hou, J., et al. High efficiency polymer solar cells based on poly(3-hexyl-thiophene)/indene-C70bisadduct with solvent additive. Energy&Environmental Science,2012,5:7943.-7949.
    2. He, Z. C. Zhong, M. Wu, H. B., et al. Nature Photonics,2012,6:593-597.
    3. Huang, F., Chen, K. S, Yip, H. L., et al. Development of New Conjugated Polymers with Donorπ-Bridge Acceptor Side Chains for High Performance Solar Cells. Journal of the AmericanChemical Society,2009,131:13886-13887.
    4. Duan, C., Hu, X.,3. Huang, F., et al. Fully visible-light-harvesting conjugated polymers withpendant donor-π-acceptor chromophores for photovoltaic applications. Solar Energy Materials andSolar Cells2012,97:50-58.
    5. Zhang, Z. G., Zhang, S., Li, Y., et al. Side Chain Engineering of Polythiophene Derivatives with aThienylene-Vinylene Conjugated Side Chain for Application in Polymer Solar Cells.Macromolecules,2012,45:2312-2320.
    6. Zhang, Z.-G., Fan, H., Li, Y., et al. Synthesis and photovoltaic properties of copolymers ofcarbazole and thiophene with conjugated side chain containing acceptor end groups. PolymerChemistry2011,2:1678-1687.
    7. Chen, D., Y. Yang, Li, Y., et al. Synthesis and photovoltaic properties of two-dimensional D-Acopolymers with conjugated side chains. Journal of Polymer Science Part A: Polymer Chemistry2011,49:3852-3862.
    8. Duan, C., Cai, W., Huang, F., et al. Novel Silafluorene-Based Conjugated Polymers with PendantAcceptor Groups for High Performance Solar Cells. Macromolecules2010,43:5262-5268.
    9. Li, H., Luo, H., Yu, G., et al. Synthesis and photovoltaic performances of conjugated copolymerswith4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups. Journal ofMaterials Chemistry2012,22:22913-22921.
    10. Xu, Y. X, Chueh, C. C., Yip H L, et al. Improved Charge Transport and Absorption Coefficient inIndacenodithieno [3,2-b] thiophene-based Ladder-Type Polymer Leading to Highly EfficientPolymer Solar Cells. Advanced Materials,2012.24:6356–6361.
    1. Scharber, M. C., Mühlbacher, D., Koppe, M., et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards10%Energy-Conversion Efficiency. Advanced Materials,2006,18:789-794.
    2. You, J., Dou, L., Yoshimura, K., et al. A polymer tandem solar cell with10.6%power conversionefficiency. Nature communications,2013,4:1446.
    3. Fan, X., Guo, S., Fang, G., et al. An efficient PDPPTPT:PC61BM-based tandem polymer solarcells with a Ca/Ag/MoO3intermediate layer." Solar Energy Materials and Solar Cells,2013,113:135-139.
    4. Wei, K. H., Jiang, J. M., Chen, H. C., et al. Conjugated random copolymers of benzodithiophene-benzooxadiazole-diketopyrrolopyrrole with full visible light absorption for bulk heterojunctionsolar cells. Polym. Chem.,2013. DOI:10.1039/C3PY00132F.
    5. Nielsen, C. B., Ashraf, R. S., Schroeder, B. C., et al. Random Benzotrithiophene-Based Donor-Acceptor Copolymers for Efficient Organic Photovoltaic Devices. Chemical Communications,2012,48:5832-5834.
    6. Wang, Y., Yang, F., Liu, Y., et al. New Alkylfuranyl-Substituted Benzo[1,2-b:4,5-b]dithiophene-Based Donor-Acceptor Polymers for Highly Efficient Solar Cells. Macromolecules,2013,46:1368-1375.
    7. Moule, A. J., Meerholz, K., Morphology Control in Solution-Processed Bulk-Heterojunction SolarCell Mixtures. Advanced Functional Materials,2009,19:3028-3036.
    1. Qin, H., Li, L., Liang, T., et al. Donor-acceptor polymers with differently conjugated side groupsat the acceptor units for photovoltaics. Journal of Polymer Science Part A: Polymer Chemistry2013,51:1565-1572.
    2. Fu, Y., Cha, H., Song, S., et al. Low-bandgap quinoxaline-based D-A-type copolymers:Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A:Polymer Chemistry,2013,51:372-382.
    3. Guo, X., Zhang, M., Hou, J., et al. Influence of D/A Ratio on Photovoltaic Performance of aHighly Efficient Polymer Solar Cell System. Advanced Materials,2012,24:6536-6541.
    4. Chen, H. C., Chen, Y. H., Liu, C. C., et al. Prominent Short-Circuit Currents of FluorinatedQuinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of8.0%.Chemistry of Materials,2012,24:4766-4772.
    5. Fu, Y., Cha, H., Song, S., et al. Low-bandgap quinoxaline-based D-A-type copolymers: Synthesis,characterization, and photovoltaic properties. Journal of Polymer Science Part A: PolymerChemistry,2013,51:372-382.
    6. Yang, Y. L., Lee, Y. H., Chang, C. J., et al. Jacket-like structure of donor-acceptor chromophores-based conducting polymers for photovoltaic cell applications. Journal of Polymer Science Part A:Polymer Chemistry,2010,48:1607-1616.
    7. Zhang, Z. G., Zhang, S., Min, J., et al. Conjugated Side-Chain Isolated Polythiophene: Synthesisand Photovoltaic Application. Macromolecules,2011,45:113-118.
    8. Yi, H., Johnson, R. G., Iraqi, A., et al. Narrow Energy Gap Polymers with Absorptions up to1200nm and their Photovoltaic Properties. Macromolecular Rapid Communications,2008,29:1804-1809.
    9. Baek, M. J., Park, H., Dutta, P., et al. Development of naphthalene and quinoxaline-based donor-acceptor conjugated copolymers for delivering high open‐circuit voltage in photovoltaic devices.Journal of Polymer Science Part A: Polymer Chemistry,2013.51.1843–1851.
    10. Byun, Y. S, Kim, J. H., Park, J. B., et al. Full donor-type conjugated polymers consisting ofalkoxy-or alkylselenophene-substituted benzodithiophene and thiophene units for organicphotovoltaic devices. Synthetic Metals,2013,168:23-30.
    1. Cebrián, C., Mauro, M., Kourkoulos, D., et al. Luminescent Neutral Platinum Complexes Bearingan Asymmetric N^N^N Ligand for High-Performance Solution-Processed OLEDs. AdvancedMaterials,2012.25:437–442.
    2. Shigehiro, T., Yagi, S., Maeda, T., et al. Photo-and Electroluminescence from2-(Dibenzo[b,d]furan-4-yl) pyridine-Based Heteroleptic Cyclometalated Platinum (II) Complexes: ExcimerFormation Drastically Facilitated by an Aromatic Diketonate Ancillary Ligand. The Journal ofPhysical Chemistry C,2012,117:532-542.
    3. Shao, S., Ding, J., Wang, L., et al. Highly Efficient Blue Electrophosphorescent Polymers withFluori-nated Poly (arylene ether phosphine oxide) as Backbone. Journal of the AmericanChemical Society,2012.134:1518915192.
    4. Shao, S., Ding, J., Wang, L., et al. Synthesis and characterization of yellow-emittingelectrophosphorescent polymers based on a fluorinated poly (arylene ether phosphine oxide)scaffold. Journal of Materials Chemistry,2012,22:24848-24855.
    5. Fukagawa, H., Shimizu, T., Hanashima, H., et al. Highly Efficient and Stable Red PhosphorescentOrganic Light-Emitting Diodes Using Platinum Complexes. Advanced Materials,2012.24:5099-5103.
    6. Tan, H., Yu, J., Wang, Y., et al. Improving optoelectronic properties of the2,7-polyfluorenederivatives with carbazole and oxadiazole pendants by incorporating the blue-emitting iridiumcomplex pendants in C-9position of fluorine unit. Journal of Polymer Science Part A: PolymerChemistry,2012.50:149-155.
    7. Chien, C. H., Liao, S. F., Wu, C. H., et al. Electrophosphorescent polyfluorenes containingosmium complexes in the conjugated backbone. Advanced Functional Materials,2008,18:1430-1439.
    8. Jin, Y., Kim, J. Y., Park, S. H., et al. Syntheses and properties of electroluminescentpolyfluorene-based conjugated polymers, containing oxadiazole and carbazole units as pendants,for LEDs. Polymer,2005,46:12158-12165.
    9. Evans, N. R., Sudha Devi, L., Mak, C. S., et al. Triplet energy back transfer in polymers withpendant phosphorescent iridium complexes. Journal of the American Chemical Society,2006,128:6647-6656.
    1. Tan, H., Yu, J. T., Zhu, W., et al. D-A-based polyfluorene derivatives end-capped withcyclometalated iridium complexes by unconjugated linkage: structure–property relationships.Polymers,2011,52,4792-4797.
    2. Evans, N. R., Sudha Devi, L., Mak, C. S., et al. Triplet energy back transfer in polymers withpendant phosphorescent iridium complexes. Journal of the American Chemical Society,2006,128:6647-6656.
    3. Wu, C., Tao, S., Chen, M., et al. Highly efficient blue and white phosphorescent OLEDs based onan iridium complex. Dyes and Pigments,2013,96,237–241.
    4. Shao, S., Ding, J., Wang, L., et al. Highly Efficient Blue Electrophosphorescent Polymers withFluori-nated Poly (arylene ether phosphine oxide) as Backbone. Journal of the AmericanChemical Society,2012.134:1518915192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700