纳米结构在石墨烯/Ru(0001)表面的组装以及石墨烯纳米结构的生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕着两种受纳米尺度调制的石墨烯结构及其相关结构生长展开研究。
     第一种结构是在Ru(0001)衬底上外延生长的石墨烯,由于与衬底的晶格失配而形成纳米尺度的摩尔超结构。这种石墨烯/Ru(0001)结构的特殊性表现在其电子结构受到纳米尺度的周期调制,进而呈现出纳米尺度周期分布的化学活性,可以作为进一步生长相关纳米结构的模版。
     第二种结构是石墨烯纳米带。作为准一维的石墨烯结构,纳米带在宽度上受到了量子限制。锯齿边的石墨烯纳米带会由于边缘的形状呈现金属性的边缘态,而扶手椅形的石墨烯纳米带的宽度变化会导致其带隙的变化。
     我们利用扫描隧道显微镜(STM)分别研究了以摩尔结构为模板组装锰纳米团簇的和组装有机分子的过程。单层石墨烯在Ru(0001)上(MLG/Ru(0001))形成12×12和另外两种有微小扭曲的摩尔超结构。我们比较了这三种摩尔超结构对于组装金属团簇的影响。在成核的最初阶段,我们观察了锰单原子、锰二聚体和锰三聚体在三种摩尔结构上表现出的几种不同的吸附模式。锰的单原子吸附在12×12结构的fcc区域中一个碳六元环的中心上方,锰的长对(long-pair)吸附在另两种有微小扭曲的摩尔结构的fcc/hcp区域边缘的atop位的碳原子正上方。随着锰覆盖度的增加,我们通过STM的观察发现,锰团簇在所有的三种摩尔结构上都表现出较为明显的对吸附位的选择性。锰团簇选择性最强的吸附区域是摩尔结构上的fcc区域,在这里可以观察到吸附在fcc区域的锰团簇形成规则的阵列,而且锰团簇的横向尺寸可以通过覆盖度进行调制。密度泛函理论(DFT)的计算表明,锰单原子在12×12结构上的吸附情况与STM得到的结果一致。另外计算还说明吸附在MLG/Ru(0001)结构上的锰原子表现出磁性,其磁矩约为3.79μβ。退火后,锰在MLG/Ru(0001)形成二维密排岛状结构,引起MLG/Ru(0001)重构,使石墨烯层整体抬升。同时,锰的岛状结构在石墨烯层之上形成,而非插层到石墨烯层之下,说明锰与石墨烯之间的相互作用同钴与石墨烯之间的相互作用非常不同。对于在石墨烯摩尔结构上组装铁酞菁分子的研究结果表明石墨烯摩尔结构的不同区域的反应活性差异使得分子的吸附具有一定的选择性。
     我们研究了在Ru(0001)衬底上采用由下至上(bottom-up)法合成扶手椅形石墨烯纳米带的过程。我们使用二溴联二蒽作为合成的前驱体。二溴联二蒽分子吸附到Ru(0001)表面时,存在两种相互垂直取向的吸附结构,其中一种取向沿着Ru(0001)的晶向,另一种取向与Ru(0001)的晶向夹30度角。在373K退火之后,沿着Ru(0001)晶向排布的石墨烯纳米带出现了。这些石墨烯纳米带的长度与30度转角的石墨烯摩尔超结构的晶格相匹配。这个30度转角石墨烯摩尔结构中的亚晶格取向与石墨烯纳米带中的亚晶格取向一致。这一结果表明石墨烯纳米带与衬底之间的相互作用较强。通过在473K进行退火,石墨烯纳米带的扶手椅形边缘发生脱氢过程。石墨烯纳米带通过侧向的连接过程结合成石墨烯纳米片,通过石墨烯纳米片亮度调制的表现可以确认碳-钌原子的相对位置关系。在673K退火后,那些碳-钌原子相对关系类似fcc/hcp区域的石墨烯纳米片和类似atop区域的石墨烯纳米片会相互结合在一起,形成连续的石墨烯小岛。
In this thesis, we focused on investigations of templating of nano structures on monolayer graphene (MLG) on Ru(0001) and growth graphene nano structures on Ru(0001) with organic molecule as precursor.
     Disorientation between the epitaxially grown graphene and the Ru(0001) substrate results in the moire structure, which modulates the electronic structures of graphene with its period. Therefore, in this system the reactivity of graphene varies across the moire unit cell and promises ordered nanoclusters by selecting the proper nucleation sites on the graphene sheet.
     The graphene nanoribbon, as a qusi-1D structure, experiences quantum confinement on its width. Owing to their special edge shape, zigzag graphene nanoribbons can bear metallic edge states, and the band gap of armchair nanoribbons can be tuned with the width of ribbons.
     The processes of templating manganese nanoclusters and organic molecules with the moire structures were investigated by scanning tunneling microscopy (STM), respectively. It was found that the12×12moire structure and the other two distorted moires coexist when monolayer graphene grown on Ru(0001). At the initial stage of nucleation, different adsorption modes for Mn monomer, dimer and trimer guided by various moire periodicities were observed. Mn monomer was traped above the center of a carbon hexagon in the fcc region of the12x12moire structure, while Mn long-pair tends to dwell above the atop-carbon atoms at the edge of the fcc/hcp region of the other two distorted moires. Upon Mn coverage increasing, STM measurements revealed that Mn clusters exhibit detectable preference for adsorption sites on all the three different moires. The most favourable adsorption sites for Mn clusters are the fcc regions, where ordering of Mn clusters was observable, and the lateral size of the clusters are tunable with Mn coverage. A density functional theory (DFT) calculation showed an adsorption mode of Mn monomer on the12×12moire structure coincident with the STM results. The calculation also revealed that magnetism appears with a magnetic moment of3.79μβ for Mn monomer adsorption on MLG/Ru(0001). Emergence of2D Mn islands upon annealing results in uplifting of graphene layer by densely packed Mn islands. Formation of Mn islands on graphene instead of intercalation underneath graphene suggests that the interaction between Mn and graphene could be very different from that between Co and graphene. The investigation of adsorption of iron phthalocyanine molecules onto the moire structure revealed that the lateral variation of reactivity of the moire structure promises a distinct preference for adsorption sites of the molecules.
     The bottom-up fabrication of armchair graphene nanoribbons on Ru(0001) was investigated by using10,10'-dibromo-9,9'-bianthryl (DBBA) as precursor monomers. Upon deposition of DBBA on Ru(0001), the precursors adsorbed with their axes in two orthogonal directions, of which one is along Ru(0001) azimuths, the other is rotated with30degree with respect to Ru(0001) azimuths. Upon annealing at373K, graphene nanoribbons aligned along Ru(0001) azimuths emerge. Their lengths were trigged to the lattice of the30degree rotated graphene moire structure, whose sublattice possesses the same direction with that of the nanoribbon. These results suggest substantial interaction between graphene nanoribbons and the substrate. After annealing the sample at473K, dehydrogenation occured at the armchair edges of the nanoribbons, and graphene nano-flakes can be formed by the lateral attachment of the nanoribbons. The C-Ru registry of the graphene flakes on Ru(0001) can be identified with the appearing of the brightness modulation in the STM images. Further annealing of the sample at673K, the fcc/hcp-region-like flakes melted with the atop-region-like flakes, and coherent tiny graphene islands were formed.
引文
[1]P. R. Wallace, "The band structure of graphite", Physical Review 71,622 (1947).
    [2]J. W. McClure, "Diamagnetism of graphite", Physical Review 104,666-671 (1956).
    [3]J. C. Slonczewski and P. R. Weiss, "Band structure of graphite", Physical Review 109,272-279 (1958).
    [4]R. E. Peierls, "Quelques proprietes typiques des corpses solides", Annales de l'Institut Henri Poincare 5,177-222 (1935).
    [5]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, YZhang, S.V. Dubonos, I.V. Gregorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science 306,666 (2004).
    [6]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, "The structure of suspended graphene sheets", Nature 446,60(2007).
    [7]L. Jiao, L. Xie, H. Dai, "Densely aligned graphene nanoribbons at-35 nm pitch", Nano Research 5,292-296 (2012).
    [8]L. Yang, P. Cheol-Hwan, Y-W Son, M. L. Cohen, and S. G Louie, "Quasiparticle energies and band gaps in graphene nanoribbons", Physical Review Letters 99,186801 (2007).
    [9]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene", Nature 438,197-200 (2005).
    [10]K. Wakabayashi, "Electronic transport properties of nanographite ribbon junctions", Physical Review B 64,125428 (2001).
    [11]V. Barone, O. Hod, and G E. Scuseria, "Electronic structure and stability of semiconducting graphene nanoribbons", Nano Letter 6,2748-2754 (2006).
    [12]J. Hass, W. A. de Heer, E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene", Journal of Physics:Condesed Matter 20,323202 (2008).
    [13]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nature Materials 6,652-655 (2007).
    [14]Qizhen Liang, Xuxia Yao, Wei Wang, Yan Liu, and Ching Ping Wong, "A three-dimensional vertically aligned functionalized multilayer graphene architecture:an approach for graphene-based thermal interfacial materials", ACS Nano 5,2392-2401 (2011).
    [15]Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, "PEGylated nanographene oxide for delivery of water-insoluble cancer drugs", Journal of the American Chemical Society 130, 10876-10877(2008).
    [16]H. Chen, M. B. Muller, K. J. Gilmore, G G Wallace, "Mechanically strong, electrically conductive, and biocompatible graphene paper", Advanced Materials 20,3557-3561 (2008).
    [17]C. S. Shan, H. F. Yang, J. F. Song, D. X. Han, A. Ivaska, L. Niu, "Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene", Analytical Chemistry 81,2378-2382(2009).
    [18]Z. J. Wang, X. Z. Zhou, J. Zhang, F. Boey, H. Zhang, "Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase", The Journal of Physical Chemistry C 113,14071-14075 (2009).
    [19]Y. Wang, J. Lu, L. H. Tang, H. X. Chang, J. H. Li, "Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds", Analytical Chemistry 81,9710-9715 (2009).
    [20]M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A graphene-based broadband optical modulator", Nature 474,64-67 (2011).
    [21]M. D. Stoller, S. J. Park, Y.W. Zhu, J. H. An, R. S. Ruoff, "Graphene-based ultracapacitors", Nano Letters 8,3498-3502 (2008).
    [22]J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, P. Peumans, "Organic solar cells with solution-processed graphene transparent electrodes", Applied Physics Letters 92, 263302 (2008).
    [23]B. Seger and P. V. Kamat, "Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM guel cells", The Journal of Physical Chemistry C 113, 7990-7995 (2009).
    [24]R. Kou, Y.Y. Shao, D.H. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V.V. Viswanathan, C.M. Wang, Y.H. Lin, Y. Wang, I.A. Aksay, and J. Liu "Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction", Electrochemistry Communications 11,954-957 (2009).
    [25]E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, "Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface", Nano Letters 9,2255-2259 (2009).
    [26]Y. C. Si, E. T. Samulski, "Exfoliated graphene separated by platinum nanoparticles", Chemistry of Materials 20,6792-6797 (2008).
    [27]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene", Review of Modern Physics 81,109-162 (2009).
    [28]P. Avouris, Z. H. Chen, and V. Perebeinos, "Carbon-based electronics", Nature Nanotechnology 2,605-615 (2007).
    [29]Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature 438,201-204 (2005).
    [30]A. K. Geim and K. S. Novoselov, "The rise of graphene", Nature Materials 6,182-191 (2007).
    [31]R R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene", Science 320,1308(2008).
    [32]A. A. Balandin, "Thermal properties of graphene and nanostructured carbonmaterials", Nature Materials 10,569-581 (2011).
    [33]C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science 321,385-388 (2008).
    [34]F. Liu, P. M. Ming, and J. Li, "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Physical Review B 76,064120 (2007).
    [35]W. Bao et al., http://arxiv.org/abs/0903.0414 (2009).
    [36]T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, "Macroscopic graphene membranes and their extraordinary stiffness", Nano Letters 8,2442-2446 (2008).
    [37]A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R Pinchaux, I. Forbeaux, J.-M. Debever, M. Sauvage-Simkin, and J.-M. Themlin, "Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films", Journal of Applied Physics 92,2479-2484 (2002).
    [38]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312,1191-1195 (2006).
    [39]K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. Reshanov, A. Rohrl, J. E. Rotenberg, A. Schmid, A. K. D. Waldmann, H. B. Weber, and T. Seyller, "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide", Nature Materials 8,203-207 (2009).
    [40]S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, "Substrate-induced bandgap opening in epitaxial graphene", Nature Materials 6,770-775 (2007).
    [41]J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward, J. M. McCrate, S. A. Kitt, P. M. Campbell, G. G. Jernigan, J. C. Culbertson, C. R. Eddy, Jr., and D. K. Gaskill, "Hall effect mobility of epitaxial graphene grown on silicon carbide", Applied Physics Letters 95,122102 (2009).
    [42]C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, "Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation", Physical Review Letters 103,246804 (2009).
    [43]D. Waldmann, J. Jobst, F. Speck, T. Seyller, M. Krieger, and H. Weber, "Bottom-gated epitaxial graphene", Nature materials 10,357-360 (2011).
    [44]Hass, F. Varchon, J. E. Milla'n-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, "Why multilayer graphene on 4H-SiC(000-1) behaves like a single sheet of graphene", Physical Review Letters 100,125504 (2008).
    [45]Keisuke Kimura, Kentaro Shoji, Yuta Yamamoto, Wataru Norimatsu, and Michiko Kusunoki, "High-quality graphene on SiC(000-1) formed through an epitaxial TiC layer", Physical Review B 87,075431 (2013).
    [46]K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, "A roadmap for graphene", Nature 490,192-200 (2012).
    [47]M.-C. Wu, Q. Xu, D.W. Goodman, "Investigations of Graphitic Overlayers Formed from Methane Decomposition on Ru(0001) and Ru(ll.hivin.20) Catalysts with Scanning Tunneling Microscopy and High-Resolution Electron Energy Loss Spectroscopy", The Journal of Physical Chemistry 98,5104-5110 (1994).
    [48]A.L. Vazquez de Parga, F. Calleja, B, Borca, M.C.G. Passeggi Jr., J.J. Hinarejos, F. Guinea, R. Miranda, "Periodically rippled graphene:growth and spatially resolved electronic structure", Physical Review Letters 100,056807 (2008).
    [49]M. Sasaki, Y. Yamada, Y. Ogiwara, S. Yagyu, S. Yamamoto, "Moire contrast in the local tunneling barrier height images of monolayer graphite on Pt(111)", Physical Review B 61, 15653 (2000).
    [50]R. Rosei, S. Modesti, F. Sette, C. Quaresima, A. Savoia, P. Perfetti, "Electronic structure of carbidic and graphitic carbon on Ni(111)", Physical Review B 29,3416(1984).
    [51]J. Coraux, A.T. N'Diaye, C. Busse, T. Michely, "Structural coherency of graphene on Ir(111)", Nano Letters 8,565 (2008).
    [52]J.C. Hamilton, J.M. Blakely, "Carbon segregation to single crystal surfaces of Pt, Pd and Co", Surface Science 91,199 (1980).
    [53]L.C. Isett, J.M. Blakely, "Segregation isosteres for carbon at the (100) surface of nickel", Surface Science 58,397 (1976).
    [54]Y. Pan, D.-X. Shi, H.-J. Gao, "Formation of graphene on Ru(0001) surface", Chinese Physics 16,3151 (2007).
    [55]J.W. May, "Platinum surface LEED rings", Surface Science 17,267 (1969).
    [56]S. Hagstrom, H.B. Lyon, G.A. Somorjai, "Surface Structures on the Clean Platinum (100) Surface", Physical Review Letters 15,491 (1965).
    [57]D.G. Castner, B.A. Sexton, G.A. Somorjai, "Leed and thermal desorption studies of small molecules (H2, O2, CO, CO2, NO, C2H4, C2H2 AND C) chemisorbed on the rhodium (111) and (100) surfaces", Surface Science 71,519 (1978).
    [58]M. Eizenberg, J.M. Blakely, "Carbon monolayer phase condensation on Ni(111)", Surface Science 82,228 (1979).
    [59]J. Wintterlin a, M.-L. Bocquet, "Graphene on metal surfaces", Surface Science 603,1841 (2009).
    [60]P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, Le. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, "Graphene-based liquid crystal device", Nano Letters 8,1704 (2008).
    [61]H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The role of defects and doping in 2D graphene sheets and 1D nanoribbons", Reports on Progress in Physics 75,062501 (2012).
    [62]B. Wang and M-L. Bocquet, "Monolayer graphene and h-BN on metal substrates as versatile templates for metallic nanoclusters", The Journal of Physical Chemistry Letters 2, 2341-2345(2011).
    [63]A. T. N'Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, "Two-Dimensional Ir cluster lattice on a graphene moire on Ir(111)", Physical Review Letters 97,215501 (2006).
    [1]J. C. Vickerman and I. S. Gilmore, Surface Analysis-The Principal Techniques,2nd edition, John Wiley and Sons Ltd. (2009).
    [2]徐亚伯,《表面物理导论》,浙江大学出版社(1992).
    [3]S. Sakulsermsuk, P. A. Sloan, and R. E. Palmer, "A new mechanism of atomic manipulation: bond-selective molecular dissociation via thermally activated electron attachment", ACS Nano 4,7344(2010).
    [4]C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press,1993.
    [5]J. H. Coombs, M. E. Welland, and J. B. Pethica, "Experimental barrier heights and the image potential in scanning tunneling microscopy", Surface Science 198, L353 (1988).
    [6]J. Tersoff, and D. R. Hamann, "Theory of the scanning tunneling microscope", Physical Review B 31,805(1985).
    [7]白春礼,《扫描隧道显微术及其应用》,上海科学技术出版社(1992)
    [8]H. Yang, A. J. Mayne, M. Boucherit, G Comtet, G Dujardin, and Y. Kuk, "Quantum interference channeling ar graphene edges", Nano Letters 10,943-947 (2010).
    [1]F. W. Payne, Wei Jiang, J. W. Emmert, Jun Deng, and L. A. Bloomfield, "Magnetic structure of free cobalt clusters studied with Stern-Gerlach deflection experiments", Physical Review B 75,094431 (2007).
    [2]J.G Louderback, A.J. Cox, L.J. Lising, D.C. Douglass, and L.A. Bloomfield, "Magnetic Properties of Nickel Clusters", Zeitschrift fur Physik D Atoms, Molecules and Clusters 26, 301-303 (1993).
    [3]A. J. Bradley and J. Thewlis, "The crystal structure of a-manganese", Proceedings of the Royal Society A115,456-471 (1927)
    [4]V. Sliwko, P. Mohn and K. Schwarz, "The electronic and magnetic structures of α-and β-manganese", Journal of Physics:Condensed Matter 6,6557-6564 (1994).
    [5]C. A. Baumann, R. J. Van Zee, S. V. Bhat, and W. Weltner, "ESR of Mn2 and Mn5 molecules in rare-gas matrices", The Journal of Chemical Physics 78,190 (1983).
    [6]M. B. Knickelbein, "Magnetic ordering in manganese clusters", Physical Review B 70, 014424 (2004).
    [7]P. W. Sutter, J.-I. Flege, and E. Sutter, "Epitaxial graphene on ruthenium", Nature materials 7,406 (2008).
    [8]A.L. Vazquez de Parga, F. Calleja, B. Borca, M.C.G Passeggi Jr., J.J. Hinarejos, F. Guinea, R. Miranda, "Periodically rippled graphene:growth and spatially resolved electronic structure", Physical Review Letters 100,056807 (2008).
    [9]M. Sasaki, Y. Yamada, Y. Ogiwara, S. Yagyu, S. Yamamoto, "Moire contrast in the local tunneling barrier height images of monolayer graphite on Pt(111)", Physical Review B 61, 15653 (2000).
    [10]R. Rosei, S. Modesti, F. Sette, C. Quaresima, A. Savoia, P. Perfetti, "Electronic structure of carbidic and graphitic carbon on Ni(111)", Physical Review B 29,3416(1984).
    [11]J. Coraux, A.T. N'Diaye, C. Busse, T. Michely, "Structural coherency of graphene on Ir(111)", Nano Letters 8,565 (2008).
    [12]J. Lahiri, T. S. Miller, A. J. Ross, L. Adamska,1.1. Oleynik, and M. Batzill, "Graphene growth and stability at nickel surfaces", New Journal of Physics 13,025001 (2011).
    [13]J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. Heringdorf, R. Gastel, B. Poelsema, and T. Michely, "Growth of graphene on Ir(111)", New Journal of Physics 11,039801 (2009).
    [14]B. Wang and M-L. Bocquet, "Monolayer graphene and h-BN on metal substrates as versatile templates for metallic nanoclusters", The Journal of Physical Chemistry Letters 2, 2341-2345(2011).
    [15]A. T. N'Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, "Two-Dimensional Ir cluster lattice on a graphene moire on Ir(111)", Physical Review Letters 97,215501 (2006).
    [16]P. J. Feibelman, "Pinning of graphene to Ir(111) by flat Ir dots", Physical Review B 77, 165419 (2008).
    [17]E. Sutler, P. Albrecht, B. Wang, M-L. Bocquet, L. Wu, Y.i Zhu, P. Sutter, "Arrays of Ru nanoclusters with narrow size distribution templated by monolayer graphene on Ru", Surface Science 605,1676-1684 (2011).
    [18]Kerstin Donner and Peter Jakob, "Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moire overlayer", The Journal of Chemical Physics 131, 164701(2009).
    [19]S. Marchini, S. Gunther, and J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru(0001)", Physical Review B 76,075429(2007).
    [20]E. Sutter, B.Wang, P. Albrecht, J. Lahiri, M-L. Bocquet and P. Sutter, "Templating of arrays of Ru nanoclusters by monolayer graphene/Ru moires with different periodicities", Journal of Physics:Condensed Matter 24,314201(2011).
    [21]B. Wang, M.-L. Bocquet, S. Marchini, S. Gunther and J. Wintterlin, "Chemical origin of a graphene moire overlayer on Ru(0001)", Physical Chemistry Chemical Physics 10, 3530-3534(2008).
    [22]Q. Liao, H. J. Zhang, K. Wu, H. Y. Li, S. N. Bao and P. He, "Nucleation and growth of monodispersed cobalt nanoclusters on graphene moire on Ru(0001)", Nanotechnology 22, 125303(2011).
    [23]Q. Liao, H. J. Zhang, K. Wu, H. Y. Li, S. N. Bao and P. He, "Intercalation of cobalt underneath a monolayer of graphene on Ru(0001)", Surface Review and Letters 19, 1250041(2012).
    [24]A.Z. AlZahrani, "Theoretical investigation of manganese adsorption on graphene and graphane:A first-principles comparative study", Physica B 407,992-1002(2012).
    [1]B. Wang and M-L. Bocquet, "Monolayer graphene and h-BN on metal substrates as versatile templates for metallic nanoclusters", The Journal of Physical Chemistry Letters 2, 2341-2345 (2011).
    [2]J. Lu, P. S. E. Yeo, Y. Zheng, Z-Y. Yang, Q-L. Bao, C. K. Gan, and K. P. Loh, "Using the graphene moire pattern for the trapping of C6o and hpmpepitaxy of graphene", ACS Nano 6, 944-950 (2012).
    [3]M. Roos, D. Kiinzel, B. Unl, H-H Huang, and O. B. Alves, "Hierarchical interactions and their influence upon the adsorption of organic molecules on a graphene film", Journal of The American Chemical Society 133,9208-9211 (2011).
    [4]K. Manandhar a, K.T. Park a, S. Mab, J. Hrbek, "Heteroepitaxial thin film of iron phthalocyanine on Ag(111)", Surface Science 603,636-640 (2009).
    [5]Tomohide Takami, Clarisa Carrizales, and K.W. Hipps, "Commensurate ordering of iron phthalocyanine on Ag(111) surface", Surface Science 603,3201-3204 (2009).
    [6]M. G Betti, P. Gargiani, R. Frisenda, R. Biagi, A. Cossaro, A. Verdini, L. Floreano, and C. Mariani, "Localized and dispersive electronic states at ordered FePc and CoPc chains on Au(110)", The Journal of Physical Chemistry C 214,21638-21644 (2010).
    [7]M. Casarin, M. Di Marino, D. Forrer, M. Sambi, F. Sedona, E. Tondello, A. Vittadini, V. Barone, and M. Pavone, "Coverage-dependent architectures of iron phthalocyanine on Ag(110):a comprehensive STM/DFT study", The Journal of Physical Chemistry C 114, 2144-2153 (2010).
    [8]P. Gargiani, M. Angelucci, C. Mariani, and M. G. Betti, "Metal-phthalocyanine chains on the Au(110) surface:Interaction states versus d-metal states occupancy", Physical Review B 81,085412 (2010).
    [9]X. Lu and K. W. Hipps, "Scanning tunneling microscopy of metal phthalocyanines:d6 and d8 cases", The Journal of Physical Chemistry B 101,5391-5396 (1997).
    [10]Casey W. Miller, A. Sharoni, G Liu, C. N. Colesniuc, B. Fruhberger, and Ivan K. Schuller, "Quantitative structural analysis of organic thin films:An x-ray diffraction study", Physical Review B 72,104113(2007).
    [11]Y. Y. Zhang, S. X. Du, and H.-J. Gao, "Binding configuration, electronic structure, and magnetic properties of metal phthalocyanines on a Au(111) surface studied with ab initio calculation", Physical Review B 84,125446 (2011).
    [12]L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du,W. A. Hofer.X. C. Xie, and H.-J. Gao, "Site-specific Kondo Effect at ambient temperatures in iron-based molecules", Physical Review Letters 99,106402 (2007).
    [13]B. Wang, M.-L. Bocquet, S. Marchini, S. Gunther and J. Wintterlin, "Chemical origin of a graphene moire" overlayer on Ru(0001)", Physical Chemistry Chemical Physics 10, 3530-3534(2008).
    [14]B Wang, S Gunther, J Wintterlin, and M-L Bocquet, "Periodicity, work function and reactivity of graphene on Ru(0001) from first principles", New Journal of Physics 12, 043041 (2010).
    [15]A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G Hou, and Q. Zhu, "Controlling the Kondo Effect of an adsorbed magnetic ion through its chemical bonding", Science 309,1542 (2005).
    [1]K. Nakada and M. Fujita, "Edge state in graphene ribbons:Nanometer size effect and edge shape dependence", Physical Review B 54,17954-17961(1996).
    [2]M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, "Peculiar localized state at zigzag graphite edge", Journal of the Physical Society of Janpan 65,1920-1923(1996).
    [3]Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and Hiroshi Fukuyama, "Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges", Physical Review B 73,085421(2006).
    [4]Y-W. Son, M. L. Cohen, and S. G Louie, "Energy gaps in graphene nanoribbons", Physical Review Letters 97,216803 (2006).
    [5]V. Barone, O. Hod, and G. E. Scuseria, "Electronic Structure and Stability of Semiconducting Graphene Nanoribbons", Nano Letters 6,2748 (2006).
    [6]X. Li, X. Wang, L. Zhang, S. Lee, and H-J Dai, "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors", Science 319,1229 (2008).
    [7]H. Murayama, and T. Maeda, "A novel form of filamentous graphite", Nature 345,791 (1990).
    [8]J. Campos-Delgado, Y.A. Kim, T. Hayashi, A. Morelos-Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R.D. Shull, M.S. Dresselhaus, M. Terrones, "Thermal stability studies of CVD-grown graphene nanoribbons:Defect annealing and loop formation", Chemical Physics Letters 469,177 (2009).
    [9]A. G. Cano-Marquez, F. J. Rodriguez-Macias, J. Campos-Delgado, C. G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, D. A. Cullen, D. J. Smith, M. Terrones, and Y. I. Vega-Cantu, "Ex-MWNTs:Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes", Nano Letters 9,1527 (2009).
    [10]L. Jiao, L. Zhang, X. Wang, G Diankov and H-J Dai, "Narrow graphene nanoribbons from carbon nanotubes", Nature 458,877 (2009).
    [11]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature 458,872 (2009).
    [12]A. L. Elias, A. R. Botello-Mendez, D. Meneses-Rodriguez, V. Jehova Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P. M. Ajayan, H. Terrones and M. Terrones, "Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels", Nano Letters 10,366 (2010).
    [13]K. Kim, A. Sussman,and A. Zettl, "Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes", ACS Nano 4,1362 (2010).
    [14]J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, "Atomically precise bottom-up fabrication of graphene nanoribbons", Nature 466,470 (2010).
    [15]S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J. H. Franke, H. Zhang, X. Feng, K. Mullen, H. Fuchs, L. Chi, and H. Zacharias, "Electronic structure of spatially aligned graphene nanoribbons on Au(788)", Physical Review Letters 108,216801(2012).
    [16]B Wang, S Gunther, J Wintterlin, and M-L Bocquet, "Periodicity, work function and reactivity of graphene on Ru(0001) from first principles", New Journal of Physics 12, 043041 (2010).
    [17]H. Huang, D. Wei, J. Sun, S. Liang Wong, Y. P. Feng, A. H. C. Neto, and A. T. S. Wee, "Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons", Scientific Reports 2,983 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700