西葫芦杂种一代产量优势形成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验选取遗传差异显著的7个自交系以及配制的7个杂交组合为试材,研究了西葫芦杂种一代产量优势形成的农艺学、生理学和遗传学基础,以期为杂种优势利用、亲本选择选配和优势预测提供理论依据。主要研究结果如下:
    1.农艺学性状相关分析及杂种一代优势表现分析表明,单株结果数、单果重、果实发育速度、雌花数、座果率、果长、果粗、早期单株产量、早期单株结果数、早期单果重等性状与单株产量呈显著或极显著正相关,且杂种一代均表现为正向优势,以单株产量、果实发育速度两个性状优势尤为明显,平均超亲优势指数均为1.61。始花期、始收期与单株产量呈显著负相关,杂种一代表现为负向优势,平均超中优势指数分别为0.96和0.97。杂种一代与单株产量密切相关的农艺学性状较其亲本均有不同程度的优势表现,构成产量优势形成的农艺学基础。
    2.苗期、结果中期、结果末期光合速率与单株产量呈显著或极显著正相关,且杂种一代均表现为正向优势,以苗期和结果末期优势尤为明显。不同生长发育期叶面积与单株产量相关性均达显著或极显著水平,且杂种一代叶面积较其亲本均表现出明显的正向优势。结果中期叶绿素b含量、结果末期叶绿素a/b与单株产量的相关性达显著水平,而且杂种一代较其亲本表现为正向优势。杂种一代较其亲本拥有更大的光合面积,对光照尤其是弱光利用率高,整个生长发育期植株均能维持较高的光合速率,可能是杂种优势形成的重要生理基础之一。
    整个生长发育期,杂种一代植株中干物质含量较其亲本均表现出不同程度的正向优势,以结果期优势更为明显,优势指数均在1.40以上。生长前期杂种一代干物质在营养器官中积累分配和结果中期、结果末期在果实中积累分配较亲本均表现出明显优势,可能是产量优势形成的又一重要原因。
    从氮、磷、钾养分积累分配分析可以看出,苗期杂种一代与其亲本无明显差异,结果期,杂种一代均表现出较其亲本更快的营养元素积累能力,
    
    生长前期营养器官和后期果实中养分积累分配强优势表现表明,杂种一代较其亲本能够更为合理的分配氮、磷、钾营养成分,养分利用率高,有助于产量优势形成。
    3.遗传距离与单株产量的优势指数呈不显著程度的负相关,表明遗传距离并非越大越好。
    亲子相关分析表明,杂种一代农艺学性状均不同程度的受到亲本影响,可以通过亲本性状表现对杂种一代与亲本密切相关的性状进行初步预测,育种时应注意以适当的品种作亲本。
In this experiment, seven inbreds which had different genetic backgroud together with seven hybrids breded with them were studied to find the agronomical, physiological and genetic mechanism of heterosis performance. The aim was to provide theoretical basis for heterosis utility, parent selection and heterosis prodiction. The result were as follows:
    1. Correlation analysis between agronomical characters and heterosis performance in the hybrids indicated that the fruit number per plant, fruit weight, fruit growth rate, female flower number, percentage of fruit setting, early yield per plant, early fruit number per plant, early fruit weight length of fruit and diameter of fruit all had positive correlation with the yield per plant at significant or very significant level. The hybrids showed positive mid-parent heterosis and even super-parent heterosis in these characters. Among them, the heterosis of the yield per plant and the fruit growth rate were much higher, whose mid-parent heterosis index reached 1.61, and super-parent heterosis index reached 1.53 and 1.47 respectively. However, the period from planting to flowering and from planting to first harvesting. had negative relationship with the yield per plant and the hybrids showed negative heterosis. Their mid-parent heterosis index were 0.96 and 0.97 respectively. In a word, all of the characters which were closely correlated with the yield per plant had heterosis performance compared with their parents, this may be the agronomical basis of heterosis forming.
    2.In the stage of seedling, middle fruiting and end fruiting, the correlation coefficient between the photosynthetic rate and the yield per plant reached significant even very significant level. The hybrids all performed positive heterosis and the heterosis were especially prominent in the stage of seedling and end fruiting. In different stages, the leaf area all correlated with the yield character at significant or even very significant level. The hybrids showed positive heterosis in the whole life. The character of chlorophyll b in the middle fruiting stage and the chlorophyll a/b in the end fruiting stage were significantly and positively correlated with the yield character and the hybrids had
    
    heterosis performance. In conclusion, the hybrids had larger leaf area, they could utilize light especially weak light more usefully, and in the growth stage long the plant could always maintain higher photosynthesis rate, which may become one of the important physiological basis of heterosis performing.
    As for the dry matter content in the plant, he hybrids all showed heterosis performance compared with their parents at different level in the whole growth stage. The heterosis performance were especially obvious in the three fruiting stage, whose heterosis index were all above 1.40. In the former growth stage, the dry matter in the vegetation organ of the hybrids showed strong heterosis compared with their parent, so did that in the fruit organ during the middle and end fruiting stage, which may be another important course of yield hetersosis forming.
    From the analysis of the nitrogen, phosphorus and potassium nutrition accumulation and division, we could see that during the former growth stage, there were not much difference between hybrids and their parents, while in the fruit stage, the hybrids absorbed the nutrition faster and more stably than their parents. In the early growth stage, the nutrition accumulated in the vegetation organ and in the latter stage that in the fruit of hybrids all showed great heterosis. So, the hybrids could utilize the nutrition more rationally and efficently. These may help to form yield heterosis.
    3. The negative but not significant correlation between the genetic distance and parents showed that it wasn't the case that the greater the genetic distance were, the better.
     The relationship between hybrids and their parents indicated that the performance of agronomical characters in the hybrids were all affected by their parents at different level, so the heterosis
引文
1. 曹家树,辣椒杂种优势与配合力的研究. 园艺学报,1989,15(1):56-62
    2. 陈德华、王兆龙、吴云康等.,转基因抗虫棉杂交种光合生产及干物质分配特点研究. 棉花学报,1998,10(1):33-37
    3. 陈进红、郭恒德、毛国娟等.,杂交稻超高产群体干物质生产及养分吸收利用特点. 中国水稻科学,2001,15(4):271-275
    4. 陈肖师,甜椒花粉株系配合力测定及杂种优势分析. 园艺学报,1985,12(4):267-272
    5. 陈于和,陆地棉显性无腺体品系与常规品种间杂种优势利用研究,Ⅲ.杂种优势及其与配合力相关 1998,12(4):1-4
    6. 陈源闽、崔世茂,西葫芦主要性状的相关分析. 内蒙古农业科技,1997(5):16-17
    7. 程宁辉,玉米杂种一代与亲本基因表达差异的初步研究. 科学通报,1996,41(5):451-454
    8. 邓仲萀、孙济中、张金发等.,杂交棉及其亲本光合特性的研究. 华中农业大学学报,1995,14(5):429-434
    9. 樊荣峰,作物杂种优势预测和利用. 国外农学-杂粮作物,2000(4):31-34
    10. 樊治成、贾红玉、郭洪云等.,西葫芦耐冷性生理指标研究. 园艺学报,1999,26(5):309-313
    11. 高建芹、浦惠明、袁灿生,杂交油菜宁杂1号氮磷钾吸收与积累规律初探. 广西农业科学,2002(3):130-131
    12. 管荣展、盖钧镒,甘蓝型油菜杂种优势及其与亲本配合力和亲本系数间的关系. 中国油料作物学报,1998,20(4):11-15
    13. 何道根,杂交水稻亲本遗传差异及其与杂种优势的关系. 杂交水稻,2000,15(5):34-35
    14. 侯发强,西葫芦数量性状的遗传分析. 山东农业大学硕士研究生论文,2001
    15. 胡良平,Windows SAS 6.0和8.0实用统计分析教程. 军事科学医学出版社,2001
    16. 胡良平,现代统计学与SAS应用. 军事科学医学出版社,2000
    17. 黄铁成,杂种小麦研究-进展,问题和展望. 1990,北京,北京农业出版社
    18. 黄永菊、赵合句、李培武,杂种小麦901某些光合生理特性研究.西北农业大学学报,1998,(05)
    李大跃、江先炎,杂种棉养分吸收、光合物质生产与运转的研究. 作物学报,1992,
    
    19. 18(3):196-204
    20. 李明启,作物光合效率与产量关系及影响光合效率内在因子. 植物生理学通讯,1980(2):1-8
    21. 李平、王一柔、刘鸿先,籼型水稻育种中F1代生理基础研究. 中国农业科学,1990,23(5):39-44
    22. 李树华、袁汉民、杨生龙,春小麦杂种优势与同工酶酶谱相关分析. 西北农业学报,1998,7(02):32-36
    23. 李燕凌、李仲强、李大志,主成分分析在园艺植物研究中的应用. 湖南农业科学,2002,(3):8-10
    24. 廖伏明,杂交稻亲本遗传差异及其与杂种优势的关系. 中国水稻科学,1998,121(4):193-199
    25. 吕建林、林守涌、修启贵等.,杂交稻的物质生产与产量优势的形成. 福建农业大学学报,1995,24(4):384-388
    26. 倪中福、孙其信、吴利民,普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究. 中国农业大学学报,2000,5(1):1-8
    27. 聂荣邦,陆地棉品种与陆地棉族系种质系间生理生化的杂种优势. 棉花学报,1998,10(1):33-37
    28. 齐永涛、崔鸿文,黄瓜杂种一代早熟优势及其性状构成基础. 园艺学报,1991,18(40):330-334
    29. 沈淞海,四个栽培棉种叶片光合色素特性研究. 中国棉花,1992,(5):10-13
    30. 汤丽云、陆士伟,籼型杂交稻育种中F1代生理优势的研究. HYBRID RICE。1999,14(4):34-36
    31. 田保明,甘蓝型双低油菜杂种优势与亲本配合力的相关性分析. 河南农业科学,2000,(2):15-18
    32. 王慧珠, 杂交稻高产田氮、磷、钾的积累运转初步分析. 土壤肥料,2000(6):29-31,43
    33. 王强,超高产水稻的光合特性的研究. 植物学报,2000,42(12):1285-1288
    34. 王文泉、郑永战、梁秀银等.,芝麻杂交种生长动态优势研究. 作物学报,1997,23(4):440-445
    王玉怀,大棚春黄瓜主要农业性状的配合力分析. 东北农业学报,1989,20(1):
    
    35. 12-18
    36. 王振华,普通玉米主要品质性状的杂种优势及优势相关性分析. 玉米科学,1998(3):25-28
    37. 卫云宗、等,旱地小麦F1代主要性状杂种优势的遗传分析. 麦类作物,1998,18(3):8-10
    38. 魏其克,雄性不育杂种油菜干物质积累与养分吸收规律研究. 西北植物学报,1994,14(3):203-209
    39. 魏正平,T型杂种小麦优势及其主要性状亲子关系研究.北京农业大学学报,1985,11(4):81-87
    40. 吴小月,棉花杂种优势预测初步研究. 中国棉花,1980,(6):1-7
    41. 夏美翠、宋希云、李储学,普通小麦亲本配合力与杂种优势关系研究. 莱阳农学院学报,1997,14(1):11-15
    42. 肖凯、谷俊涛、张荣铣等.,杂种小麦光合特性的初步研究. 作物学报,1997,23(4):425-430
    43. 肖凯、张荣铣,杂种小麦及其亲本光合作用对生态因子的响应. 华北农学报,1999,14(1):6-10
    44. 许大全,光合作用与作物产量、作物高光效研究进展. 1992,科学出版社
    45. 许明辉,烟草数量性状遗传距离与杂种优势关系研究. 遗传,1999,21(5):47-50
    46. 许明辉,烟草数量性状杂种优势及亲子关系分析. 云南农业大学学报,1997,13(1):51-54
    47. 晏月明,籼梗稻杂种一代优势强度及其与亲本间的相关性研究. 西南农业大学学报,1993,15(5):441-445
    48. 杨金水,杂种优势机理探讨 作物雄性不育以及杂种优势研究进展(I),北京,中国农业出版社,1996:1-12
    49. 杨诺西(匈),植物育种的杂种优势. 1981,农业出版社
    50. 于燕、李晓东,黄瓜早期产量若干数量性状分析. 天津农业科学,1997,3(1):7-10
    51. 余四斌,上位性效应是水稻杂种优势的重要遗传基础. 中国科学(C辑),1998,28(4):333-341
    52. 张爱民,植物育种亲本选配的原理和方法. 北京,农业出版社,1993
    
    
    53. 张洪松、岩田忠寿、佐滕勉,籼型杂交稻与常规稻的物质生产及营养特性的比较. 西南农业学报,1995(4):11-16
    54. 赵明,玉米杂交种与亲本主要光合性状的比较. 华北农学报,1997,12(2):39-43
    55. 赵庆媛、张文峰,主成分分析在春大棚黄瓜高产育种中的应用. 吉林农业科学,1998(3):79-82
    56. 周春菊、张嵩午、王长发,杂种小麦901某些光合生理特性研究. 西北农业大学学报,1998(05):
    57. 周永健,番茄果实可溶性固形物含量研究初报. 园艺学报,1984,11(1):29-34
    58. 邹伟清,陆地棉产量性状的基因效应及其与杂种优势关系的研究. 山东农业大学学报,1990,21(4):74-79
    59. Ajmone, Genetic diversity and its relationship to hybrid performance in maize revealed by RFLP and AFLP markers. Theoretical and applied genetics. 1998,96(2): 219-227
    60. Allard, Multivariate genetic divergence and hybrid performance of cacao, Brazilian-Journal-of-Genetics, 1997,20(1): 63-70
    61. Amoros.W.R., Relationship between heterozygosity and yield in autotetraploid potatoes. Am.Potato J., 1979(56): 455
    62. Andrew K, Does maintaining green leaf area in Sorghum improve yield under drought? Ⅱ: Dry matter production and yield. Crop Science, 2000, (40):1037-1048
    63. Bingham, Complementary gene interaction in alfalfa are greater in autotertraploids than diploids. Crop Sci., 1994(34): 823-829
    64. C.H.SHI, Analysis of imbryo,endosperm, cytoplamic and maternal effects for heterosis of protein and lysine content in indica hybrid rice. Plant Breeding, 1999(118):574-576
    65. C.L.Morgan, Mid-parent advantage and heterosis in F1 hybrids of wheat from crosses among old and modern varieties. Journal of Agricultural Science, 1998,(130):287-295
    66. G.J.Schwab, Growth and nutrient uptaken by cotton root under field conditions. Commu. Soil. Sci. Plant Anal., 2000,31(1/2):149-164
    Grant, Heterosis and combining ability estimates in spring oilseed
    
    67. rape(Brassica napus L.) Can J Genet Cyto, 1985 (27):472-478
    68. H.Caballos, Additive ,dorminant and epistatic effects for maize grain yield in acid and non-acid soils. Theor.Appl.Genet., 1998(96):662-668
    69. Harsh Mehta, 玉米光合作用、产量和产量组合的杂种优势. 国外农学-杂粮作物,1993(3):8-11
    70. Hirao, Characteristic of leaf photosynthesis in Chinese F1 hybrid rice Oryzasativa]cultivar,Shanyou63.Japanese-Journal-of-Crop-Science(Japan). 1995,64(2):209-215
    71. Jinshui Yang, Molecular basis of heterosis in hybrid rice and hybrid maize relealed by mRNA amplification. IRRI, 1996,21(1):12-13
    72. K.C.Falk, Performance of inter-cultivar summer tunnip rape hybrids in Saskatchewan. Canadian Journal of Plant Science, 1994(74):441-445
    73. K.S.Randhawa, Assessment of combining ability, heterosis and genetic variance for fruit characters in muskmelon. Indian J. Genet.,1990,50(2):127-130
    74. Kidwell, Forage yield of alfalfa population derived from parent selected on the basis of molecular marker diversity. Crop Science,1999,(39):223-227
    75. Kirk,The plastids, their chemistry, structure growth and inheritance. Elsevier,1978
    76. L.L.Benchimol, Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breeding, 2000 (119):491-496
    77. Le Gouis J, Diallel analysis of winter wheat at two nitrogen levels.Crop Science, 2002, 42(4). 1129-1134.
    78. M.F.Zhao, Relationship between molecular marker heterozygosity and hybrid performance in intra- and inter-subspecific crosses of rice. Plant Breeding, 1999(118):139-144
    Madrap.I.A., Heterosis in relation to combine-ability effect and phynotypic stability in sunflower. Indian J. Agric. Sci.,
    
    79. 1993,63(8):484-488
    80. Mitchell, Interval mappong of vability loci causing beterosis in Arabidopsis. Genetics, 1995(140):1105-1109
    81. Murayama, Agronomic performance of F1 hybrids of rice (Oryza sativa L) in japonica-indica crosses: Heterosis for and relationship between grain yield and related characters. Plant Production Science, 2002, 5(3):203-210.
    82. Perenzin,F1 hybrid performance and parental diversity estimated using molecular markers. Euphytica, 1998, 100(1-3):;273-279
    83. R.L.Lower, Gene action and heterosis for yield and vegetative characteristic in a cross between a gynoecious Picking cucumber inbred and a cucumis Sativus bar Fandwick inline, J.Amer Soc. Hort-Sci. 1982 ,107(1):75-78
    84. Saghai, Correlation between molelcular marker distance and hybrid performance in US southern long grain rice. Crop Science, 1997(37):145-150
    85. Saratha, Genetic inprovement is short season-soybean: Ⅰ Dry matter accumulation , partition and leaf area duration. Crop Science, 2001,41(2):1037-1048
    86. Sarker , Heterosis for yield and yield attributes in 'WA' type rice hybrids (Oryza sativa L.) on multilocation performance. Crop Research (Hisar). 2001, 22(2): 262-266.
    87. Sarker, Effect of nitrogen fertilization on photosynthetic characters and dry matter production in F1 hybrids of rice (Oryza sativa L.). Plant Production Science, 2002, 5(2) 131-138.
    88. Shi Chunhai, Anslysis of genetic and genotype and environment interaction effect on heterosis of nutrientquality traits in indica hybrid rice. International-rice-research-notes, 1997,22(3):7-12
    89. Smith, Similarities among a group of elite maize inbreds as measured by pedigree,F1 grain yield, heterosis and RFLPs. Theor. Appl. Genet., 1990(80):16-187
    
    
    90. Srivastava, Heterosis and intergenomic complementation mitochondria, chlroplast and nucleus. Heterosis, reappraisal of theory and practice,1983:260-286
    91. Stuer, Identification of genetic factors contributing to heterosis I a hybrid from two elite maize inbred using molecular markers.1992 (132):823-839
    92. T.A.Campbell, Melocular analysis of genetic relateness among alfalfa clones differing in levels of self-incomparibility. Canadian Journal of Plant Science, 2000,80(3):551-557
    93. Tsaftaris, Studying the expression of genes in maize parental inbreds and their heterotic and nonheterotic hybrids. In proc XII Eucarpia maize and sorghum conference. Bergamo Italy, 1993:283-292
    94. WELLSR, Heterosis in upland cotton.Ⅰ.Growth and leaf area partition. Crop Science, 1986(26):1119-1123
    95. WELLSR, Heterosis in upland cotton.Ⅱ. Relationship of leaf area to plant photosynthesis. Crop Science, 1988(28):522-525
    96. Wolf D P, Triple testcross analysis to detecte epistasis in maize. Crop Sci., 1997(37):763-770
    97. Xiao J H, Dominace is the major genetic basis of heterosis in rice as revealed by QTL analysis using melocular markers. Genetics, 1995(140):745-754
    98. Xiong, Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Melocular Breeding, 1998(4):129-136
    99. Yu, Importance of epistasis as the genetic basis of F1 heterosis in an elite rice hybrid. Acad Sci., 1997,(94):9226-9231
    100. Zhang, A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Ther. Appl. Genet., 1994(83):185-192
    101. Zhang, Molecular divergence and hybrid performance in rice. Mol. Breed., 1995(1):133-142
    
    
    102. Zhang, Molecular marker heterozygosity and hybrid performance in indic and japonica rice. Ther. Appl. Genet., 1996(93):1218-1224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700