油菜单显性细胞核雄性不育分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以单显性细胞核雄性不育油菜分离群体为材料,在对单显性核不育(MDGMS)油菜的育性、花器性状进行观察的基础上,对MDGMS及其等位可育系的小孢子发育过程及败育方式和特征进行了比较研究;利用集群分离法(BSA)分子标记策略,找到了与单显性核不育基因连锁的RAPD标记,并将其转化为稳定可靠的SCAR标记。通过比较分析分子标记DNA序列的同源序列,设计引物在MDGMS及其等位可育油菜中克隆到油菜输入蛋白α基因的genomic DNA和cDNA编码区全长序列。根据克隆的油菜输入蛋白α基因cDNA序列,构建RNAi和Antisense RNA载体并转化油菜;通过这种基因敲除的反向遗传学方法研究输入蛋白α基因在油菜生长发育中的功能。主要结果如下:
     1.MDGMS油菜不育株与可育株相比,雄蕊严重退化,花丝不伸长或略有伸长,花药萎缩呈丝状尖三角,花粉囊中空干瘪,无花粉,自交不能结实。而雌蕊具有正常的形态,少部分的柱头有一定的弯曲。用正常花粉给不育花授粉,能正常结实,表明不育花雌蕊是正常可育的。
     通过无性繁殖对应植株在温室和大田育性比较研究表明,该不育系完全由遗传效应决定,不受环境因素的影响。
     2.对MDGMS育性分离群体中可育株和不育株小孢子发育过程进行石蜡切片比较观察发现,不育系小孢子败育发生在减数分裂前,并且不能形成四分体,小孢子解体于绒毡层解体之前,最后花药成为干瘪的空壳,表明MDGMS雄性不育不是由于绒毡层细胞给小孢子营养供应不良造成,而是小孢子功能缺陷,自身不能继续发育引起的。
     3.对同一时期MDGMS不育及等位可育系的花蕾蛋白质表达差异分析表明,可育系花蕾中表达的蛋白质点数要高于不育系。可育系中表达的特有蛋白质分子量主要分布在60kD以下小分子区域,30kD尤为丰富;不育系中表达的特有蛋白按分子量分布相对均匀。两者表达特有蛋白都相对集中在pI6.0-7.5之间。
     4.利用集群分离法(BSA)对MDGMS不育基因进行了RAPD分析,找到了与MDGMS不育基因连锁的RAPD标记OPU-031500。将RAPD标记OPU-031500 DNA片段克隆、测序并进行Blast分析表明,该标记DNA序列与拟南芥基因核输入蛋白α高度同源,根据同源的拟南芥序列及其该基因在物种间的保守性,设计特异性引物SCP1/SCP2,在MDGMS不育及等位可育系中都扩增到2.3 kb的单一特异片段。根据突变位点设计引物SCP3/SCP4,在等位可育系中扩增到约1.5kb的单一特异片段,但在不育系中未扩增到任何带,从而将RAPD标记转化为稳定可靠的SCAR标记。
     5.在油菜MDGMS不育和等位可育系中克隆到包括起始密码子ATG和终止密码子TGA在内的油菜核输入蛋白α基因编码区全长genomic DNA和cDNA。二者genomic DNA全长分别为2620bp和2614bp。不育和可育系genomic DNA序列之间多个位点存在突变差异。cDNA全长分别为1629bp和1623bp,不育和可育系cDNA序列之间只有2个位点存在突变差异。genomic DNA和cDNA比较表明,油菜输入蛋白α基因(BIMP a)包含10个外显子和9个内含子。
     6.根据克隆到的MDGMS不育和可育系输入蛋白αcDNA序列推导出二者对应的氨基酸序列。油菜输入蛋白α由542个氨基酸组成,而突变不育系只有540氨基酸。比较发现不育系由于碱基缺失突变,导致其肽链氨基酸序列组成上有1个位点缺少2个谷氨酰胺(QQ),并进一步导致该蛋白二级结构的变化:α-螺旋和β-转角在突变不育系MDGMS中明显减少。
     对推导的氨基酸序列进行结构域分析表明,油菜输入蛋白α结构域包括1个与输入蛋白β结合的N-末端结构域(IBB)、8个ARM重复单元(ARM repeat)和2个HEAT重复单元(HEAT repeat),组成完全与输入蛋白α结构域一致,从而将其命名为BIMP a(Brassica-napus Importinα, BIMP a)。
     7.通过构建油菜输入蛋白αRNAi和Antisense RNA载体并转化油菜表明,油菜输入蛋白α不仅控制雄配子的发育,也控制雌配子的发育,同时与植株的长势及抗病性相关。转基因植株长势较差,不能结实且易感病。
A novel genic male sterile (GMS) line in Brassica napus L., which was identified by Hybrid Rapeseeed Research Center of Shaanxi Province in 1999, was found to be controlled by a monogenic dominant gene which we have designated as MDGMS. The F1 fertility from any fertile lines crossed with MDGMS segregated and the ratio was close to 1:1. Its fertility, floral organ character were investigated. Course of microsporegenesis and the difference of protein expressing in bud were compared and analyzed between MDGMS and its allelic fertile. RAPD marker linked to Ms gene in MDGMS was found using BSA and has been converted into sequence characterized amplified region (SCAR) marker to aid identification of male-fertility genotypes in segregating progenies of MDGMS in marker-assisted selection (MAS) breeding programs. After RAPD marker sequenced and blast, a homologous gene importinαwas found and its complete genomic DNA and cDNA of ORF was screened out from Brassica napus L. The RNAi vector and antisense RNA vector of importinαgene of rapeseed were constructed and were transformed into rapeseed. The primary results are as follow:
     1. The MDGMS flowers were characterized by reduced anthers with little withered or no pollen grains and no seed set was observed on selfing. The most prominent change in the male-sterile flowers was a distinct reduction in the length of the stamen filament. However, the gynoecium and nectary did not show any differences in sterile lines compared with that of allelic fertile ones. It can normally set seeds when the male-sterile pistil was pollinated with other fertile pollen, suggesting that the gynoecium of male-sterile was fertile.
     Expression of male sterility/fertility in two clones derived from a single plant was generally similar in field and greenhouse. These observations based on 48 cloned genotypes suggested that this GMS sterility was very likely controlled by a single dominant nuclear gene without environment effect.
     2. The microspore development course was observed by paraffin slices, autolysis of tapetal layer took place around the tetrads stage, therefore the nutrition was supplied for the development of the microspore. While in the MDGMS microspores abortion was found before the pollen mother cells meiosis stage, and the tetrads couldn’t be formed, then the contents of microspore leaked out, microspore lysis followed after, at last, sterility occurred. These results indicated that the MDGMS male sterility was caused by its development rather than autolysis of tapetal layer.
     3. The differences of protein expressing in buds between MDGMS and its allelic fertile line was detected at the same stage. The results showed that the quantity of detected protein dots in fertile line is more than that in MDGMS. The molecular weight of special proteins in fertile line is mainly below 60kD, especially below 30kD. While the ones in MDGMS are relative uniform. What the same between MDGMS and allelic fertile line is that the isoelectronic points (pI) of respectively special proteins are mainly in 6.0-7.5.
     4. Bulked segregation analysis (BSA) was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the Ms gene in MDGMS. Only one RAPD marker OPU031500 was found to closely link to the MDGMS locus in rapeseed. This RAPD marker OPU-031500 was cloned into a T-easy vector and sequenced. The sequence here obtained was highly homologous to one of the Arabidopsis DNA sequences. According to this DNA conserved region in different species, we designed a pair of specific primers SCP1/SCP2 and amplified only one specific 2.3kb DNA fragment in each bulk. There are some mutant loci between the two DNA fragments after sequencing. Both sequences are highly homologous to Arabidopsis Importinαgene. We designed another pair of specific primers SCP3 /SCP4 according to the DNA sequence at the mutant loci. A specific DNA segment was amplified only in the fertile line but not in the sterile line using the primers SCP3 and SCP4. Therefore the RAPD marker was converted into SCAR marker.
     5. The genomic DNA and cDNA of Importinαgene were cloned by PCR in MDGMS and allelic fertile line in Brassica napus L., including initiation codon ATG and termination codon TGA. The genomic DNA is 2620bp and 2614bp respectively, and cDNA is 1629bp and 1620bp respectively. There are some mutant loci in genomic DNA between MDGMS and allelic fertile line, but only two mutant loci in cDNA. Comparing on the genomic DNA and cDNA, Importinαgene of rapeseed (BIMP a) includes 10 exons and 9 introns.
     6. Comparing on the induced protein sequence by cDNA sequence between MDGMS and allelic fertile line, Importinαof rapeseed is composed of 542 amino acids, but 540 amino acids in MDGMS. Andαhelix andβturns of Importinαsecondary structure are less in MDGMS than that in allelic fertile line because of two QQ amino acid absence in MDGMS.
     Protein structure analysis (DNAstar) showed that rapeseed Importinαis consist of a flexible N-terminal Importin-β-binding (IBB) domain and a highly structured domain composed of eight armadillo (ARM) repeats and two HEAT repeats. ARM repeats are the Importinαclassical structural characters and HEAT repeats are Importinβclassical structural characters. So we designated it as BIMP a (Brassica napus Importinα, BIMP a).
     7. Rapeseed Importinαgene regulates not only oogamete development but also androgamete development. Gene knocking-down plants by RNAi and antisense RNA can’t set seeds on either selfing or crossing, indicating that both oogamete and androgamete are sterile. And the gene knocking-down plants are susceptible to downy mildew and virus diseases in comparison to wild type.
引文
[1] 李培武, 杨湄, 张文等. 我国油菜产品质量安全现状及对策[J]. 中国油料作物学报, 2004, 26(1): 84-88.
    [2] 潘家驹主编. 作物遗传育种总论[M].北京:中国农业出版社, 1995.
    [3] Sernyk R L and Stefansson B R. Heterosis in summer rape (Brassica napus L.) [J]. Can Jplant Sci, 1983, 63: 407-413
    [4] Grant I and Beversdorf W D. Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.)[J]. Can J Genet Cytol, 1985, 27: 472-478
    [5] Brandle J E, McVetty P B E. Geographical diversity, parrental selection and heterosis in oilseed rape [J]. Can J Plant Sci, 1990, 70: 935-940.
    [6] 管荣展,盖钧镒. 甘蓝型油菜杂种优势及其与亲本配合力和亲本系数间的关系[J].中国油料作物学报,1998, 20(4): 11-15
    [7] 沈金雄,傅廷栋,杨光圣. 双低甘蓝型油菜自交不亲和系杂种优势的研究[J].中国农业科学 2002,35:1060-1065
    [8] Yang G S, Duan Z H, Fu T D, Wu C S. A promising alternative way of utilizing pal CMS for hybrid breeding in Brassica napus L [A]. Proc 10th Int Rapeseed Cong (Canbera, Australia), 1999,73
    [9] Mohring S, Esch E, Wricke G. Breeding hybrid varitiles in winter rapeseed using recessively inherited self-incompatibility[A]. Proc. 10th Int. Rapeseed Cong. (Canberra, Ausiralia), 1999, 72
    [10] Girke A, Heiko C B, Gabriele M E. Resynthesized rapeseed as a new gene pool for hybrid breeding[A]. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 90.
    [11] 傅廷栋主编.杂交油菜的育种与利用(第二版)[M].武汉;湖北科学技术出版社,2000.
    [12] Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong[A]. Proc. 8th Int. Rapeseed Cong (Sasktoon Canada), 1991, 1: 2-5.
    [13] 李树林,钱玉秀,吴志华. 甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用[J].上海农业学报,1985, 1(2): 1-12.
    [14] 侯国佐.甘蓝型油菜隐性核不育系可育、不育型初花前后特性的观察[J]. 种子, 1991, 5: 29-33.
    [15] 潘涛,曾凡亚, 吴书惠. 甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究[J]. 中国油料,1988, 3: 5- 8.
    [16] 陈凤祥, 胡宝成, 李强生. 细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集[C].北京农业人学学报(增刊), 1993, 2: 20-25.
    [17] 傅廷栋,涂金星. 油菜杂种优势利用的现状与展望[A]. 见:刘后利主编,作物育种学论从[M]. 北京, 中国农业大学出版社, 2002.
    [18] 刘忠松,官春云,陈社员编著. 植物雄性不育机理的研究及应用[M].北京:中国农业出版社,2001
    [19] 李泽福; 夏加发; 唐光勇. 植物雄性不育类型及其遗传机制的研究进展[J]. 安徽农业科学, 2000, 28(6): 742-746.
    [20] 傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马雄性不育的选育与研究[J]. 华中农业人学学报,1989, 3: 201-207.
    [21] 陆光远. 日蓝型油菜显性细胞核雄性小育基因和抑制基因的分子标记及其应用[D]. 武汉,华中农业大学,2003.
    [22] Dao-Jie Wang, Ai-Guang Guo, Dian-Rong Li, et al. Cytological and molecular characterization of anovel monogenic dominant GMS(MDGMS)in rapeseed (Brassica napus L.)[J]. Plant Cell Reports, 2007 (DOI: 10.1007/s00299-006-0276-5).
    [23] 李殿荣. 甘蓝型油菜三系选育初报. 陕四农业科学[J]. 1980, 1: 26-29.
    [24] Ogura H. Studies on the new male sterility in Japanese radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed[J]. Men Fac Agric Kagoshima Univ, 1968, 6(2):39-78.
    [25] 李树林,钱玉秀,吴志华. 甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用[J]. 上海农业学报,1985, 1(2): 1-12.
    [26] 李树林,钱玉秀,吴志华. 甘蓝型油菜细胞核雄性不育性的遗传验证[J]. 上海农业学报,1986,2(2): 1-8.
    [27] 李树林,钱玉秀,周熙荣. 显性核不育油菜的遗传性[J]. 上海农业学报,1987,3(2): 1-8.
    [28] 李树林,周熙荣,钱玉秀. 显性核不育油菜的遗传与利用[J]. 作物研究,1990, 4(3):27-32
    [29] 陈凤祥,胡宝成,李成等. 甘蓝型油菜细胞核雄性不育的遗传研究-隐性核不育系9012A的遗传[J]. 作物学报,1998, 24(4): 22-26.
    [30] 杨光圣,傅廷栋. 油菜杂种优势利用的一条可能途径一细胞核十细胞质雄性不育[J]. 华中农业大学学报,1993,12(4):307-316.
    [31] 李加纳,湛利,唐章林等. 油菜细胞核+细胞质双重不育系选育初报[J]. 四川联合大学学报,1994, 16(4): 403-405.
    [32] 刘后利. 油菜的遗传与育种[M]. 上海: 上海科技出版社,1985.
    [33] 官春云,李拘,王国槐等. 化学杂交剂诱导油菜雄性不育机理的研究:I.杀雄剂1号对甘蓝型油菜花药毡绒层和花粉粒形成的影响[J].作物学报,1997, 23(5): 513-521
    [34] 官春云,李拘,王国槐等. 化学杂交诱导油菜雄性不育机理的研究:II .KMS-1对甘蓝型油菜育性的影响[J]. 中国油料作物学报,1998, 20(3): 1-4.
    [35] 王道杰,郭蔼光,李殿荣等. 油菜单显性核雄性不育基因的分子标记[J]. 植物生理与分子生物学报,2006,32(5):513-518.
    [36] McConn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant[J]. Plant Cell, 1996, 8: 403-416.
    [37] Sanders P M, Bui AQ, Weterings K, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11, 297-322.
    [38] Albertsen M C, Howard J A, Maddock S. Induction of male sterility in plants by expression of high levels of avidin. 1999, Patent number: 5962769, Issue date: Oct 5, 1999
    [39] 萨姆布鲁克 J, 拉塞尔 D W. 分子克隆实验指南(第三版)[M]. 黄培堂等译. 北京, 科学出版社, 2002.
    [40] 青海省门源农科所. 油菜天然杂交种增产显著[J]. 遗传与育种,1976, 6: 19.
    [41] 黄继英,庄顺琪. 白菜型油菜杂种优势利用的研究[J]. 中国油料,1980, 1: 38-42.
    [42] Thompson K F. Heterosis for yield in winter rape[J]. Plant breeding Institute Annual Report, 1972, 95-96
    [43] 四川南充地区农科所. 油菜杂种优势初步观察[J]. 油料作物科技,1976, 4: 14-15.
    [44] Engqvist G, Becker H C. Heterosis and epistasis in rapeseed estimated from generation means[J]. Euphylica, 1991, 59: 31-35.
    [45] Mathias R. A. new dominant gene for male sterility in rapeseed (Brassica Napus L.)[J]. ZPJlanzenzuchig,1985, 94: 170-173.
    [46] 黄邦全,罗鹏,吴书惠. 甘蓝型油菜雄性不育材料S90-8-7的获得及细胞学研究.湖北大学学报(自然科学版)[J],2000, 22(2): 182-184.
    [47] 王武萍,庄顺琪,董振生.卜白菜型油菜细胞核雄性不育三系选育研究[J]. 西北农业学报,1992, (1) :37 -40.
    [48] 董云麟,杜禾. 一个甘蓝型独菜显性核不育材料的选育及利用研究[J]. 西南农业学报,1993, 6(4 ): 6-10.
    [49] Aarts M G M ,Dirkse W G, Stiekema W J, et al. Transposon tagging of a male sterility gene in Arabidopsis[J]. Nature, 1993, 363: 715-717.
    [50] Hanley R W. Barnase and Barstar: two small proteins to fold and fit together[J]. Trends Biochem Sci, 1989, 14: 450-454.
    [51] Mariani C, Beckeleer M D, Truettner J,et al. Induction of male sterility in plant by a chimaericri bonuclease gene[J]. Nature, 1990, 347: 737-741.
    [52] Mariani C, Gossele V, De Beuckeleer M ,et al. A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature, 1992, 357: 384-387
    [53] 奥斯伯 F,布伦特 R,金斯顿 R E,等。精编分子生物学实验指南[M]。颜子颖,王海林译。北京,科学出版社,1998。
    [54] Worrall D, Hird D L. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco[J]. Plant Cell, 1992, 4: 759-771.
    [55] 胡胜武,于澄宇,赵惠贤等. 甘蓝型油菜新型不育材料Shaan-GMS的遗传研究[J]. 西北植物学报, 1999, 19 (6): 63-67.
    [56] 罗鸿源,何采平,黄泽素等. 杂交油菜选育研究1.S445A核不育两用系的选育[J]. 贵州农业科学, 1992, 5: 1-3.
    [57] 陈凤祥,胡宝成,李强生. 细胞核不育材料9012A的发现与初步遗传,全国植物雄性不育及杂种优势利用青年学术讨论会论文集[C]. 北京农业大学学报(增刊), 1993: 20-25. [58 ] 方宣钧,吴为人,唐纪良编著。作物DNA标记辅助育种[M]。北京:科学出版社,2002。
    [59] 余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察[J].武汉植物研究, 1990, 8: 209- 216
    [60] 王道杰, 王灏, 李殿荣等. 油菜雄性不育分子机理研究进展[J]. 中国农学通报, 2001, 2: 43-46.
    [61] 傅寿仲, 伍贻美. 甘兰型油菜细胞质雄性不育“三系”及其杂种一代花器官形态变异规律[J]. 中国油料, 1980, 3: 15-18.
    [62] 杨光圣,翟波,傅廷栋. 甘蓝型油菜显性细胞核雄性不育系宜3人花药发育的解剖学研究[J]. 华中农业大学学报,1999, 18 (5): 405-408.
    [63] 杨光圣,翟波,傅廷栋. 三个甘蓝型油菜隐性细胞核雄性不育系小抱子发生的细胞学观察[J]. 华中农业大学学报,1999,18 (6): 520-523.
    [64] Aarts M G M ,Dirkse W G, Stiekema W J, et al. Transposon tagging of a male sterility gene in Arabidopsis[J]. Nature, 1993, 363: 715-717.
    [65] Aarts M, Rachel H, Kriton K. The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/condensation complexs[J]. Plant J, 1997, 12 (3): 615-623.
    [66] Glover J, Grelon M, Craig S, et al. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis[J]. Plant J, 1998, 15 (3): 345-356.
    [67] 王关林,方宏钧。植物基因工程(第二版)[M]。北京,科学出版社,2002。
    [68] Yang M, Hu Y, Lodhi M,et al. The Arabidopsis SKPI-LIKE gene is essential for male meiosis and may control homologue separation[J]. P roc. Natl. Acad. Sci. U SA, 1999, 96: 11416-11421.
    [69] Schiefthater U, Balasubramanian S, Sieber P, et al. Molecular analysis of NOZZLE, a gene involved in patern formation and early sporogenesis during sex organ development in Arabidopsis thaliana[J]. Proc Natl. Acad. Sci. USA, 1999, 96: 11664-11669.
    [70]Wilson Z A, Morroll S M, Dawson J, et al. The Arabidopsis MALE STE RILITY(MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors[J]. Plant J, 2001, 28 (1): 27 -39.
    [71] Zhao D Z,Wang G F, Speal B, et al. The EXCESS MICROSPROCYTES gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes & Development, 2002, 16: 2021-2031.
    [72] Malek B V, Graaff E V D, Schneitz K, et al. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway[J]. Planta, 2002, 216: 187- 192.
    [73] Yang X H, Makarof C A, Ma H. The Arabidopsis MALE MEIOCYTE DEATH gene encodes a PHD-finger protein that is required for male meiosis[J]. Plant Cell, 2003, 15: 1281-1295.
    [74] Scoot R, Dagless E, Hodge R, et al. Patterns of gene expression in developing anthers of Brassica napus[J]. Plant Mol. Biol, 1991, 17: 195-207.
    [75] Theerakulpisut P H, Xu M B, Singh J, et al. Isolation and developmental expression of Bcpl, an anther-specific cDNA clone in Brassica campestris[J]. Plant Cell, 1991, 3: 1073-1082.
    [76] Albani D, Robert L S, Donaldson P A, et al. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development[J].. Plant Mol. Biol, 1990, 15: 605-622.
    [77] Hodge R, Paul W, Draper J. Cold plaque screening a simple technique for isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries[J]. Plant J, 1997, 2: 257-260.
    [78] 李德谋,侯磊,罗小英等. 甘蓝型油菜隐性核不育两用系S45AB中与MS2 Bnap基因同源片段的克隆及序列分析[J]. 作物学报,2002, 28(1): 1-5.
    [79] 周熙荣,李树林,周志疆等. 甘蓝型(Brassica napus L.)显性核不育双低油菜杂交新品种核杂3号的选育[J]. 上海交通大学学报, 2003, 21(4): 304-308.
    [80] 侯国佐,工华,张瑞茂. 甘蓝型油菜细胞核雄性不育材料117A 的遗传研究[J]. 中国油料,1990, 12(2): 7-11.
    [81] 程勇. 甘蓝型油菜显性核不育基因的AFLP标记及品种(系)的SSR指纹图谱研究[D]. 武汉,中国农业科学院油料所,2005.
    [82] 王华,汤小华,赵继献. 甘蓝型油菜核不育材料H90s的遗传研究[J]. 中国油料作物学报,2001, 23 (4): 11-15.
    [83] 杨光圣,傅廷栋,马朝芝. 甘蓝型油菜显性细胞核+波里马细胞质雄性不育三系的创建[J]. 华中农业大学学报,1996, 15(3): 215-220.
    [84] 周永明. 甘蓝型油菜轮回选择研究. I.向不同细胞质来源的基因型中导入显性核不育基因[J].作物学报,1993, 19(1): 70-76.
    [85] 贺华良. 甘蓝型油菜细胞核雄性不育的基因表达研究[D]. 武汉,华中农业大学,2003。
    [86] Carck M S主编。植物分子生物学-实验手册[M]。顾红雅,瞿礼嘉主译。北京,高等教育出版社,1998.
    [87] Snowdon R J, Kohler W, Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids[J]. Theor Appl Genet, 1997, 95: 1320-1324.
    [88] Ulrike Bellin, Heiko C, Becker. Evaluation B-genome intergration in Brassica napus with GISH[C]. Proceeding of the 10th international Rapeseed Congress, Canberra, Australia, 1999.
    [89] Attia T, Robbelen G. Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Canadian journal of genetics and cytology,1986, 28: 323-329.
    [90] Lagercrantz U, Lydiate D J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses[J]. Genome, 1995, 38: 255-264.
    [91] 郑晓飞主编。RNA实验技术手册[M]。北京,科学出版社,2004.
    [92] Amnon Harel, Douglass J. Importin Beta: Conducting a Much Larger Cellular Symphony[J]. Molecular Cell, 2004, 16: 319–330.
    [93] Fried H, Kutay U. Nucleocytoplasmic transport: taking an inventory[J]. Cell. Mol. Life Sci., 2003, 60: 1659-1688.
    [94] Macara, I.G. Transport into and out of the nucleus[J]. Microbiol. Mol. Biol. Rev. 2001, 65: 570–594.
    [95] Jakel S, Gorlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells [J]. EMBO J. 1998,17: 4491–4502.
    [96] Mosammaparast N, et al. Nuclear import of histone H2A and H2B is mediated by a network of karyopherins[J]. J. Cell Biol., 2001, 153: 251–262.
    [97] Muhlhausser P, et al. Multiple pathways contribute to nuclear import of core histones[J]. EMBO Rep. 2001, 2: 690–696.
    [98] Strawn, L.A. et al. Minimal nuclear pore complexes define FG repeat domains essential for transport[J]. Nat. Cell Biol. 2004, 6: 197–206.
    [99] David S G, Anita H C, D Adam Mason, et al. Importin α: a multipurpose nuclear-transport receptor[J]. TRENDS in Cell Biology, 2004, 14(9): 505-514.
    [100] Fontes M R, et al. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha[J]. J. Mol. Biol. 2000, 297: 1183–1194
    [101] Herold, A. et al. Determination of the functional domain organization of the importin alpha nuclear import factor[J]. J. Cell Biol. 1998, 143, 309–318.
    [102] Conti E, et al. () Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha[J]. Cell, 1998, 94: 193–204.
    [103] Gorlich D, et al. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus[J]. EMBO J. 1996, 15: 1810–1817.
    [104] Weis K, et al. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import[J]. EMBO J. 1996, 15: 1818–1825.
    [105] Moroianu J, et al. The binding site of karyopherin alpha for karyopherin beta overlaps with a nuclear localization sequence[J]. Proc. Natl. Acad. Sci. USA. 1996, 93: 6572–6576
    [106] Fanara, P. et al. Quantitative analysis of nuclear localization signal (NLS)-importin alpha interaction through fluorescence depolarization. Evidence for auto-inhibitory regulation of NLS binding[J]. J. Biol. Chem. 2000, 275: 21218–21223.
    [107] Kobe B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha[J]. Nat. Struct. Biol. 1999, 6: 388–397.
    [108] Egea P F, et al. Substrate twinning activates the signal recognition particle and its receptor[J]. Nature 2004, 427: 215–221.
    [109] Harreman M T, et al. The auto-inhibitory function of importin alpha is essential in vivo[J]. J. Biol. Chem. 2003, 278: 5854–5863.
    [110] Gilchrist D, et al. Accelerating the rate of disassembly of karyopherin.cargo complexes[J]. J. Biol. Chem. 2002, 277: 18161–18172.
    [111] Gilchrist D, Rexach M. Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm[J]. J. Biol. Chem. 2003, 278: 51937–51949.
    [112] Rexach M, Blobel G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins[J]. Cell 1995, 83: 683–692.
    [113] Kutay U, et al. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor[J]. Cell 1997, 90: 1061–1071.
    [114] Hood J K, Silver P A. Cse1p is required for export of Srp1p/importin-alpha from the nucleus in Saccharomyces cerevisiae[J]. J. Biol. Chem. 1998, 273: 35142–35146.
    [115] Solsbacher J, et al. Cse1p is involved in export of yeast importin alpha from the nucleus[J]. Mol. Cell. Biol. 199818, 6805–6815
    [116] Solsbacher J, et al. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha. [J]. Mol. Cell. Biol. 2000, 20: 8468–8479.
    [117] Mason D A, et al. Drosophila melanogaster importin alpha1 and alpha3 can replace importin alpha2 during spermatogenesis but not oogenesis[J]. Genetics, 2002, 161: 157–170.
    [118] Giarre M, et al. Patterns of importin-alpha expression during Drosophila spermatogenesis[J]. J. Struct. Biol. 2002, 140: 279–290.
    [119] Torok I, et al. The overgrown hematopoietic organs-31 tumor suppressor gene of Drosophila encodes an importin-like protein accumulating in the nucleus at the onset of mitosis[J]. J. Cell Biol. 1995, 129: 1473–1489.
    [120] Gorjanacz M, et al. Importin-alpha 2 is critically required for the assembly of ring canals during Drosophila oogenesis[J]. Dev. Biol. 2002, 251: 271–282.
    [121] Mason D A,et al. The Drosophila melanogaster importin alpha3 locus encodes an essential gene required for the development of both larval and adult tissues[J]. Genetics 2003, 165: 1943–1958.
    [122] Fang X, et al. Developmental regulation of the heat shock response by nuclear transport factor karyopherin-alpha3[J]. Development, 2001, 128: 3349–3358.
    [123] Geles K G, Adam S A. Germline and developmental roles of the nuclear transport factor importin alpha3 in C. elegans[J]. Development, 2001, 128: 1817–1830.
    [124] Askjaer P, et al. Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos[J]. Mol. Biol. Cell, 2002, 13: 4355–4370.
    [125] Geles K G, et al. A role for Caenorhabditis elegans importin IMA-2 in germ line and embryonic mitosis[J]. Mol. Biol. Cell, 2002, 13: 3138–3147.
    [126] Loeb J D, et al. The yeast nuclear import receptor is required for mitosis[J]. Proc. Natl. Acad. Sci.USA., 1995, 92: 7647–7651.
    [127] Kussel P, Frasch M. Yeast Srp1, a nuclear protein related to Drosophila and mouse pendulin, is required for normal migration, division, and integrity of nuclei during mitosis[J]. Mol. Gen. Genet. 1995, 248: 351–363.
    [128] Tabb M M, et al. Evidence for separable functions of Srp1p, the yeast homolog of importin alpha (Karyopherin alpha): role for Srp1p and Sts1p in protein degradation[J]. Mol. Cell. Biol. 2000, 20: 6062–6073.
    [129] Yano R, et al. Yeast Srp1p has homology to armadillo/plakoglobin/ beta-catenin and participates in apparently multiple nuclear functions including the maintenance of the nucleolar structure[J]. Proc. Natl. Acad. Sci. USA. 1994, 91: 6880–6884.
    [130] Walther T C, et al. RanGTP mediates nuclear pore complex assembly[J]. Nature, 2003, 424: 689–694.
    [131] Harel A, et al. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol. Biol. Cell, 2003, 14: 4387–4396.
    [132] Hachet V, et al. Importin alpha associates with membranes and participates in nuclear envelope assembly in vitro. EMBO J. 2004, 23: 1526–1535.
    [133] Gruss O J, Carazo-Salas R E, Schatz C A, et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity[J]. Cell, 2001, 104: 83–93.
    [134] Nachury M V, Maresca T J, Salmon W C, et al. Importin beta is a mitotic target of the small GTPase Ran in spindle assembly[J]. Cell, 2001, 104: 95–106.
    [135] Wiese C, Wilde A, Moore M S, et al. Role of importin-beta in coupling Ran to down stream targets in microtubule assembly[J]. Science, 2001, 291: 653–656.
    [136] Du Q, Taylor L, Compton D A, et al. LGN blocks the ability of NuMA to bind and stabilize microtubules: a mechanism for mitotic spindle assembly regulation[J]. Curr. Biol. 2002, 12: 1928–1933.
    [137] Schatz C A, Santarella R, Hoenger A, et al. Importin alpha-regulated nucleation of microtubules by TPX2[J]. EMBO J. 2003, 22: 2060–2070.
    [138] Ems-McClung S C, Zheng Y, Walczak C E. Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal[J]. Mol. Biol. Cell, 2004, 15: 46–57.
    [139] Kahana J A, Cleveland D W. Beyond nuclear transport. Ran-GTP as a determinant of spindle assembly[J]. J. Cell Biol. 1999, 146: 205–210.
    [140] Dasso M. The Ran GTPase: theme and variations[J]. Curr. Biol. 2002, 12: R502–R508.
    [141] Guarguaglini G, Renzi L, D’Ottavio F, et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo[J]. Cell Growth Differ. 2000, 11: 455–465.
    [142] Wilde A, Lizarraga S B, Zhang L, et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities[J]. Nat. Cell Biol. 2001, 3: 221–227.
    [143] Dao-Jie Wang, Ai-Guang Guo, Dian-Rong Li, et al. Cytological and molecular characterization of a novel monogenic dominant GMS(MDGMS)in rapeseed (Brassica napus L.) [J]. Plant Cell Reports, 2006 (DOI: 10.1007/s00299-006-0276-5).
    [144] 龚仁才.甘蓝型油菜(B napus L.)细胞核雄性不育系杂种“中杂3号”的选育和遗传分析[J]. 作物研究,1990, 4( 3): 5-8.
    [145] 王道杰,田建华,王灏等. 油菜单显性核不育及其不育基因的RAPD标记[J]. 西北植物学报,2003, 23(9): 1556-1560.
    [146] Paul M. Sanders et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutanls[J]. Sexual Plant Reproduction,1999, 11:297-322.
    [147] 汉农 G J主编。RNAi-基因沉默指南[M]。北京,化学工业出版社,2004。
    [148] Kaul M L H. Male sterility in higher plants[M]. Berlin, Spring Verlag, 1988:78 -96
    [149] 肖德兴. 马尾松花粉中的淀粉粒和胼胝质[J]. 实验生物学报,1994, 27: 37-4.
    [150] 吕世友,李严舫,陈祖铿. 花粉发育的研究进展[J]. 植物学通报, 2001, 18 (3): 340-346.
    [151] 李正理. 植物制片技术[M]. 北京:科学出版社,1987.
    [152] Scoles G J, Evans L E. Pollen Development in Male Fertile and Cytoplasmic Male Sterile Rye[J]. Can J Bot, 1979, 57: 2782-2790.
    [153] Li R Q. Cytological Studies on Genetic Male Sterile of Several Crops[J]. Journal of Wuhan University (Natural Science Edition). 1978(1): 83-96.
    [154] Li X F, Wang H G.. Cytological characteristic on microsporogenesis and male gametophyte development of (Triticale/Triutileymus)F1[J]. Acta Bot Boreal-Occident Sin, 2002, 22(4): 766-770.
    [155] Laser K D, Lersten N R. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms [J]. Bot. Rev., 1972, 38:427-454.
    [156] 夏其昌,曾嵘. 蛋白质化学与蛋白质组学[M]. 科学出版社, 2004.
    [157] Gould K L, Ren L, Feoktistova A S, et al. Tandem affinity purification and identification of protein complex components[J]. Methods, 2004, 33(3): 239-244.
    [158] Causier B. Studying the interactome with the yeast two-hybrid system and mass spectrometry[J]. Mass Spectrom. Rev, 2004, 23(5): 350-367.
    [159] Komatsn S, Kajiwara H, Hirano H. A rice protein library: a data-file of rice proteins separated by. two-dimensional electrophoresis[J]. Theor. Appl. Genet, 1993, 86: 935-942.
    [160] Tsugita A, Kawakami I, Uchiyanma Y, et al. Separation and characterization of rice proteins[J]. Electrophoresis, 1994,15:708-720.
    [161] Zhong B, Karibe H, Komatsu S, et al. Screening of rice genes from a cDNA catalog based on the sequence data-file of proteins sepatated by two-dimensional electrophoresis[J]. Breeding Sci, 1997, 47: 245-251.
    [162] Imin N, Kerim T, Weinman J J, Rolfe B G. Characterization of rice anther proteins expressed at the young microspore stage[J]. Proteomics, 2001, 1:1149-1161.
    [163] Woo SH, Fukuda M, Islam N, et al. Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis[J]. Electrophoresis, 2002, 23:647-654.
    [164] Ramani S S K. Apte. Transient expression of multiple genes in salinity-stress young seedlings of rice (Oryza sativa L.) cv. bura rata[J]. Biochemical and Biophysical Reaearch Communications,1997, 233: 663-667.
    [165] Shen S, Jing Y, Kuang T. Proteome Approach to Identify Wound-Respnse Related Proteins from Rice Leaf Sheath[J]. Proteomics, 2003, 3(4): 527-535.
    [166] Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green andetiolated shoots of rice: Towards a rice proteome[J]. Electrophoresis, 1999a, 20:630-636.
    [167] Komatsu S, Rakwal R, Li Z. Separation and characterization of proteins in rice (Oryza sativa) suspension cultured cells[J]. Plant Cell Tissue and Organ Culture. 1990b, 55:183-192.
    [168] 朱宏,王继华,王同昌. 小麦 T 型细胞质雄性不育系与可育系叶片蛋白质双向电泳分析[J]. 植物研究, 2004, 24(3): 339-342.
    [169] 胡胜武. 甘蓝型油菜新型核不育材料 Shaan-GMS 的遗传及核不育的分子机制研究[D]. 陕西杨陵,西北农林科技大学,2003.
    [170] Delourme R, Bouchereau A, et al. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.) [J]. Theor Appl Genet. 1994.88:741-748.
    [171] Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility genes for ‘Polima’ cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers[J]. Theor Appl Genet.1998.97:431-438.
    [172] Wang J X, Yang G S, Fu T D, et al. Development of PCR-based markers linked to the fertility restorer gene for the Polima CMS in rapeseed (Brassica napus L.) [J]. Acta Genetica Sinica, 2000, 27(11): 1012-1017
    [173] 涂金星,郑用琏,傅廷栋. 甘蓝型油菜核不育材料育性基因的 RAPD 标记[J]. 华中农业人学学报,1997, 16(2): 112-117.
    [174] 干滟, 竹凡亚,赵云. 甘蓝型油菜"79.9"细胞核雄性不育基因 RAPD 分子标记初步研究[J]. 西南农业学报,1999, 12: 111-115.
    [175] 蒋梁材,蒲晓斌,王瑞等. 甘蓝型油菜核不育基因的 RAPD 标记[J]. 中国油料作物学报,2000, 22(2): 1-4.
    [176] 陆光远,杨光圣,傅廷栋. 甘蓝型油菜显性细胞核雄性不育基因的 AFLP 标记[J]. 作物学报,2004, 30(2): 104-107.
    [177] 刘定富. 植物显性核不育恢复性遗传的理论探讨[J]. 遗传,1992, 14 (6): 31 -36.
    [178] Ma S M, Wang YF. Progresses of study on the DNA locus related to cytoplasmic male sterility and restorer gene for fertility in rapeseed[J]. J Plant Physiol Mol Biol. 2005, 31(2): 119-125.
    [179] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis[J]. Nucleic Acids Rec, 1991, 19: 1349.
    [180] Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/Exp 3.0[M]. Cambridge: Whitehouse Institute, Whitehead Institute Technical Report, 3rd ed. 1992.
    [181] Shi Y G, Zheng Y L, Li J S, et al. Mapping CMS-S restores gene Rf3 with RFLP and RAPD[J]. Acta Agron Sin, 1997, 23(1): 1-6.
    [182] Jorgensen R A. A hybrid seed production method based on synthesis of novel linkages between marker and male-sterile genes[J]. Crop Sci..1987, 27: 806-810.
    [183] 王灏, 王道杰, 谭小力等. 用于 RAPD 分析的油菜总 DNA 的快速提取[J]. 西北农业学报, 2001, 10 (3): 32- 34.
    [184] 张在宝. 拟南芥雄性不育突变体遗传分析及相关基因的克隆[D]. 上海, 上海师范大学, 2004.
    [185] Creelman R A, Mullet J E..Biosynthesis and action of jasmonates in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 355-381.
    [186] Ishiguro S, Akiko K O, Junichi U, Okada K. The DEFECTIVE IN ANTHER DEHISCENCE1 geneencodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis[J]. Plant Cell, 2001, 13: 2191-2209.
    [187] Sanders P M, Lee P Y, Beals T P, Goldberg R B. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway[J]. Plant Cell, 2000, 12: 1041-1061.
    [188] Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 1,2-oxophytodienoic acid reductase required for jasmonate synthesis[J]. PNAS, 2000, 97: 10625-10630.
    [189] Park J H, Halitschke R, Kim H B, Feyereisen R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis[J]. Plant J, 2002, 31: 1-12.
    [190] Tsuji, L. et al. Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue-specific expression[J]. FEBS Lett. 1997, 416, 30–34.
    [191] Nachury, M.V. et al. Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor[J]. Proc. Natl. Acad. Sci. USA. 1998, 95: 582–587.
    [192] Malik, H.S. et al. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl. Acad. Sci. USA. 1997, 94: 13738–13742. []193] Kohler, M. et al. Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family[J]. FEBS Lett. 1997, 417: 104-108.
    [194] Kohler, M. et al. Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import[J]. Mol. Cell. Biol. 1999, 19: 7782–7791.
    [195] Mathe, E. et al. Importin-alpha3 is required at multiple stages of Drosophila development and has a role in the completion of oogenesis[J]. Dev. Biol. 2000, 223: 307–322.
    [196] Stefan Hubner, Harley M. S. Smith, Wei Hu, et al. Plant importin α binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin β[J]. The Journal of Biological Chemistry, 1999, 274, 32: 22610–22617.
    [197] Izomt J, Weintranb H. Inhibition thythidine kinase gene expression by antisense RNA: a theleculat approach to genetic analysis[J]. Cell, 1984, 36:1007-1015.
    [198] Napoli C, Lemieux C, Jorgensen R. Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J ]. Plant Cell, 1990, 2: 279-283.
    [199] Cogonic C, Romano N, Macino G. Suppression of gene expression by homologous transgenes[J] . Antonie Van Leeuwenhoek, 1994, 65: 205-209.
    [200] Guo S, Kemphues K J. Par-1, a gene required for establishing polarity in C. elegant embryos, encodes a putative Ser/ Thr kinase that is asymmetrically distributed[J ] . Cell, 1995, 81: 611-620.
    [201] Fire A. Potent and specific genetic interference by double2stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391: 806-811.
    [202] Chuang C F. Meyerowite E M. Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2000, 97:4985-4990.
    [203] Meilan R, Brunner A M, Skmner J S, et al. Modification of flowering in transgenic trees[A]. Morohoshi N, Komamine A. Molecular Breeding of Woody Plants[C]. The Netherlands: Elsevier Sci H V, 2001 41: 247-256.
    [204] McClure H A, Haring V, Ebert Y R, et al. Style self-incompatibility products of Nicotiana alata are ribonucleases[J]. Nature, 1989, 342: 955-957.
    [205] Kondo K,Yamrunoto M, Itahash R, et al. Insights into the evolution of self-compatibility in Lycopersicon from a study of stylar factors [J]]. Plant J, 2002, 30: 143--154.
    [206] Kondo K, Yamamoto M, Matton D P, et al. Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self-incompatibility[J]. Plant J, 2002, 29: 627-636.
    [207] O'Brien M, Kapfer C, Major G, et al. Molecular analysis of the stylar-expressed Solanum chacoense small asparagines-rich protein family related to the HT modifier of gametophytic sell-incompatibility in Nicoteana[J]. Plant J, 2002, 32(6) : 985-993.
    [208] Waterhouse P ,Wang MB. Exploring plant genomes by RNA -induced gene silencing[J] . Nature Genet ,2003 ,4 :29-38.
    [209] Klink V P, Wolnak SM. The efficacy of RNAi in the study of the plant cytockeleton. [J]. Plant Physiology, 2003, 131: 1165-1168.
    [210] Stout S C, Clark G B, Archer- Evans S. Rapid and efficient suppression of gene expression in a single cell model system, Ceratopteris richardii [J ]. Plant physiology, 2003, 131: 1165-1168.
    [211] Bezanilla M, Pan A ,Quatrano R. RNA interference in the moss Physcomitrella patens[J]. Plant physiol, 2003, 133: 470-474.
    [212] Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient , effective and high - throughput gene silencing in plants[J ]. Plant Journal, 2001, 27(6): 581-590.
    [213] Fraser A G, Kamath R S, Zipperlen P, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference[J]. Nature, 2000, 408: 325-330.
    [214] Gonczy P, Echeverri C, Oegema K, et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III[J]. Nature 2000, 408: 331-336.
    [215] Merkle T. Nuclear import and export of proteins in plants: a tool for the regulation of signalling[J]. Planta, 2001, 213: 499–517.
    [216] Haasen D, Merkle T. Characterization of an Arabidopsis homologue of the nuclear export receptor CAS by its interaction with Importin α[J]. Plant Biol, 2002, 4: 432–439.
    [217] Kohler M, Speck C, Christiansen M, et al. Evidence for distinct substrate specificities of Importin a family members in nuclear protein import[J]. Mol Cell Biol 1999, 19:7782–7791.
    [218] Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signaling[J]. Curr Genet, 2004, 44: 231–260.
    [219] Palma K, Zhang Y, Li X. An Importin α homolog, MOS6, plays an important role in plant innate mmunity[J]. Current Biology, 2005, Vol. 15, 1129–1135.
    [220] Zhang Y, Li X. MOS3, encoding a putative Nucleoporin 96, is required for both basal defense and constitutive resistance responses mediated by snc1[J]. Plant Cell, 2005, 17: 1306–1316.
    [221] Wall SJ, Edward DR. Quantitative reverse transcription-polymerase chain reaction (RT-PCR): A comparison of prime-dropping, competitive, and real-time RT-PCRs[J]. Anal Biochem. 2002, 300: 269-273.
    [222] Schmittgen TD. Real-time quantitative PCR[J]. Methods. 2001, 25: 383-385.
    [223] Willard M, Freeman, Stephen J, et al. Quantitative RT-PCR: Pitfall and Potential[J]. Bio Techniques, 1999, 26:112-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700