钯催化羧基(酯基)及三氟甲基参与的新型C-C键构建的偶联反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以2-吡啶甲酸为原料通过脱羧交叉偶联反应,实现了2-吡啶芳(杂)基化;完成了芳(杂)基硼酸酯及其衍生物的叔丁氧羰基化反应,合成了一系列芳(杂)基叔丁醇酯;在硝酸银存在的条件下,以TMS-CF3为原料,实现了吡啶氮氧化物的三氟甲基化。
     1.通过钯催化的2-吡啶甲酸与溴代芳烃的脱羧交叉偶联实现2-吡啶的芳(杂,苄)基化反应
     以廉价稳定的2-吡啶甲酸和溴代芳烃为反应底物、5mol%PdCl2为催化剂,6mol%的BINAP作为配体,以K2CO3作为碱,DMA为溶剂,在少量亚铜存在的条件下实现了2-吡啶芳(杂)基化,并用该催化体系合成了一系列的2-芳基吡啶的衍生物。研究发现该催化体系几乎不受取代基团的电子效应的影响。该反应同样适用于2-杂芳类吡啶,可以得到较好收率的目标产物(Scheme1)。Scheme1Decarboylative cross-coupling reactions of2-picolinic acid
     2.通过钯催化的芳(杂)基硼酸酯及其衍生物与BOC酸酐偶联反应实现的芳(杂)环的叔丁氧羰基化
     以芳(杂)基硼酸酯及其衍生物和BOC酸酐为原料,醋酸钯为催化剂,三苯基膦为配体,二氧六环为反应溶剂,通过偶联反应实现了芳(杂)环的叔丁氧羰基化,避免了一氧化碳的使用,为羧酸的合成提供了一个新思路。该催化体系有很好的稳定性和广泛的适用性。底物无毒适用性好,而且廉价易得。反应操作简单,环境友好,专一性强,可以得到中等到高的收率。一系列含有苯基,吡啶,以及喹啉的硼酸或硼酸酯都适用于该催化体系(Scheme2)。Scheme2Preparation of tert-butyl esters via Pd-catalyzed tert-butoxycarbonylation
     3.通过Ag促进的吡啶氮氧化物α-H的活化实现2-吡啶氮氧化物的三氟甲基化反应
     以TMSCF3(Rupper-Prakash试剂)为原料,在Ag存在的条件下,与吡啶氮氧化物的α位反应,生成2-三氟甲基吡啶氮氧化物及其衍生物。需要指出的是,该反应不同于Prakash试剂的常见的亲核取代反应。该方法通过自由基反应机理引入三氟甲基,定位效应好、反应条件温和、操作方便(Scheme3)。Scheme3Ag promoted trifluoromethylation of pyridine nitrogen oxides
In this thesis, the novel palladium-catalyzed decarboxylative cross-coupling reactions of2-picolinic acid with aryl-and heteroaryl-bromides including benzenes, naphthalenes, pyridinesand quinolines for C-C bond formation has been successfully achieved. A series of tert-butylesters (Ester tert-butoxide) was synthesised via the palladium-catalyzed alkoxycarbonylreactions of boronic acid or boronic acid pinacol esters with di-tert-butyl dicarbonate. A novelmethod has been developed for the preparation of2-trifluoromethyl pyridine and derivative fromthe reaction of pyridine nitrogen oxides with TMS-CF3under mild reaction conditions.
     1. Arylation of2-Substituted pyridines via Pd-Catalyzed Decarboxylative Cross-CouplingReactions of2-Picolinic acid
     A novel synthetic route to2-aryl-and heteroaryl-pyridines was discovered and developedvia the palladium-catalyzed decarboxylative cross-coupling reactions of2-picolinic acid witharyl-and heteroaryl-bromides using5mol%PdCl2as catalyst,6mol%BINAP as ligand,K2CO3as base, DMA as solvent. In addition, a series of substituted2-aryl-and heteroaryl-pyridines compounds including benzenes, naphthalenes, pyridines and quinolines were suitablefor this reaction (Scheme1).Scheme1Decarboylative cross-coupling reactions of2-Picolinic acid
     2. Preparation of tert-Butyl Esters via Pd-catalyzed tert-Butoxycarbonylation ofAryl(hetero) Boronic Acid Derivatives
     A novel one-step route to aryl (heteroaryl) tert-butyl esters was developed via thepalladium-catalyzed cross-coupling reactions of boronic acid or boronic acid pinacol esters with di-tert-butyl dicarbonate. The cross-coupling reactions can produce up to94%yields desiredproducts by using palladium acetate and triphenylphosphine as catalyst system, dioxane as asolvent. In the reaction, cheaper, greener and non-toxic di-tert-butyl dicarbonate has been usedcompared to traditional tert-butyloxycarbonylation method. Moreover, a wide range of substratesincluding benzenes, pyridines and quinolines boronic acids or boronic acid pinacol esters can fitthis system as well.(Scheme2).Scheme2Preparation of tert-butyl esters via Pd-catalyzed tert-butoxycarbonylation
     3. Ag Promoted Trifluoromethylation of Pyridine Nitrogen Oxides via α-H of PyridineNitrogen Oxides Activation
     A novel method has been developed for the preparation of2-trifluoromethyl pyridinederivatives from the reaction of pyridine nitrogen oxides with TMS-CF3under mild conditions. Itis worthy to note that the reaction could be carried on in the presence of F-resouce and Ag+. Thecorresponding products were obtained in good selectivity (Scheme3).Scheme3Ag promoted trifluoromethylation of pyridine nitrogen oxides
引文
[1] a) Heck R. F., Negishi E., Suzuki A.. The Nobel Prize in Chemistry2010[G], NobelPrize.org.,2010-10-06.
    [2] The paradigm for C-C bond formation to assemble complex molecular frameworks, see:a) de Meijere A., Diederich F., Metal-Catalyzed Cross-Coupling Reactions[M],2nd CompletelyRevised and Enlarged ed., Vol.2; Wiley-VCH: Weinheim, Germany,2004.b) de Meijere A., Diederich F., Eds. Metal-Catalyzed Cross-Coupling Reactions[M],2ndCompletely Revised and Enlarged ed., Vol.1; Wiley-VCH: Weinheim, Germany,2004.c) Diederich F., Stang P. J., Eds. Metal-Catalyzed Cross-Coupling Reactions[M], Wiley-VCH:Weinhein, Germany,1998.d) Knochel P., Leuser H., Gong L. Z., et al. Chem. Organozinc Compd[M]. John Wiley&Sons,2006,287.e) Knochel P., Leuser H., Gong L.Z., et al. Polyfunctional zinc organometallics for organicsynthesis, Handbook of Functionalized Organometallics: Applications in Synthesis[M]; KnochelP., Ed., Wiley-VCH: Weinheim, Germany,2005; Vol.1.f) Fouquet E., Herve A., Polyfunctional tin organometallics for organic synthesis, Handbook ofFunctionalized Organometallics: Applications in Synthesis[M]; Knochel P., Ed., Wiley-VCH:Weinheim, Germany,2005; Vol.1.g) Shimizu M., Hiyama T., Polyfunctional silicon organometallics for organic synthesis,Handbook of Functionalized Organometallics: Applications in Synthesis[M]; Knochel P., Ed.,Wiley-VCH: Weinheim, Germany,2005; Vol.1.h) Knochel P., Krasovskiy A., Sapountzis I., Polyfunctional magnesium organometallics fororganic synthesis, Handbook of Functionalized Organometallics: Applications in Synthesis[M];Knochel P., Ed., Wiley-VCH: Weinheim, Germany,2005; Vol.1.i) Knochel P., Ila H., Korn T. J., et al. Functionalized organoborane derivatives in organicsynthesis, Handbook of Functionalized Organometallics[M]: Applications in Synthesis[M];Knochel P., Ed., Wiley-VCH: Weinheim, Germany,2005; Vol.1.j) Stephenson G. R., Polyfunctional electrophilic multihaptoorganometallics for organic synthesis,Handbook of Functionalized Organometallics: Applications in Synthesis[M]; Knochel P., Ed.,Wiley-VCH: Weinheim, Germany,2005; Vol.2.
    [3] a) Yin L. X., Liebscher J., Carbon-Carbon Coupling Reactions Catalyzed by HeterogeneousPalladium Catalysts[J]. Chem. Rev.,2007,107:133~173.b) Wu Y. J., Song M. P., Zhang J. L., et al. Cyclopalladated Ferrocenylimines: Highly ActiveCatalysts for Suzuki-Miyaura Reaction[J]. ARKIVOC,2004, ix:111~121.c) Miyaura N., Suzuki A., Palladium-Catalyzed Cross-Coupling Reactions of OrganoboronCompounds[J]. Chem. Rev.,1995,95:2457~2483.d) Roglans A., Pla-Quintana A., Moreno-Ma as M., Diazonium Salts as Substrates inPalladium-Catalyzed Cross-Coupling Reactions[J]. Chem. Rev.,2006,106:4622~4643.
    [4] Rosen B. M., Quasdorf K. W., Wilson D. A., et al. Nickel-Catalyzed Cross-CouplingsInvolving Carbon-Oxygen Bonds[J]. Chem. Rev.,2011,111:1346~1416.
    [5] Fanta P. E., The Ullmann Synthesis of Biaryls[J]. Synthesis,1974,(1),9~21.
    [6] a) Jana R., Pathak T. P., and Sigman M. S., Advances in Transition Metal (Pd,Ni,Fe)-CatalyzedCross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners[J]. Chem. Rev.,2011,111:1417~1492.b) Boorman T. C., Larrosa I., Gold-mediated C–H bond functionalisation[J]. Chem. Soc. Rev.,2011,40:1910~1925.
    [7] Netherton M. R., Fu G. C., Suzuki Cross-Couplings of Alkyl Tosylates that Possess βHydrogen Atoms: Synthetic and Mechanistic Studies[J]. Angew. Chem. Int. Ed.,2002,41:3910~3912.
    [8] Anderson T. J., Jones G. D., Vicic D. A., Evidence for a Ni(I) Active Species in the CatalyticCross-Coupling of Alkyl Electrophiles[J]. J. Am. Chem. Soc.,2004,126:8100~8101.
    [9] Jones, G. D., McFarland C., Anderson T. J., et al. Analysis of key steps in the catalyticcross-coupling of alkyl electrophiles under Negishi-like conditions[J]. Chem. Commun.,2005,33:4211~4213.
    [10] Frisch A. C., Beller M., Catalysts for Cross-Coupling Reactions with Non-activated AlkylHalides[J]. Angew. Chem. Int. Ed.,2005,44:674~688.
    [11] Tsuji J., Palladium in Organic Synthesis[M], Topics in Organometallic Chemistry, Springer,Berlin,2005, Vol.14.
    [12] Netherton M. R., Fu G. C., Nickel-Catalyzed Cross-Couplings of Unactivated Alkyl Halidesand Pseudohalides with Organometallic Compounds[J]. Adv. Synth. Catal.,2004,346:1525~1532.
    [13] Cárdenas, D. J., Towards Efficient and Wide-Scope Metal-Catalyzed Alkyl–AlkylCross-Coupling Reactions[J]. Angew. Chem., Int. Ed.,1999,38:3018~3020.
    [14] Cárdenas, D. J., Advances in Functional-Group-Tolerant Metal-Catalyzed Alkyl–AlkylCross-Coupling Reactions[J]. Angew. Chem., Int. Ed.,2003,42:384~387.
    [15] Zou G., Reddy Y. K., Falck J. R., Ag(I)-promoted Suzuki–Miyaura cross-couplings ofn-alkylboronic acids[J]. Tetrahedron Lett.,2001,42:7213~7215.
    [16] a) Braga A. A. C., Morgon N. H., Ujaque G., et al. Computational Characterization of theRole of the Base in the Suzuki Miyaura Cross-Coupling Reaction[J]. J. Am. Chem. Soc.,2005,127:9298~9307.b) Zhang H., Kwong F. Y., Tian Y., et al. Base and Cation Effects on the Suzuki Cross-Coupling ofBulky Arylboronic Acid with Halopyridines: Synthesis of Pyridylphenols[J]. J. Org. Chem.,1998,63:6886~6890. c) Ouyang K., Xi Z., Roles of Bases in Transition-Metal Catalyzed OrganicReactions[J]. Acta Chim. Sinica.,2013,71:13~25.
    [17] Horton D. A., Bourne G. T., Smythe M. L., The Combinatorial Synthesis of BicyclicPrivileged Structures or Privileged Substructures[J]. Chem. Rev.,2003,103:893~930.
    [18] Ullmann F., Bielecki J., Ueber Synthesen in der Biphenylreihe[J]. Chem. Ber.,1901,34:2174~2185.
    [19] Hassan M., Sévignon M., Gozzi C., et al. Aryl Aryl Bond Formation One Century after theDiscovery of the Ullmann Reaction[J]. Chem. Rev.,2002,102:1359~1469.
    [20] Stanforth S. P., Catalytic cross-coupling reactions in biaryl synthesis[J]. Tetrahedron,1998,54:263~303.
    [21] Anastasia L., Negishi N., Handbook of Organopalladium Chemistry for OrganicSynthesis[M], Wiley, New York,2002:311.
    [22] Kleiman J. P., Dubeck M., The Preparation of Cyclopentadienyl [o-(Phenylazo)Phenyl]Nickel[J]. J. Am. Chem. Soc.,1963,85:1544~1545.
    [23] for arylation coupling via C-H activation:a) Ritleng V., Sirlin C., Pfeffer M., Ru-, Rh-, and Pd-Catalyzed C C Bond Formation InvolvingC H Activation and Addition on Unsaturated Substrates: Reactions and Mechanistic Aspects[J].Chem. Rev.,2002,102:1731~1769.b) Corbet J. P., Mignani G., Selected Patented Cross-Coupling Reaction Technologies[J]. Chem.Rev.,2006,106:2651~2710.c) Dyker G., Transition Metal Catalyzed Coupling Reactions under C H Activation[J]. Angew.Chem. Int. Ed.,1999,38:1698~1712.d) Kakiuchi F., Chatani N., Catalytic Methods for C-H Bond Functionalization: Application inOrganic Synthesis[J]. Adv. Synth., Catal.2003,345:1077~1101.e) Echavarren A. M., Gmez-Lor B., Gonzá lez J. J., et al. Palladium-Catalyzed IntramolecularArylation Reaction: Mechanism and Application for the Synthesis of Polyarenes[J]. Synlett.,2003,5:585~597.f) Alberico D., Scott M. E., Lautens M., Aryl Aryl Bond Formation byTransition-Metal-Catalyzed Direct Arylation[J]. Chem. Rev.,2007,107:174~238.g) Campeau L. C., Fagnou K., Palladium-catalyzed direct arylation of simple arenes in synthesisof biaryl molecules[J]. Chem. Commun.,2006,12:1253~1264.
    [24] Dasgupta R., Maiti B. R., Thermal dehydrocondensation of benzene to diphenyl in anonisothermal flow reactor[J]. Ind. Eng. Chem. Proc. Des. Dev.,1986,25:381~386.
    [25] Tamao K., Sumitani K., Kumada M., Selective carbon-carbon bond formation bycross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphinecomplexes[J]. J. Am. Chem. Soc.,1972,94:4374~4376.
    [26] a) Suzuki A., Organoboron compounds in new synthetic reactions[J]. Pure Appl. Chem.,1985,57:1749~1758.b) Heck R. F., Palladium-Catalyzed Vinylation of Organic Halides[J]. Org. React.,1982,27:345.c) Milstein D., Stille J. K., Mechanism of reductive elimination. Reaction of alkylpalladium(II)complexes with tetraorganotin, organolithium, and Grignard reagents. Evidence for palladium(IV)intermediacy[J]. J. Am. Chem. Soc.,1979,101:4981~4991.d) Negishi E. I., Liu F., Metal-Catalyzed Cross-Coupling Reactions[M], ed. F. Diederich and P. J.Stang, Wiley-VCH, Weinheim, Germany,1998,1.e) Negishi E., Palladium-or nickel-catalyzed cross coupling. A new selective method forcarbon-carbon bond formation[J]. Acc. Chem. Res.,1982,15:340~348.f) Nakao Y., Hiyama T., Silicon-based cross-coupling reaction: an environmentally benignversion[J]. Chem. Soc. Rev.,2011,40:4893~4901.
    [27] a) Miyaura N., Suzuki A., Stereoselective synthesis of arylated (E)-alkenes by the reaction ofalk-1-enylboranes with aryl halides in the presence of palladium catalyst[J]. J. Chem. Soc., Chem.,Commun.1979,866~867.b) Miyaura N., Yamada K., Suzuki A., A new stereospecific cross-coupling by thepalladium-catalyzed reaction of1-alkenylboranes with1-alkenyl or1-alkynyl halides[J].Tetrahedron Lett.,1979,20:3437~3440.c) Miyaura N., Suzuki A., Palladium-Catalyzed Cross-Coupling Reactions of OrganoboronCompounds[J]. Chem. Rev.,1995,95:2457~2483.
    [28] a) Soderquist J. A., Colberg J. C., Stereodefined,-Disubstituted Vinylsilanes from theSilicon-Diverted Hydroboration of Alkynylsilanes and Palladium Chemistry[J]. Synlett.,1989,25~27.b) Ichikawa J., Minami T., Sonoda T., et al. A new synthesis of oxazolidin-2-ones fromtrifluroacetamides[J]. Tetrahedron Lett.,1992,33:377~380.c) Miyaura N., Suginome H., Suzuki A., Stereospecific Synthesis of (2Z,4E,6E)-3,7,11–Trimethyl-2,4,6,10-dodecatetraene [trans(C10)-Allofarnesene][J]. Bull. Chem. Soc. Jpn.,1982,55:2221~2223.d) Deloux L., Skrzypczak-Jankun E., Cheesman B. V., et al. First Example of Stable1,1-Bimetalloalkenes of Boron and Zirconium: Synthesis, Reactivity, X-ray Analysis, and NMRStudies[J]. J. Am. Chem. Soc.,1994,116:10302~10303.
    [29] a) Miyaura N., Yanagi T., Suzuki A., The Palladium-Catalyzed Cross-Coupling Reaction ofPhenylboronic Acid with Haloarenes in the Presence of Bases[J]. Synth. Commun.,1981,11:513~519.b) Gronowitz S., Bobosik V., Lawitz K., Palladium catalyzed synthesis of unsymmetricalbithienyls from thiopheneboronic acid and halothiophenes[J]. Chem. Scr.,1984,23:120~122.c) Alo B. I., Kandil A., Patil P. A., et al. Sequential directed ortho metalation-boronic acidcross-coupling reactions. A general regiospecific route to oxygenated dibenzo[b,d]pyran-6-onesrelated to ellagic acid[J]. J. Org. Chem.,1991,56:3763~3768.
    [30] a) Ishiyama T., Abe S., Miyaura N., et al. Palladium-Catalyzed Alkyl-Alkyl Cross-CouplingReaction of9-Alkyl-9-BBN Derivatives with Iodoalkanes Possessing β-Hydrogens[J]. Chem.Lett.,1992,691~694.b) Leng F., Wang Y., Li H., et al. Facile synthesis of trifluoroethyl compounds by the Suzukicross-coupling reactions of CF3CH2OTs with arylboronic acids[J]. Chem. Commun.,2013,49:10697~10699.c) Liang A., Li X., Liu D., et al. The palladium-catalyzed cross-coupling reactions oftrifluoroethyl iodide with aryl and heteroaryl boronic acid esters[J]. Chem. Commun.,2012,48:8273~8275.
    [31] a) Wakita Y., Yasunaga T., Akita M., et al. Palladium-catalyzed carbonylative cross-couplingof organoboranes with aryl iodides or benzyl halides in the presence ofbis(acetylacetonato)zinc(II)[J]. J. Organomet. Chem.,1986,301: C17~C20.b) Kondo T., Tsuji J., Watanabe Y., Platinum complex catalyzed carbonylative cross-coupling ofalkyl iodides with sodium tetraphenylborate; synthesis of alkyl phenyl ketones[J]. J. Organomet.Chem.,1988,345:397~403.c) Grigg R., Redpath J., Sridharan V., et al. Palladium catalysed cascadecarbonylation-cyclisation-carbometallation-anion capture. Tetramolecular queuing processes[J].Tetrahedron Lett.,1994,35:7661~7664.
    [32] Ames D. E., Bull D., Some reactions of3-halogenocinnolines catalysed by palladiumcompounds[J]. Tetrahedron,1982,38:383~387.
    [33] a) Park C.-H., Ryabova V., Seregin I. V., et al. Palladium-Catalyzed Arylation andHeteroarylation of Indolizines[J]. Org. Lett.,2004,6:1159~1162.b) Seregin I. V., Gevorgyan V., Direct transition metal-catalyzed functionalization ofheteroaromatic compounds[J]. Chem. Soc. Rev.,2007,36:1173~1179.
    [34] a) Lewis J. C., Wiedemann S. H., Bergman R. G., et al. Arylation of Heterocycles viaRhodium-Catalyzed C H Bond Functionalization[J]. Org. Lett.,2004,6:35~38.b) Fagnou K., Lautens M., Rhodium-Catalyzed Carbon Carbon Bond Forming Reactions ofOrganometallic Compounds[J]. Chem. Rev.,2003,103:169~196.
    [35] Ames D. E., Opalko A., Palladium-catalysed cyclisation of2-substituted halogenoarenes bydehydrohalogenation[J]. Tetrahedron,1984,40:1919~1925.
    [36] Campeau L.-C., Rousseaux S., Fagnou K., A Solution to the2-Pyridyl OrganometallicCross-Coupling Problem: Regioselective Catalytic Direct Arylation of Pyridine N-Oxides[J]. J.Am. Chem. Soc.,2005,127:18020~18021.
    [37] a) Leclerc J.-P., Fagnou K., Palladium-Catalyzed Cross-Coupling Reactions of DiazineN-Oxides with Aryl Chlorides, Bromides, and Iodides[J]. Angew. Chem., Int. Ed.2006,45:7781~7786.b) Garcia-Cuadrado D., Braga A. A. C., Maseras F., Echavarren A. M., Proton AbstractionMechanism for the Palladium-Catalyzed Intramolecular Arylation[J]. J. Am. Chem. Soc.,2006,128:1066~1067.c) Wu J., Cui X., Chen L., et al. Palladium-Catalyzed Alkenylation of Quinoline-N-oxides viaC-H Activation under External-Oxidant-Free Conditions[J]. J. Am. Chem. Soc.,2009,131:13888~13889.d) Wu Z., Song H., Cui X., et al. Sulfonylation of Quinoline N-Oxides with Aryl SulfonylChlorides via Copper-Catalyzed C–H Bonds Activation[J]. Org. Lett.,2013,15:1270~1273.e) Chen X., Zhu C., Cui X., et al. Direct2-acetoxylation of quinoline N-oxides via coppercatalyzed C–H bond activation[J]. Chem. Commun.,2013,49:6900~6902.
    [1] a) Vollhardt K. P. C., Schore N. E. Organische Chemie[M],3. Aufl., Wiley-VCH, Weinheim,2000, S.893.b) March J. Advanced Organic Chemistry[M],4th edn, Wiley, New York,1992,1183.c) Breitmaier E., Jung G.. Organische Chemie II[M],1st edn, Georg Thieme Verlag Stuttgart, NewYork,1982,194.d) Hudlick M., Oxidation in Organic Chemistry, American Chemical Society[M], Washington,1990,105.e) Vollhardt K. P. C., Schore N. E. Organische Chemie[M],3. Aufl., Wiley-VCH, Weinheim,2000,pp.1081.
    [2] a) Goossen L. J., Rodríguez N., Goossen K. Carboxylic Acids as Substrates in HomogeneousCatalysis[J]. Angew. Chem., Int. Ed.2008,47:3100~3120.b) Goossen L. J., Rodríguez N., Blanchot M., et al. New catalytic transformations of carboxylicacids[J]. Pure Appl, Chem.2008,80:1725~1733.c) Baudoin O. New Approaches for Decarboxylative Biaryl Coupling[J]. Angew. Chem., Int. Ed.2007,46:1373~1375.
    [3] a) Goossen L. J. Pd-catalyzed synthesis of arylacetic acid derivatives from boronic acids[J].Chem. Commun.2001,669~670.b) Goossen L. J., Ghosh K. A new practical ketone synthesis directly from carboxylic acids: firstapplication of coupling reagents in palladium catalysis[J]. Chem. Commun.2001,2084~2085.c) Goossen L. J., Paetzold J. Pd-Catalyzed Decarbonylative Olefination of Aryl Esters: Towards aWaste-Free Heck Reaction[J]. Angew. Chem.2002,114:1285~1289.d) Goossen L. J., Paetzold J., Winkel L. Pd-Catalyzed Decarbonylative Heck Olefination ofAromatic Carboxylic Acids Activated in situ with Di-tert-butyl Dicarbonate[J]. Synlett,2002,1721~1723.e) Goossen L. J., Paetzold J. Decarbonylierende Heck-Olefinierung von Enolestern: ein salzfreierund umweltfreundlicher Zugang zu Vinylarenen[J]. Angew. Chem.2004,116:1115~1118.f) Goossen L. J., Ghosh K. Palladium-Catalyzed Synthesis of Aryl Ketones from Boronic Acidsand Carboxylic Acids Activated in situ by Pivalic Anhydride[J]. Eur. J. Org. Chem.,2002,19:3254~3267.
    [4] a) Nilsson M. A new biaryl synthesis illustrating a connection between the Ullmann biarylsynthesis and copper-catalyzed decarboxylation[J]. Acta Chem. Scand.1966,20:423~426.b) Nilsson M., Ullenius C.2-Arylthiophenes and2-Arylfurans by Decarboxylative Couplings of2-Thenoic and2-Furoic Acids with Iodoarenes[J]. Acta Chem. Scand.1968,22:998~2002.
    [5] Goossen L. J., Deng G., Levy L. M. Synthesis of Biaryls via Catalytic DecarboxylativeCoupling[J]. Science2006,313:662~664.
    [6] Goossen L. J., Rodríguez N., Melzer B., et al. Biaryl Synthesis via Pd-CatalyzedDecarboxylative Coupling of Aromatic Carboxylates with Aryl Halides[J]. J. Am. Chem. Soc.2007,129:4824~4833.
    [7] Goossen L. J., Zimmermann B., Knauber T. Palladium/Copper-Catalyzed DecarboxylativeCross-Coupling of Aryl Chlorides with Potassium Carboxylates[J]. Angew. Chem., Int. Ed.2008,47:7103~7106.
    [8] Goossen L. J., Zimmermann B., Linder C., et al. Synthesis of Biaryls and Aryl Ketones viaMicrowave-Assisted Decarboxylative Cross-Couplings[J]. Adv. Synth. Catal.2009,351:2667~2674.
    [9] a) Goossen L. J., Rodríguez N., Linder C. Decarboxylative Biaryl Synthesis from AromaticCarboxylates and Aryl Triflates[J]. J. Am. Chem. Soc.2008,130:15248~15249.b) Goossen L. J., Linder C., Rodríguez N., et al. Biaryl and Aryl Ketone Synthesis viaPd-Catalyzed Decarboxylative Coupling of Carboxylate Salts with Aryl Triflates[J]. Chem.-Eur. J.2009,15:9336~9349.
    [10] a) Becht J.-M., Catala C., Le Drian C., et al. Synthesis of Biaryls via DecarboxylativePd-Catalyzed Cross-Coupling Reaction[J]. Org. Lett.2007,9:1781~1783.b) Becht J.-M., Le Drian C. Biaryl Synthesis via Decarboxylative Pd-Catalyzed Reactions ofArenecarboxylic Acids and Diaryliodonium Triflates[J]. Org. Lett.2008,10:3161~3164.
    [11] Wang Z., Ding Q., He X. et al. Pd-catalyzed decarboxylative couplings of arenecarboxylicacids with aryl iodides[J]. Tetrahedron2009,65:4635~4638.
    [12] Zhang F., Greaney M. F. Decarboxylative Cross-Coupling of Azoyl Carboxylic Acids withAryl Halides[J]. Org. Lett.2010,12:4745~4747.
    [13] Riego E., Hernández D., Albericio F., et al. Directly Linked Polyazoles:Important Moieties inNatural Products[J]. Synthesis2005,1907~1922.
    [14] Goossen L. J., Lange P. P., Rodríguez N., et al. Low-Temperature Ag/Pd-CatalyzedDecarboxylative Cross-Coupling of Aryl Triflates with Aromatic Carboxylate Salts[J]. Chem.-Eur.J.,2010,16:3906~3909.
    [15] Peschko C., Winklhofer C., Steglich W. Biomimetic Total Synthesis of Lamellarin L byCoupling of Two Different Arylpyruvic Acid Units[J]. Chem.-Eur. J.,2000,6:1147~1152.
    [16] Shang R., Xu Q., Jiang Y. Y., et al. Pd-Catalyzed Decarboxylative Cross Coupling ofPotassium Polyfluorobenzoates with Aryl Bromides, Chlorides, and Triflates[J]. Org. Lett.2010,12:1000~1003.
    [17] Arroyave F. A., Reynolds J. R.3,4-Propylenedioxypyrrole-Based Conjugated Oligomers viaPd-Mediated Decarboxylative Cross Coupling[J]. Org. Lett.2010,12:1328~1331.
    [18] Shang R., Fu Y., Wang Y., et al. Copper-Catalyzed Decarboxylative Cross-Coupling ofPotassium Polyfluorobenzoates with Aryl Iodides and Bromides[J]. Angew. Chem., Int. Ed.2009,48:9350~9354.
    [19] a) Cairncross A., Sheppard W. A. Fluorinated organocopper compounds[J]. J. Am. Chem. Soc.1968,90:2186~2187.b) Sheppard W. A. Pentafluorophenyl group. Electronic effect as a substituent[J]. J. Am. Chem.Soc.1970,92:5419~5422.
    [20] a) Myers A. G., Tanaka D., Mannion M. R. Development of a Decarboxylative PalladationReaction and Its Use in a Heck-type Olefination of Arene Carboxylates[J]. J. Am. Chem. Soc.2002,124:11250~11251.b) Tanaka D., Myers A. G. Heck-Type Arylation of2-Cycloalken-1-ones with ArylpalladiumIntermediates Formed by Decarboxylative Palladation and by Aryl Iodide Insertion[J]. Org. Lett.2004,6:433~436.
    [21] Hu P., Kan J., Su W. P., et al. Pd(O2CCF3)2/Benzoquinone: A Versatile Catalyst System forthe Decarboxylative Olefination of Arene Carboxylic Acids[J]. Org. Lett.2009,11:2341~2344.
    [22] Goossen L. J., Zimmermann B., Knauber T. Pd-catalyzed decarboxylative Heck vinylation of2-nitrobenzoates in the presence of CuF2[J]. Beilstein J. Org. Chem.2010,6:43.
    [23] a) Fu Z. J., Huang S. J., Su W., et al. Pd-Catalyzed Dearboxylative Heck Coupling withDioxygen as the Terminal Oxidant[J]. Org. Lett.2010,12:4992~4995.b) Zhao Y., Zhang Y., Wang J., et al. Synthesis of Aryl-Substituted1,4-Benzoquinone viaPalladium(II)-Catalyzed Decarboxylative Coupling of Arene Carboxylate with1,4-Benzoquinone[J]. Synlett,2010,2352~2356.
    [24] Sun Z. M., Zhang J., Zhao P. Rh(I)-Catalyzed Decarboxylative Transformations ofArenecarboxylic Acids: Ligand-and Reagent-Controlled Selectivity towardHydrodecarboxylation or Heck Mizoroki Products[J]. Org. Lett.2010,12:992~995.
    [25] Zhang M., Zhou J., Kan J., et al. Pd-catalyzed cross-coupling of carboxylic acids withnitroethane viacombination of decarboxylation and dehydrogenation[J]. Chem. Commun.2010,46:5455~5457.
    [26] Voutchkova A., Coplin A., Leadbeater N. E., et al. Palladium-catalyzed decarboxylativecoupling of aromatic acids with aryl halides or unactivatedarenes using microwave heating[J].Chem. Commun.2008,6312~6314.
    [27] a) Wang C. Y., Piel I., Glorius F. Palladium-Catalyzed Intramolecular Direct Arylation ofBenzoic Acids by Tandem Decarboxylation/C H Activation[J]. J. Am. Chem. Soc.2009,131:4194~4195.b) Cornella J., Lu P., Larrosa I. Intermolecular Decarboxylative Direct C-3Arylation of Indoleswith Benzoic Acids[J]. Org. Lett.2009,11:5506~5509.
    [28] a) Xie K., Yang Z., Zhou X., et al. Pd-Catalyzed Decarboxylative Arylation of Thiazole,Benzoxazole, and Polyfluorobenzene with Substituted Benzoic Acids[J]. Org. Lett.2010,12:1564~1567.b) Zhang F., Greaney M. F. Decarboxylative C-H Cross-Coupling of Azoles[J]. Angew. Chem.,Int. Ed.,2010,49:2768~2771.
    [29] a) Wang C., Rakshit S., Glorius F. Palladium-Catalyzed Intermolecular DecarboxylativeCoupling of2-Phenylbenzoic Acids with Alkynes via C H and C C Bond Activation[J]. J. Am.Chem. Soc.2010,132:14006~14008.b) Wu J., Pisula W., Müllen K. Graphenes as Potential Material for Electronics[J]. Chem. Rev.2007,107:718~747.
    [30] Dai J. J., Liu J. H., Luo D. F., et al. Pd-catalysed decarboxylative Suzuki reactions andorthogonal Cu-based O-arylation of aromatic carboxylic acids[J]. Chem. Commun.2011,47:677~679.
    [31] Ouchaou K., Georgin D., Taran F. Straightforward Conversion of Arene Carboxylic Acidsinto Aryl Nitriles by Palladium-Catalyzed Decarboxylative Cyanation Reaction[J]. Synlett,2010,2083~2214.
    [32] Duan Z., Ranjit S., Zhang P., et al. Synthesis of Aryl Sulfides by Decarboxylative C-SCross-Couplings[J]. Chem.-Eur. J.2009,15:3666~3678.
    [33] a) Henry G. D. De novo synthesis of substituted pyridines[J]. Tetrahedron,2004,60:6043~6061.b) Michael J. P. Quinoline, quinazoline and acridone alkaloids[J]. Nat. Prod. Rep.,2005,22:627~646.c) Schlosser M., Mongin F. Pyridine elaboration through organometallic intermediates:regiochemical control and completeness[J]. Chem. Soc. Rev.2007,36:1161~1172.d) Arena C. G., Arico G. Chiral Heterobidentate Pyridine Ligands for Asymmetric Catalysis[J].Curr. Org. Chem.2010,14:546~580.
    [34] Maureen Rouhi A. Suzuki-coupling chemistry takes hold in commercial practice, fromsmall-scale synthesis of screening compounds to industrial production of active ingredients[J].Chem. Eng. News.2004,82:49~58.
    [35] a) Miyaura N., Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of OrganoboronCompounds, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J].Chem. Rev.1995,95:2457~2483.b). Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives withorganic electrophile[J]. J. Organomet. Chem.1999,576:147~168.c) Campeau L.-C., Fagnou K.. Applications of and alternatives to π-electron-deficient azineorganometallics in metal catalyzed cross-coupling reactions[J]. Chem. Soc. Rev,2007,36:1058~1068.d) Yamamoto Y., Takizawa M., Yu X. Q., et al. Cyclic Triolborates: Air-and Water-Stable AteComplexes of Organoboronic Acids[J]. Angew. Chem., Int. Ed.2008,47:928~931.e) Molander G. A., Biolatto B. Palladium-Catalyzed Suzuki Miyaura Cross-Coupling Reactionsof Potassium Aryl-and Heteroaryltrifluoroborates[J]. J. Org. Chem.2003,68:4302~4314.f) Ackermann L., Potukuchi H. K. Palladium-Catalyzed Cross-Coupling Reactions of2-Pyridylborates with Air-Stable HASPO Preligands[J]. Synlett,2009,2852~2856.g) Billingsley K. L., Buchwald S. L. A General and Efficient Method for the Suzuki–MiyauraCoupling of2-Pyridyl Nucleophiles[J]. Angew. Chem. Int. Ed.2008,47:4695~4698.h) Billingsley K., Buchwald S. L. Highly Efficient Monophosphine-Based Catalyst for thePalladium-Catalyzed Suzuki Miyaura Reaction of Heteroaryl Halides and Heteroaryl BoronicAcids and Esters[J]. J. Am. Chem. Soc.2007,129:3358~3366.i) Deng J. Z., Paone D. V., Ginnetti A. T., et al. Copper-Facilitated Suzuki Reactions: Applicationto2-Heterocyclic Boronates[J]. Org. Lett.2009,11:345~347.j) Knapp D. M., Gillis E. P., Burke M. D. A General Solution for Unstable Boronic Acids:Slow-Release Cross-Coupling from Air-Stable MIDA Boronates[J], J. Am. Chem. Soc.2009,131:6961~6963.k) Hodgson P. B., Salingue F. H.. The preparation of a stable2-pyridylboronate and its reactivityin the Suzuki–Miyaura cross-coupling reaction[J], Tetrahedron Lett.2004,45:685~687.l) Bouillon A., Lancelot J. C., Sopkova de Oliveira Santos J. et al. Synthesis of novelhalopyridinylboronic acids and esters. Part4: Halopyridin-2-yl-boronic acids and esters are stable,crystalline partners for classical Suzuki cross-coupling[J], Tetrahedron2003,59:10043~10049.m) Dick G. R., Knapp D. M., Gillis E. P., et al. General Method for Synthesis of2-HeterocyclicN-Methyliminodiacetic Acid Boronates[J], Org. Lett.2010,12:2314~2317.
    [36] a) Tanaka D., Romeril S. P., Myers A. G. On the Mechanism of the Palladium(II)-CatalyzedDecarboxylative Olefination of Arene Carboxylic Acids. Crystallographic Characterization ofNon-Phosphine Palladium(II) Intermediates and Observation of Their Stepwise Transformation inHeck-like Processes[J], J. Am. Chem. Soc.2005,127:10323~10333.b) Goossen L. J., Melzer B. Synthesis of Valsartan via Decarboxylative Biaryl Coupling[J], J. Org.Chem.2007,72:7473~7476.c) Goossen L. J., Rudolphi F., Oppel C., et al. Synthesis of Ketones from α-Oxocarboxylates andAryl Bromides by Cu/Pd-Catalyzed Decarboxylative Cross-Coupling[J], Angew. Chem. Int. Ed.2008,47:3043~3045.d) Lalic G., Aloise A. D., Shair M. D. An Exceptionally Mild Catalytic Thioester Aldol ReactionInspired by Polyketide Biosynthesis[J], J. Am. Chem. Soc.2003,125:2852~2853.e) Lou S., Westbrook J. A., Schaus S. E. Decarboxylative Aldol Reactions of Allyl β-Keto Estersvia Heterobimetallic Catalysis[J], J. Am. Chem. Soc.2004,126:11440~11441.f) Rayabarapu D. K., Tunge J. A. Catalytic Decarboxylative sp sp3Coupling[J], J. Am. Chem.Soc.2005,127:13510~13511.g) Forgione P., Brochu M. C., St-Onge M., et al. Unexpected Intermolecular Pd-CatalyzedCross-Coupling Reaction Employing Heteroaromatic Carboxylic Acids as Coupling Partners[J], J.Am. Chem. Soc.2006,128:11350~11350.h) Waetzig S. R., Tunge J. A. Palladium-Catalyzed Decarboxylative sp3sp3Coupling ofNitrobenzene Acetic Esters[J], J. Am. Chem. Soc.2007,129:14860~14860.
    [37] Shang R., Fu Y., Wang Y. et al. Copper-Catalyzed Decarboxylative Cross-Coupling ofPotassium Polyfluorobenzoates with Aryl Iodides and Bromides[J], Angew. Chem., Int. Ed.2009,48:9350~9354.
    [38] a) Goossen L. J., Linder C., Rodriguez N., et al. Silver-catalysed protodecarboxylation ofcarboxylic acids[J], Chem. Commun.2009,7173~7175.b) Cornella J., Sanchez C., Banawa D., et al. Silver-catalysed protodecarboxylation ofortho-substituted benzoic acids[J], Chem. Commun.2009,7176~7178.c) Lu P. F., Sanchez C., Cornella J. et al. Silver-Catalyzed Protodecarboxylation ofHeteroaromatic Carboxylic Acids[J], Org. Lett[J].2009,11:5710~5713.d) Hu P., Zhang M., Jie X. M., et al. Palladium-Catalyzed Decarboxylative C-H Bond Arylation ofThiophenes, Angew. Chem. Int. Ed.2012,51:227~231.
    [39] a) Campeau L. C., Rousseaux S., Fagnou K. A Solution to the2-Pyridyl OrganometallicCross-Coupling Problem: Regioselective Catalytic Direct Arylation of Pyridine N-Oxides[J], J.Am. Chem. Soc.2005,127:18020~18021.b) Moser R. J., Brown E. V. Decarboxylation of5-substituted2-pyridinecarboxylic acids[J], J.Org. Chem.1972,37:3938~3940.c) Katritzky A. R., Faid-Allah H. M. The Conversion of Pyridinium-2-carboxylates into2-Thioxo-1,2-dihydropyridines (Pyridine-2-thiones)[J], Synthesis,1983,149~151.
    [40] Roselló-Merino M., Díezb J., Conejero S. A simple, general route to2-pyridylidene transitionmetal complexes[J], Chem. Commun.2010,46:9247~9249.
    [41] Jutand A., Mosleh A. Nickel-and Palladium-Catalyzed Homocoupling of Aryl Triflates.Scope, Limitation, and Mechanistic Aspects[J], J. Org. Chem.1997,62:261~274.
    [42] Blue E. D., Davis A., Conner D., Gunnoe T. B., Boyle P. D., White P. S. Synthesis,Solid-State Crystal Structure, and Reactivity of a Monomeric Copper(I) Anilido Complex[J], J.Am. Chem. Soc.2003,125:9435~9441.
    [43] Ullmann F., Bielecki J. Ueber Synthesen in der Biphenylreihe[J], Chem. Ber.1901,34:2174~2185.
    [44] Ishiyama T., Murata M., Miyaura N. Palladium(0)-Catalyzed Cross-Coupling Reaction ofAlkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters[J], J. Org. Chem.1995,60:7508~7510.
    [1] a) Furniss B. S., Hannaford A. J., Smith P. W. G., et al. Vogel’s Textbook of Practical OrganicChemistry [M].5th ed.; Wiley: New York, U.S.,1989; pp1266~1269.b) Larock R. C. Comprehensive Organic Transformations[M].2nd ed.; VCH: New York, U.S.,1989; pp881~958.c) Carmo A. C., Souza de L. K. C., Costa de C. E. F., et al. Production of biodiesel byesterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41[J]. Fuel,2009,88:461~468.d) Nishikubo T., Kameyama A., Yamada Y., et al. Synthesis of polymers in aqueous solutions:Esterification reaction of poly(methacrylic acid) with alkyl halides using DBU in aqueoussolutions[J]. Polym. Sci., Part A: Polym. Chem.,1996,34:3531~3537.e) Ansari H. R., Curtis A. J. Sesquiterpenes in the perfumery industry[J]. J. Soc. Cosmet. Chem.,1974,25:203~231.
    [2] a) Schoenberg A., Bartoletti I., Heck R. F. Research Article Palladium-catalyzedcarboalkoxylation of aryl, benzyl, and vinylic halides[J]. J. Org. Chem.,1974,39:3318~3326.b) Schoenberg A., Heck R. F. Palladium-catalyzed amidation of aryl, heterocyclic, and vinylichalides[J]. J. Org. Chem.,1974,39,3327~3331.c) Schoenberg A., Heck R. F. Palladium-catalyzed formylation of aryl, heterocyclic, and vinylichalides[J]. J. Am. Chem. Soc.,1974,96,7761~7764.
    [3] Torborg C., Beller M. Recent Applications of Palladium-Catalyzed Coupling Reactions in thePharmaceutical, Agrochemical, and Fine Chemical Industries[J]. Adv. Synth. Catal.,2009,351,3027~3043.
    [4] Salvadori J., Balducci E., Zaza S., et al. Microwave-Assisted Carbonylation andCyclocarbonylation of Aryl Iodides under Ligand Free Heterogeneous Catalysis[J]. J. Org.Chem.,2010,75:1841~1847.
    [5] Xin Z., G gsig T. M., Lindhardt A. T., et al. An Efficient Method for the Preparation ofTertiary Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides[J]. Org. Lett.,2012,14:284~287.
    [6] Wu X., Neumann H., Beller M. A General and Efficient Palladium-CatalyzedAlkoxycarbonylation of Phenols To Form Esters through In Situ Formed Aryl Nonaflates[J].Chem.-Eur. J.,2012,18:3831~3834.
    [7] Khedkar M. V., Sasaki T., Bhanage B. M. Immobilized Palladium Metal-Containing IonicLiquid-Catalyzed Alkoxycarbonylation, Phenoxycarbonylation, and AminocarbonylationReactions[J]. ACS Catal.,2013,3:287~293.
    [8] Ko S., Lee C., Choi M., et al. Chelation-Accelerated Sequential Decarbonylation of Formateand Alkoxycarbonylation of Aryl Halides Using a Combined Ru and Pd Catalyst[J]. J. Org.Chem.,2003,68:1607~1610.
    [9] Shang R., Fu Y., Li J., et al. Synthesis of Aromatic Esters via Pd-Catalyzed DecarboxylativeCoupling of Potassium Oxalate Monoesters with Aryl Bromides and Chlorides[J]. J. Am. Chem.Soc.,2009,131:5738~5739.
    [10] Li Y., Chen H., Wang C., et al. Ligand free palladium catalyzed decarboxylativecross-coupling of aryl halides with oxalate monoester salts[J]. Tetrahedron Lett.,2012,53:5796~5799.
    [11] Kurtman A. I.[J]. Zh. Obshch. Khim.,1952,22:1385.
    [12] Kondo H., Miura K., Seki E., et al. Reactions of Enolic Biotin Models[J]. Bull. Chem. Soc.Jpn.,1985,58:2801~2804.
    [13] Werner T., Barrett A. G. M. Simple Method for the Preparation of Esters from GrignardReagents and Alkyl1-Imidazolecarboxylates[J]. J. Org. Chem.,2006,71:4302~4304.
    [14] Rausch D., Lambert C. Synthesis and Spectroscopic Properties of a HexapyrenylbenzeneDerivative[J]. Org. Lett.,2006,8:5037~5040.
    [15] Li H., Balsells J. Highly selective and efficient conversion of aryl bromides to t-butylbenzoates with di-t-butyl dicarbonate[J]. Tetrahedron Lett.,2008,49:2034~2037.
    [16] a) Ghera E., Bendavid Y. Total synthesis of11-deoxydaunomycinone by a new annulationprocess[J]. J. Org. Chem.,1988,53:2972~2979.b) Bratton L. D., Huh H., Bartsch R. A. New lipophilic crown ethers with intraannular carboxylicacid groups: Synthesis and alkali metal cation extraction[J]. J. Heterocycl. Chem.2000,37:815~819.c) Amedio J. C. J., Lee G. T., Prasad K., et al. A Practical Preparation of Methyl4-(Trimethylsilyl)-benzoate: An Intermediate in the Synthesis of SDZ63135[J]. Synth. Commun.,1995,25:2599~2612.d) Larock R. C., Comprehensive Organic Transformations: A Guide to Functional GroupPreparations[M],2nd ed.; John Wiley&Sons: New York,1999.
    [17] a) Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by thepalladium-catalyzed reaction of1-alkenylboranes with1-alkenyl or1-alkynyl halides[J].Tetrahedron Lett.,1979,20:3437~3440.b) Miyaura N., Suzuki A., Stereoselective synthesis of arylated (E)-alkenes by the reaction ofalk-1-enylboranes with aryl halides in the presence of palladium catalyst[J]. Chem. Commun.1979,19:866~867.
    [18] Goossen L. J., Ghosh K. Palladium-Catalyzed Synthesis of Aryl Ketones from BoronicAcids and Carboxylic Acids or Anhydrides[J]. Angew. Chem. Int. Ed.,2001,40:3458~3460.
    [19] a) Greene T. W., Wuts P. G. M. Protecting Group in Organic Synthesis[M], John Wiley andSons, New York,1999.b) Kocienski P. J., Protecting Groups[M], Georg Thieme, New York,2000.c) Shirini F., Mamaghani M., Atghia S. V. Sulfonic acid-functionalized ordered nanoporousNa+-montmorillonite (SANM): A novel, efficient and recyclable catalyst for the chemoselectiveN-Boc protection of amines in solventless media[J]. Catal. Commun.,2011,12:1088~1094.
    [20] Ouyang K., Xi Z. Roles of Bases in Transition-Metal Catalyzed Organic Reactions [J]. Acta.Chim. Sinica.,2013,71:13~25.
    [21] a) Kakino R., Narahashi H., Shimizu I., et al. General and Greener Route to Ketones byPalladium-Catalyzed Direct Conversion of Carboxylic Acids with Organoboronic Acids[J].Chem. Lett.,2001,30:1242~1243.b) Kakino R., Yasumi S., Shimizu I., et al. Synthesis of Unsymmetrical Ketones byPalladium-Catalyzed Cross-Coupling Reaction of Carboxylic Anhydrides with OrganoboronCompounds[J]. Bull. Chem. Soc. Jpn.2002,75:137~148.
    [22] Goossen L. J., Ghosh K. Palladium-Catalyzed Synthesis of Aryl Ketones from BoronicAcids and Carboxylic Acids Activated in situ by Pivalic Anhydride[J]. Eur. J. Org. Chem.2002,3254~3267.
    [23] Goossen L. J., Koley D., Hermann H. L., et al. The Palladium-Catalyzed Cross-CouplingReaction of Carboxylic Anhydrides with Arylboronic Acids: A DFT Study[J]. J. Am. Chem. Soc.,2005,127:11102~11104.
    [24] Yoo K. S., Yoon C. H., Jung K. W. Oxidative Palladium(II) Catalysis: A Highly Efficientand Chemoselective Cross-Coupling Method for Carbon Carbon Bond Formation underBase-Free and Nitrogenous-Ligand Conditions[J]. J. Am. Chem. Soc.2006,128:16384~16393.
    [1]. Daly J. W., Garraffo H. M., Spande T. F. In Alkaloids: Chemical and BiologicalPerspectives[M], Vol.13, Ed.: Pelletier, W. W., Elsevier, New York,1999.
    [2] for reviews, please see:a) McGlacken G. P., Bateman L. M. Recent advances in aryl-aryl bond formation by directarylation[J]. Chem. Soc. Rev.,2009,38:2447~2464.b) Seregin I. V., Gevorgyan V. Direct transition metal-catalyzed functionalization ofheteroaromatic compounds[J]. Chem. Soc. Rev.,2007,36:1173~1193.c) Colby D. A., Bergman R. G., Ellman J. A. Rhodium-Catalyzed C-C Bond Formation viaHeteroatom-Directed C-H Bond Activation[J]. Chem. Rev.,2010,110:624~655.d) McDonald R. I., Liu G., Stahl S. S. Palladium(II)-Catalyzed Alkene Functionalization viaNucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications[J].Chem. Rev.,2011,111:2981~3019.e) Cacchi S., Fabrizi G. Synthesis and Functionalization of Indoles Through Palladium-catalyzedReactions[J]. Chem. Rev.,2005,105:2873~2920.f) Liu Y., Zhang Y., Fei H., et al. Recent Progress in C-C Cross-Coupling Reaction of PyridineN-Oxides[J]. Chin. J. Org. Chem.,2013,33:267~279.g) Chen X., Engle K. M., Wang D.,et al. Palladium(II)-Catalyzed C-H Activation/C-CCross-Coupling Reactions: Versatility and Practicality[J]. Angew. Chem. Int. Ed.,2009,48:5094~5115.f) Boorman T. C., Larrosa I. Gold-mediated C–H bond functionalisation[J]. Chem. Soc. Rev.,2011,40:1910~1925.
    [3] Moritani I., Fujiwara Y. Aromatic substitution of styrene-palladium chloride complex[J].Tetrahedron Lett.1967,8:1119~1122.
    [4] Miura M., Tsuda T., Satoh T., et al. Oxidative Cross-Coupling ofN-(2‘-Phenylphenyl)benzene-sulfonamides or Benzoic and Naphthoic Acids with Alkenes Usinga Palladium Copper Catalyst System under Air[J]. J. Org. Chem.1998,63:5211~5215.
    [5] Boele M. D. K., van Strijdonck G. P. F., de Vries A. H. M., et al. Selective Pd-CatalyzedOxidative Coupling of Anilides with Olefins through C H Bond Activation at RoomTemperature[J]. J. Am. Chem. Soc.2002,124:1586~1587.
    [6] a) Li J.-J., Giri R., Yu J.-Q. Remote C-H bond functionalization reveals the distance-dependent isotope effect[J]. Tetrahedron,2008,64:6979~6987.b) Desai L. V., Stowers K. J., Sanford M. S. Insights into Directing Group Ability inPalladium-Catalyzed C H Bond Functionalization[J]. J. Am. Chem. Soc.2008,130:13285~13293.
    [7] a) Tremont S. J., Rahman H. U. Ortho-alkylation of acetanilides using alkyl halides andpalladium acetate[J]. J. Am. Chem. Soc.1984,106:5759~5760.b) McCallum J. S., Gasdaska J. R., Liebeskind L. S., et al. Palladium-mediated2,6-dialkylationof N-benzilidine imines: Preparation of2,6-dialkylbenzaldehydes[J]. Tetrahedron Lett.,1989,30:4085~4088.
    [8] a) Kalyani D., Deprez N. R., Desai L. V., et al. Oxidative C H Activation/C C BondForming Reactions: Synthetic Scope and Mechanistic Insights[J]. J. Am. Chem. Soc.,2005,127:7330~7331.b) Daugulis O., Zaitsev V. G. Anilide ortho-arylation by using C-H activation methodology[J].Angew. Chem. Int. Ed.,2005,44:4046~4048.
    [9] Deprez N. R., Kalyani D., Krause A., et al. Room Temperature Palladium-Catalyzed2-Arylation of Indoles[J]. J. Am. Chem. Soc.,2006,128:4972~4973.
    [10] Joule J. A., Mills K. Heterocyclic Chemistry[M],4th ed., Blackwell Publishing BlackwellScience Ltd., Oxford, U. K.2000.
    [11] a) Rewcastle G. W., Katritzky A. R., Generation and reactions of sp2carbanionic centers inthe vicinity of heterocyclic nitrogen atoms[J]. Adv. Heterocycl. Chem.1993,56:155~302.b) Campeau L.-C., Fagnou K. Applications of and alternatives to π-electron-deficient azineorganometallics in metal catalyzed cross-coupling reactions[J]. Chem. Soc. Rev.2007,36:1058~1068.
    [12] Ames D. E., Opalko A. Palladium-catalysed cyclisation of2-substituted halogenoarenes bydehydrohalogenation[J]. Tetrahedron,1984,40:1919~1925.
    [13] Mukhopadhyay S., Rothenberg G., Gitis D. Regiospecific cross-coupling of haloaryls andpyridine to2-phenylpyridine using water, zinc, and catalytic palladium on carbon[J]. J. Chem.Soc., Perkin Trans.2,2000,1809~1812.
    [14] Godula K., Sezen B., Sames D. Site-Specific Phenylation of Pyridine Catalyzed byPhosphido-Bridged Ruthenium Dimer Complexes: A Prototype for C H Arylation ofElectron-Deficient Heteroarenes [J]. J. Am. Chem. Soc.,2005,127:3648~3649.
    [15] Campeau L. C., Rousseaux S., Fagnou K. A Solution to the2-Pyridyl OrganometallicCross-Coupling Problem: Regioselective Catalytic Direct Arylation of Pyridine N-Oxides[J]. J.Am. Chem. Soc.,2005,127:18020~18021.
    [16] a) Alvarez E., Conejero S., Paneque M., et al. Iridium(III)-Induced Isomerization of2-Substituted Pyridines to N-Heterocyclic Carbenes[J]. J. Am. Chem. Soc.,2006,128:13060~13061.b) Esteruelas M. A., Fernandez-Alvarez F. J., Onate E. Stabilization of NH Tautomers ofQuinolines by Osmium and Ruthenium[J]. J. Am. Chem. Soc.2006,128:13044~13045.c) Canac Y., Soleilhavoup M., Conejero S., et al. Stable non-N-heterocyclic carbenes (non-NHC):recent progress[J]. J. Organomet. Chem.,2004,689:3857~3865.d) Lewis J. C., Bergman R. G., Ellman J. A. Rh(I)-Catalyzed Alkylation of Quinolines andPyridines via C H Bond Activation[J]. J. Am. Chem. Soc.,2007,129:5332~5333.
    [17] Berman A. M., Lewis J. C., Bergman R. G. Rh(I)-Catalyzed Direct Arylation of Pyridinesand Quinolines[J]. J. Am. Chem. Soc.,2008,130:14926~14927.
    [18] Katritzky A. R., Lam J. N. Heterocyclic N-oxides and N-imides[J]. Heterocycles,1992,33:1011~1049.
    [19] a) Campeau L. C., Schipper D. J., Fagnou K. Site-Selective sp2and Benzylic sp3Palladium-Catalyzed Direct Arylation[J]. J. Am. Chem. Soc.,2008,130:3266~3267.b) Schipper D. J., Campeau L.-C., Fagnou K. Catalyst and base controlled site-selective sp2andsp3direct arylation of azine N-oxides[J]. Tetrahedron,2009,65:3155~3164.
    [20] Campeau L. C., Stuart D. R., Leclerc J.-P., et al. Palladium-Catalyzed Direct Arylation ofAzine and Azole N-Oxides: Reaction Development, Scope and Applications in Synthesis[J]. J.Am. Chem. Soc.,2009,131:3291~3306.
    [21] a) Zhao D., Wang W., Lian S., et al. Phosphine-free, palladium-catalyzed arylation ofheterocycles through C-H bond activation with pivalic acid as a cocatalyst[J]. Chem. Eur. J.2009,15:1337~1340.b) Arduengo III A. J., Harlow R. L., Kline M. A stable crystalline carbene[J]. J. Am. Chem. Soc.1991,113:361~363.c) Wei S., Liu B., Zhao D., et al. Pyrido[1,2-c][1,2,4]triazol-3-ylidene: Reactivity and itsapplication in organocatalysis and organometallic catalysis[J]. Org. Biomol. Chem.,2009,7:4241~4247.
    [22] Duric S., Tzschucke C. Synthesis of Unsymmetrically Substituted Bipyridines byPalladium-Catalyzed Direct C H Arylation of Pyridine N-Oxides[J]. Org. Lett.,2011,13:2310~2313.
    [23] Mai W.-P.,Yuan J.-W., Li Z.-C., et al. Palladium-catalyzed benzylic cross-couplings ofpyridine N-oxides[J]. Synlett,2012,23:938~942.
    [24] Do H.-Q., Kashif khan R. M., Daugulis O. A General Method for Copper-CatalyzedArylation of Arene C H Bonds[J]. J. Am. Chem. Soc.,2008,130:15185~15192.
    [25] Zhao D., Wang W., Yang F., et al. Copper-Catalyzed Direct C Arylation of Heterocycleswith Aryl Bromides: Discovery of Fluorescent Core Frameworks[J]. Angew. Chem., Int. Ed.2009,48:3296~3330.
    [26] Schipper D. J., Mohamed E.-S., Whipp C. J., et al. Direct arylation of azine N-oxides witharyl triflates[J]. Tetrahedron,2009,65:4977~4983.
    [27] Ackermann L., Fener S. Direct arylations of electron-deficient (hetero)arenes with aryl oralkenyl tosylates and mesylates[J]. Chem. Commun.,2011,47:430~432.
    [28] a) Sun H.-Y., Gorelsky S. I., Stuart D. R., et al. Mechanistic Analysis of Azine N-OxideDirect Arylation: Evidence for a Critical Role of Acetate in the Pd(OAc)2Precatalyst[J]. J. Org.Chem.,2010,75:8180~8189.b) Wang J.-X., McCubbin J. A., Jin M., et al. Palladium-Catalyzed Direct Heck Arylation of Dualπ-Deficient/π-Excessive Heteroaromatics. Synthesis of C-5Arylated Imidazo[1,5-a]pyrazines[J].Org. Lett.2008,10:2923~2926.c) Campo M. A., Huang Q., Yao T., et al.1,4-Palladium Migration via C H Activation, Followedby Arylation: Synthesis of Fused Polycycles[J]. J. Am. Chem. Soc.,2003,125:11506~11507.d) Yanagisawa S., Sudo T., Noyori R., et al. Direct C H Arylation of (Hetero)arenes with ArylIodides via Rhodium Catalysis[J]. J. Am. Chem. Soc.,2006,128:11748~11749.
    [29] Nakao Y., Kanyiva K. S., Oda S., et al. Hydroheteroarylation of Alkynes under Mild NickelCatalysis[J]. J. Am. Chem. Soc.,2006,128:8146~8147.
    [30] Cho S. H., Hwang S. J., Chang S. Palladium-Catalyzed C H Functionalization of PyridineN-Oxides: Highly Selective Alkenylation and Direct Arylation with Unactivated Arenes[J]. J.Am. Chem. Soc.,2008,130:9254~9256.
    [31] Wu J., Cui X., Chen L., Jiang G., Wu Y. Palladium-Catalyzed Alkenylation ofQuinoline-N-oxides via C-H Activation under External-Oxidant-Free Conditions[J]. J. Am.Chem. Soc.,2009,131:13888~13889.
    [32] Wang Z., Li K., Zhao D., et al. Palladium-Catalyzed Oxidative C-H/C-H Cross-Coupling ofIndoles and Pyrroles with Heteroarenes[J]. Angew. Chem., Int. Ed.,2011,50:5365~5369.
    [33] McClinton, D. A. Trifluoromethylations and Related Reactions in Organic Chemistry[J].Tetrahedron,1992,48:6555~6666.
    [34] a) McLoughlin V. C. R., Thrower J. A route to fluoroalkyl-substituted aromatic compoundsinvolving fluoroalkylcopper intermediates[J]. Tetrahedron,1969,25:5921~5940.b) Kobayashi K., Kumadaki I., Sato S.[J]. Chem. Pharm. Bull.,1970,18:2834.c) Burton D. J., Wiemers D. M. Pregeneration, spectroscopic detection and chemical reactivity of(trifluoromethyl)copper, an elusive and complex species[J]. J. Am. Chem. Soc.,1986,108:832~834.
    [35] a) Chen Q. Y., Wu S. W. Methyl (fluorosulfonyl)difluoroacetate; a new trifluoromethylatingagent[J]. J. Chem. Soc. Chem. Commun.,1989,705~706.b) Duan J. X., Su D. B., Chen Q. Y. Trifluoromethylation of organic halides with methylhalodifluoroacetates-a process via difluorocarbene and trifluoromethide intermediates[J]. J. Fluo.Chem.,1993,21:279~284.
    [36] Urata H., Goto D., Fuchikami T. Carbonylation of alkyl sulfonates catalyzed by cobaltcomplexes [J]. Tetrahedron Lett.,1991,32:3091~3094.
    [37] a) Ruppert I., Schlick K., Volbach W. Die ersten CF3-substituierten organyl(chlor)silane[J].Tetrahedron Lett.1984,25:2195~2198.b) Prakash G. K. S., Krishnamurti R., Olah G, A. Synthetic methods and reactions.141.Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent[J]. J. Am. Chem. Soc.,1989,111:393~395.c) Bellew D. R., Krishnamurti R., Prakash G. K. S. Preparation of trifluoromethyl and otherperfluoroalkyl compounds with (perfluoroalkyl)trimethylsilanes[J]. J. Org. Chem.,1991,56:984~989.d) Wiedemann J., Heiner T., Prakash G. K. S. Synthetic methods and reactions. Part201. Directpreparation of trifluoromethyl ketones from carboxylic esters: trifluoromethylation with(trifluoromethyl)trimethylsilane[J]. Angew. Chem. Int. Ed.,1998,37:820~821.
    [38] Chang Y., Cai C. Sodium trifluoroacetate: an efficient precursor for the trifluoromethylationof aldehydes [J]. Tetrahedron Lett.,2005,46:3161~3164
    [39] a) Umemoto T., Ishihara S. Power-variable trifluoromethylating agents,(trifluoromethyl)dibenzothio-and-selenophenium salt system[J]. Tetrahedron Lett.,1990,31:3579~3582.b) Umemoto T., Ishihara S. Power-variable electrophilic trifluoromethylating agents. S-, Se-, andTe-(trifluoromethyl)dibenzothio-,-seleno-, and-tellurophenium salt system[J]. J. Am. Chem.Soc.,1993,115:2156~2164.c) Umemoto T., Ishihara S., Adachi K. Useful electrophilic trifluoromethylating agents; S-, Se-and Te-(trifluoromethyl)dibenzophenium-3-sulfonates[J]. J. Fluorine Chem.1995,74:77~82.
    [40] Liang A., Li X., Liu D., Li J., Zou D., WuY., Wu Y. The palladium-catalyzed cross-couplingreactions of trifluoroethyl iodide with aryl and heteroaryl boronic acid esters[J]. Chem.Commun.,2012,48:8273~8275.
    [41] Leng F., Wang Y., Li H., Li J., Zou D., WuY., Wu Y. Facile synthesis of trifluoroethylcompounds by the Suzuki cross-coupling reactions of CF3CH2OTs with arylboronic acids[J].Chem. Commun.,2013,49:10697~10699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700