三甲基膦支持的富电性钴配合物在C-X(X=F,Cl)键活化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香卤化物在有机合成化学中占据重要地位。由于C-Cl、C-F键键能较强,氯代、氟代芳香化合物明显的缺乏反应活性。由此,越来越多的研究组织开始将注意力转移到C-Cl、C-F键的活化上来。而目前的研究显示,富电子的过渡金属配合物在C-Cl、C-F键的活化中表现出显著的优势。与其他过渡金属配合物相比,钴配合物具有价格低廉及对环境更加友好的优势,因此本课题对三甲基膦支持的富电子钴配合物在C-Cl、C-F键活化中的应用进行了探讨,具体内容如下:
     1.三甲基膦支持的低价态钴的配合物与邻位氯代苯甲醛亚胺的反应
     芳基氯化物由于其廉价易得,利用其取代昂贵的芳基溴化物、碘化物作为合成原料明显极具经济价值。同时有机氯化物在诸多工业如化工、医药、制革、电子、农药等方面得到广泛应用,导致大量含氯化合物及其合成过程中产生的中间产物被大量地排放到环境中,由于含氯有机物的长期残留性,生物蓄积性,高毒性以及强致癌性,含氯有机物对环境的污染己经引起了各国政府、学术界、工业界和公众的广泛关注,成为一个全球性环境问题。掌握活化C-Cl键的新手段将有助于我们寻找新的氯化、脱氯及C-Cl键功能化途径,有助于我们研究新的合成手段,有助于解决日益严重的含氯化合物对环境污染的问题,有助于环境保护和绿色化学的发展。从经济实用性和绿色化学的角度上看,对利用相对价廉且毒性较低的钴金属体系催化氯代芳烃的功能化的研究极具应用价值。而对氯代芳烃与钴金属配合物的氧化加成产物的研究将有助于为新的钴金属催化体系建立理论模型和提供理论依据。
     本课题利用CoMeL_4、CoL_4、CoL_3X(X=Cl,Br,I)与2,6-二氯苯甲醛、2-氯苯甲醛与不同的胺合成的一系列希夫碱式化合物发生反应,探索三甲基膦支持的低价态钴的配合物在C-Cl键活化中的反应活性,并合成一系列新的含有[C-Co-Cl]单元的配合物。
     甲基钴配合物CoMeL_4与邻位取代的希夫碱式化合物(1-5)发生了反应,分离得到了一系列含有五员螯合环的三价钴的配合物(6-10),并对反应产物进行了详细表征。同时发现该系列三价钴的配合物有继续发生偶联反应的趋势,当与空间位阻更大的配体19,20反应时,偶联反应成为主要反应,并通过LC-MS对偶联产物进行了初步的表征。
     卤化钴化合物CoL_3X(X=Cl,Br,I)与邻位氯代的希夫碱式化合物(2-5)反应,随着反应底物空间位阻大小的不同,得到不同的反应结果。当反应底物位阻较小时,可以得到六配位的三价钴产物11,12,15,16。当反应底物位阻较大时,可以得到五配位的二价钴产物13,14,17,18。CoIL_3无法与空间位阻较大的底物(3-5)发生反应。
     零价钴配合物CoL_4与N-苯基-2-氯苯甲醛式希夫碱21反应,得到五配位的二价钴产物22。
     2.对新型含有[C-Co-Cl]单元的配合物的功能化反应的尝试
     C-Cl键功能化反应的目的是将有机氯化物中的氯原子转化为其它有机官能团,从而使有机氯化物转变成有应用价值的有机化合物,对于环境保护,资源利用和可持续性的发展具有深刻的意义。本课题试图探索一系列含[C-Co-Cl]结构单元的化合物发生功能化反应的可能,研究其反应机理,为开发新的钴催化体系提供依据。
     配合物12与亲核性较差的三甲基硅乙炔不能发生反应,而与强亲核试剂正丁基锂反应得到的是正丁基锂与苯环上未被活化的C-Cl键发生偶联反应的产物23。在与亲核性适中的苯基格式试剂的反应中,推测配合物12和22都发生了亲核取代反应,其中配合物22的反应中分离出了取代产物24。
     3.新的含[C-Co-F]结构单元的钴配合物的合成
     对于C-F键活化的研究具有很大的意义和应用价值。掌握活化C-F键的新手段不仅有助于我们研究合成新的多功能性氟代有机物,而且有助于解决日益严重的含氟化合物对环境污染的问题。在目前进行的研究中,过渡金属有机化合物在碳氟键的活化中的应用取得了一些成果,大多是富电性(electron-rich)的过渡金属配合物活化C-F键的反应。到目前为止,该领域的研究在金属种类、反应条件、选择性和产率等方面仍具有局限性,更没有工业化的例子,同时对反应机理了解也较少。系统地开展芳香族氟化物中C-F键的活化和功能化研究,分离和捕捉可能的活性中间体,探索相关的反应机理可以为开发具有工业应用价值的(催化)反应体系提供理论模型和依据。
     本课题组曾经报道过甲基钴配合物CoL_4Me可以活化裂解邻位双氟代的芳香族醛联氮化合物的C-F键,通过氧化加成反应生成含有Co-F键的有机钴的配合物。在此研究基础上,本课题试图利用三甲基膦支持的低价态钴的配合物来活化裂解2,6-二氟苯甲醛与不同类型胺生成的一系列希夫碱式化合物的C-F键,并且希望通过反应生成新的有机钴氟配合物。
     甲基钴配合物CoMeL_4与邻位氟代的希夫碱式化合物(24-27)发生了反应,分离得到了一系列含有五员螯合环的三价钴的配合物(28-31),并对反应产物进行了详细表征。同时CoMeL_4与空间位阻更大的配体(32-34)无法发生反应。零价钴配合物CoL_4与邻位氟代的希夫碱式化合物(25-27)反应,不能够活化断裂C-F键而是生成了通过C=N键与钻进行π配位的仍为零价的钴配合物(35-37)。这是由于N原子的配位以及形成五员环所释放的能量不足以弥补C-F键断裂所需要的能量。
     4.CoL_4与全氟甲苯的反应
     由于氟的高电负性使得全氟不饱和化合物双键的亲电性增加,因此,借助富电子的低价过渡金属中心d~n(n≥6)可以实现C-F键的活化。本课题设计利用CoL_4与全氟甲苯反应,探索其活化全氟芳烃中C-F键的可能性,并期待生成含有[C-Co-F]单元的钴氟配合物。
     零价钴配合物CoL_4与全氟甲苯反应,实现了全氟甲苯中双C-F键的活化,并分离出产物配合物39,并获得了其单晶结构。在反应机理研究中,我们已分离出可能的中间物之一配合物38,并获得了其单晶结构。
     5.对全氟甲苯功能化反应的尝试
     在对化合物38的反应性质研究过程中,通过与溴苯反应得到了期望的C,C-偶联产物:对苯基氟代甲苯,实现了C-F键的功能化,同时合成了配合物41。虽然这是一个化学整数比的反应,但仍不失为一种合成对位被芳基取代的全氟甲苯衍生物的新方法。
     本课题对实验过程中获得的新配合物采用IR,~1H,~(13)C和~(31)PNMR等手段进行了表征,并对其中获得单晶的配合物进一步利用X-ray衍射分析证实结构。
Aromatic halides (ArX) are of genuine importance in synthetic organic chemistry. However, the chloro- and fluoroarenes exhibit much lower reactivity due to the inertness of their C-X bonds. It is not surprising, therefore, that attention of numerous research groups has been focused for many years on activation of the C-Cl and C-F bond. A variety of C-Cl and C-F activation reactions that employ electron-rich transition-metal complexes, require comparatively mild conditions, are selective, and afford isolable products are nowknown and catalytic systems have been achieved.Cobalt show their attraction owing to the low prices and envirment friendly. In this doctoral dissertation, application of cobalt complexes supported by trimethylphosphine in C-X(X=F,Cl) bond activation are studied. The mail contents are described as follows:
     Reactions of cobalt complexes with ortho-chlorobenzaldehydes
     Chloroarenes are certainly the most attractive aryl halides for synthetic applications on an industrialscale, because they are inexpensive and readily available in bulk quantities. Chlorinated organic compounds have been used on a large scale in the chemical, petrochemical, and electronic industries. The disposal of organic wastes containing halogen has become a major environmental and social problem, because most of them are toxic and thermally stable, accumulating in the surroundings for long time periods. The development of a highly efficient,safe alternative technology for activation of C-Cl bonds has been anticipated. The study of activation of C-Cl bond has important significance and value. Mastery of the activation of C-Cl bond will help us to find a new chlorination, dechlorination and C-Cl bond key functional way, and help us study the new chlorinated organic synthesis. Moreover, the chlorine compounds help solve the increasingly serious problem of environmental pollution.
     Reactions of CoMeL_4、CoL_4、CoL_3X (X=Cl, Br, I) with ortho-chlorinated substrates containing imine anchoring groups are selected to study the reactivity of cobalt complexes supported by trimethylphosphine,and the novel [C-Co-Cl] complexes are expected to be afforded.
     Reactions of CoMeL_4 with ortho-chlorinated substrates containing imine anchoring groups (1-5), proceed by oxidative addition of the C-Cl bond to give rise to the mono-ortho-metalated diorgano cobalt(Ⅲ) chlorides 6-10, respectively. The new ortho-chelated cobalt complexes formed by oxidative addition of an aromatic C-Cl bond were isolated and characterized. C,C-coupling reactions have been observed in reactions of [CoMe(PMe_3)_4], LC-MS analysis verified the formation of the respective methyl arene derivatives via C, C-coupling through reductive elimination.Steric hindrance has a marked effect on reactions of CoL_3X (X=Cl, Br, I) with ortho-chlorinated substrates containing imine anchoring groups (2-5). Reactions of reactants containing small groups afforded mono-ortho-metalated cobalt(Ⅲ) chlorides (11, 12, 15, 16), while Co(Ⅱ) complexes (13, 14, 17, 18) were formed by reactions with reactants containing bulky groups. C0L3I does not carry out any reaction with 3-5.
     Reactions of C0L4 with N-phenyl-2-chlorobenzaldehydeamine 21, proceed by oxidative addition of the C-Cl bond to give rise to the mono-ortho-metalated diorgano cobalt(Ⅱ) chloride 22.
     Functionalizations of the novel complexes containing [C-Co-Cl] fragmentThe functionalization of carbon-chlorine bonds for converting organic chlorides into
     industrially useful materials, is an interesting area of research activity. Enhancementof the poor reactivity of aryl chlorides toward nucleophiles has been one of the most challenging problems and desirable goals for chemists. In this doctoral dissertation, we attempted to study functionalizations of the novel complexes containing [C-Co-Cl] fragment.
     The mono-ortho-metalated cobalt(Ⅲ) chloride 12 did not carry out any reaction with ethynyltrimethylsilane, while in the reaction with n-butyl lithium, the cholrine in the phenyl ring was replaced by butyl group and afforded the cobalt(Ⅲ) chloride 23. Through the reaction of 12 or 22 with phenylmagnesium, the chlorine was replaced by phenyl group toward nucleophilic substitution and in the reaction of 22, the phenyl cobalt comgplex 24 was isolated.
     Synthesis of the novel complexes containing [C-Co-F] fragmentThe activation of carbon-fluorine bonds is of great importance in organometallic chemistry and catalyst development because this type of reaction contributes to the fundamental understanding of the reactivity of stable bonds and the selective replacement of F atoms. The use of transition-metal complexes offers another means with which to activate C-F bonds. Reports on C-F activation by firstrow transition metals are rare, and only one example of organocobalt fluorides containing a C-M-F moiety has been described.
     We have recently reported a cyclometalation reaction involvingcarbon-fluorine bond activation at a cobalt(Ⅰ) center with azine as an anchoring group, which, for the first time, affordsan ortho-chelated cobalt(Ⅲ) complex containing a C-Co-F fragment.
     Reactions of CoMeL_4 and CoL_4 with ortho-fluorinated substrates containing imine anchoring groups are selected to study the reactivity of cobalt complexes supported by trimethylphosphine, and the novel [C-Co-F] complexes are expected to be afforded.
     Reactions of CoMeL_4 with ortho-fluorinated substrates containing imine anchoring groups (24-27), proceed by oxidative addition of the C-F bond to give rise to the mono-ortho-metalated diorgano cobalt(Ⅲ) chlorides 28-31, respectively. The new ortho-chelated cobalt complexes formed by oxidative addition of an aromatic C-F bond were isolated and characterized. No reaction of with reactants containing bulky groups has been carried out. Under the experimental conditions, a C=N bondπ-coordinated Co(O) complexes were obtained when C0L4 was emplyed.
     Reactions of CoL_4 with octafluorotoluene
     Most of the reported C-F activation of reactions by transition metals occur at electron-rich d~n (n≥6) metal centers via an oxidative addition process. Therefore, reaction of CoL_4 with octafluorotoluene is selected to study the reactivity of cobalt complexes supported by trimethylphosphine with perfluorinated aromatics, and the novel [C-Co-F] complexes are expected to be afforded.
     Two kinds of products were isolated from the reaction of CoL_4 with octafluorotoluene. It generated one Co (Ⅱ) 39 formed by activation of two C-F bonds in the octafluorotoluene and one Co (Ⅰ) 38 which was obtained as a intermediate.
     Functionalizations of octafluorotoluene
     When we treated the Co (Ⅰ) 38 with bromobenzene, fluoro substituents in trans position of the CF_3 group was substituted with phenyl group and the expected C-C coupling product was isolated. At the same time the other product Co(Ⅱ) 41 was obtained. It was a stoichiometric reaction, however, it may be a synthetically useful route for the generation of fluoroorganics.
     All of the now complexes are characterized by IR, ~1H, ~(13)C and ~(31)P NMR. Structures of some single crystals have been confiemed by X-ray diffraction techniques.
引文
1. Miller, J. Aromatic Nucleophilic Substitution; Elsevier: New York,
    
    2. Fanta, P. E.; The Ullmann Synthesis of Biaryls. Synthesis 1974, 9-21.
    
    3. Rossi, R. A.; de Roesi, R. H. Aromatic Substitution by the SN1 Mechanism; Amercian Chemical Society: Washington, DC, 1983.
    
    4. McMillen, D. F.; Golden, D. M; Hydrocarbon Bond Dissociation Energies. Annu. Rev. Phys. Chem. 1982, 33,493-532.
    
    5. Cox, J. D.; Pilcher, G. Thermochemistry of Organic ond Orgonometallic Compounds; Academic Press: London, 1970.
    
    6.余刚,黄俊,张彭义。持久性有机污染物:倍受关注的全球性环境问题。环境保护,2001,4,37-39.
    
    7. March, J. Aduonced Organic Chemistry, 3rd ed; John Wiley and Sons: New York, 1985.
    
    8. Vladimir V. Grushin, Howard Alperb Transformations of Chloroarenes, Catalyzed by Transition-Metal Complexes Chem. Rev. 1994, 94. 1047-1062
    
    9. Vladimir V. Grushina, Howard Alperb Activation of Otherwise Unreactive C-Cl Bonds Top. Organomet. Chem. 1999, 3,193.
    
    10. Imai, H.; Nishiguchi, M.; Tanaka, M.; Fukuzumi, K.; Cleavage of carbon-halogen bond by the hydrogen transfer from or ganic organic compounds catalyzed by noble metal salts. Chem. Lett. 1976, 5, 855-856.
    
    11 Hideski Imai; Transfer hydrogenation and transfer hydrogenolysis. 14. Cleavage of carbon-halogen bond by the hydrogen transfer from organic compounds catalyzed by noble metal salts J. Org. Chem. 1977, 42,2309-2313.
    
    12 Carfagna, C; Musco, A,; Pontellini, R.; Terzoni, G.; MgH_2 as a reducing agent: Part II. Reduction of organic halides in presence of Ni(0) and Pd(0) complexes J Mol. Catal.1989,54, L23-L 27.
    
    13 Qian, C; Zhu, D.; Gu, Y.; Catalytic dehalogenation of aryl and vinyl halides by tricyclopentadienyllanthanum J. Mol. Catal. 1990, 63, L 1-L 3..
    14. Love CJ, McQuillin FJ.; Mechanisms of hydrogenation. Part X. Homogeneous hydrogenolysis of organic halides and hydrogenation of the carbonyl, epoxy-, and nitro-groups. J Chem Soc Perkin Trans 1. 1973,2509-2512.
    15. Grushin, V. V.; Alper, H.; Rhodium (III) biphasic and phase-transfer-catalyzed hydrogenlysis of chloroarenes under exceptionally mild conditions Organometallics 1991,10,1620-1622.
    16. Miguel A. Esteruelas; Dehalogenation of Polychloroarenes with HSiEt3 Catalyzed by an Homogeneous Rhodium-Triphenylphosphine System. Organometallics 1999, 75,1110-1112.
    17. Miguel A. Esteruelas; Dehalogenation of polychloroarenes with sodium formate in propan-2-ol catalyzed by RhCl(PPh_3)_3. New J Chem. 2001,25, 775-776.
    18. Yamamoto, T.; Nishiyama, M.; Koie, Y. Palladium-catalyzed synthesis of triarylamines from aryl halides and diarylamines Tetrahedron Lett. 1998,39, 2367-2370.
    19. (a) Kawatsura, M.; Hartwig, J. F. Simple, highly active palladium catalysts for kstone and malonate arylation: Dissecting the importance of chelation and steric hindrance J. Am. Chem. Soc. 1999,121,1473-1478.
    (b) Hooper, M. W.; Hartwig, J. F. Understanding the coupling of heteroaromatic substrates: Synthesis, structures, and reductive eliminations of heteroarylpalladium amido complexes Organometallics 2003,22, 3394-3403.
    (c) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. Scope and mechanism of palladium-catalyzed animation of five-membered heterocyclic halides J. Org. Chem. 2003, 68,2861-2873.
    20. (a) Littke, A. F.; Fu, G. C. A convenient and general method for Pd-catalyzed Suzuki cross-couplings of aryl chlorides and arylboronic acids Angew. Chem. Int. Ed. 1998, 37, 3387-3388.
    (b) Littke, A. F.; Fu, G. C. The first general method for Stille cross-couplings of aryl chlorides Angew. Chem., Int. Ed. 1999, 38, 2411-2413.
    (c) Littke, A. F.; Dai, C.; Fu, G. C. Versatile catalysts for the Suzuki cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions J. Am. Chem. Soc. 2000,122,4020-4028.
    21. (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers J Am. Chem. Soc. 1999,121, 4369-4378.
    (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. Highly active palladium catalysts for Suzuki coupling reactions J. Am. Chem. Soc. 1999,121, 9550-9561.
    (c) Wolfe, J. P.; Buchwald, S. L. A highly active catalyst for the room-temperature amination and Suzuki coupling of aryl chlorides Angew. Chem., Int. Ed. 1999,38,2413-2416.
    (d)Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. A highly active Suzuki catalyst for the synthesis of sterically hindered biaryls: Novel ligand coordination J. Am. Chem. Soc. 2002,124,1162-1163.
    (e) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. Expanding Pd-catalyzed C-N bond-forming processes: The first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions J. Am. Chem. Soc. 2003,125, 6653-6655.
    (f) Walker, S. D.; Barder, T. E.; Martinelli, J. R; Buchwald, S. L. A rationally designed universal catalyst for Suzuki-Miyaura coupling processes Angew. Chem., Int. Ed. 2004, 43,1871-1876.
    (g) De Lewis, A. K.; Caddick, S.; Cloke, F. G. N.; Billingham, N. C.; Hitchcock, P. B.; Leonard, J.; Synthetic, Structural, and Mechanistic Studies on the Oxidative Addition of Aromatic Chlorides to a Palladium (N-Heterocyclic Carbene) Complex: Relevance to Catalytic Amination J. Am. Chem. Soc. 2003,125, 10066-10073.
    (h) Navarro, O.; Kelly, R. A.; Nolan, S. P. The First General Palladium Catalyst for the Suzuki-Miyaura and Carbonyl Enolate Coupling of Aryl Arenesulfonates J. Am. Chem. Soc. 2003,125, 11818-11819.
    22. Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A.; A defined N-heterocyclic carbene complex for the palladium-catalyzed Suzuki cross-coupling of aryl chlorides at ambient temperatures Angew. Chem., Int. Ed. 2002, 41, 1363-1365.
    23. Fornies, J.; Green, M.; Spencer, J. L.; Gordon, F.; Stone, G. A. Synthesis and some oxidative-addition reactions of bis(tricyclohexylphosphine)platinum. J. Chem. Soc., Dalton Trans. 1977,10,1006-1009.
    24. Grushin, V. V.; Marshall, W. J. The fluoro analogue of Wilkinson's catalyst and unexpected Ph-Cl activation J. Am. Chem. Soc. 2004,126, 3068.
    25. Macgregor, S. A.; Roe, D. C.; Marshall, W. J.; Bloch, K. M.; Bakhmutov, V. I.; Grushin, V. V. The F/Ph rearrangement reaction of [(Ph3P)(3)RhF], the fluoride congener of Wilkinson's catalyst J. Am. Chem. Soc. 2005, 727,15304-15321.
    26 (a) Chen, C.; Yang, L.-M.; Nickel(II)-aryl complexes as catalysts for the Suzuki cross-coupling reaction of chloroarenes and arylboronic acids Tetrahedron Lett. 2007, 48, 2427-2430.
    (b) Galland, J.-C.; Savignac, M.; Genet, J.-P.; Cross-coupling of chloroarenes with boronic acids using a water-soluble nickel catalyst. Tetrahedron Lett. 1999, 40, 2323-2326.
    (c) Indolese, A. F.; Suzuki-type coupling of chloroarenes with arylboronic acids catalysed by nickel complexes Tetrahedron Lett. 1997,38, 3513-351.
    (d) Saito, S.; Ohtani, S.; Miyaura, N.; Synthesis of biaryls via a nickel(0)-catalyzed cross-coupling reaction of chloroarenes with arylboronic acids J. Org. Chem. 1997, 62, 8024-8030.
    27. Huser M, Youinou M-T, Osborn JA.; Chlorocarbon Activation: Catalytic Carbonylation of Dichloromethane and Chlorobenzene. Angew. Chem. Int. Ed. Engl. 1989,25,1386-1388
    28. Grushin VV, Alper H.; Alkali-induced disproportionation of palladium(II) tertiary phosphine complexes, [L_2PdCl_2], to LO and palladium(O). Key intermediates in the biphasic carbonylation of ArX catalyzed by [L_2PdCl_2] Organometallics, 1993,72, 1890-1901.
    29. Grushin VV, Alper H AN EXCEPTIONALLY SIMPLE BIPHASIC METHOD FOR THE METAL-CATALYZED CARBONYLATION OF CHLOROARENES J Chem Soc Chem Commun 1992,8, 611-612.
    30. Miyawaki T, Nomura K, Hazama M, Suzukamo G; A practical convenient homogeneous palladium-phosphine catalysis for hydrocarbonylation of chlorobenzenes. J Mol Catal A 1997,120:L9-L11.
    31. Corain B, Favevo G.; Synthesis and reactivity of organometallic nickel(II) complexes obtained by oxidation of nickel(0) complexes with halogenated organic compounds. J Chem Soc Dalton Trans., 1975,4,283-285.
    32. Ozawa F, Kawasaki N, Okamoto H, Yamamoto T, Yamamoto A.; Mechanisms of double and single carbonylation reactions of aryl iodides catalyzed by palladium complexes to give .alpha.-keto esters and esters. Organometallics 1987, 6,1640-1651
    33. Moser WR, Wang AW, Kildahl NK.; Mechanistic studies of the palladium-catalyzed reaction of methanol with bromobenzene and carbon monoxide to produce methyl benzoate. 1. Stoichiometric study. J. Am. Chem. Soc. 1988,110, 2816-2820.
    34. Jenner G, Ben Taleb A Synthesis of aromatic acids via catalysed methyl formate-chloroarene reactions. J Organomet Chem 1994, 470,257
    35. Liu, D.; Gao, W.; Dai, Q.; Zhang, X.; Triazole-Based Monophosphines for Suzuki-Miyaura Coupling and Animation Reactions of Aryl Chlorides. Org. Lett. 2005,7,4907-4910.
    36. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L.; Catalysts for Suzuki-Miyaura Coupling Processes: Scope and Studies of the Effect of Ligand Structure. J. Am. Chem. Soc. 2005, 127,4685-4696.
    37. Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P.; Modified (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki-Miyaura and Buchwald-Hartwig Reactions. J. Am. Chem. Soc. 2006,128,4101-4111.
    38. Adriane S Gruber, Dirce Pozebon, Adriano L Monteiro, Jairton Dupont; On the use of phosphine-free PdCl_2(SEt_2)_2 complex as catalyst precursor for the Heck reaction. 2001, 42, 7345-7348.
    39. Saito S, Sakai M, Miyaura N. A synthesis of biaryls via nickel[0]-catalyzed cross - coupling reaction of chloroarenes with phenylboronic acids. Tetrahedron Lett. 1996, 37, 2993-2996.
    40 Tang Z Y, Hu Q S.; Triphenylphosphine as a ligand for room-temperature Ni(0)-catalyzed cross-coupling reactions of aryl chlorides with arylboronic acids. J. Org. Chem., 2006, 71,2167-2169.
    41. Chen Chen; YangNickel(II)-aryl complexes as catalysts for the Suzuki cross-coupling reaction of chloroarenes and arylboronic acids Tetrahedron Letters 2007, 48 2427-2430
    42. Tamao, K.; Kodama, S.; Nakatauka, T.; Kiso, Y.; Kumada, M.; One-step preparation of metacyclophanes and (2,6)pyridinophanes by nickel-catalzyed Grignard cyclocoupling. J. Am. Chem. Soc. 1975, 97,4405-4406.
    43. Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.;-Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M.; Nickel-Phosphine Complex-Catalyzed Grignard Coupling. I. Cross-Coupling of Alkyl, Aryl, and Alkenyl Grignard Reagents with Aryl and Alkenyl Halides: General Scope and Limitations. Bull. Chem. SOCJ.p n. 1976, 49,1958-1969.
    44. (a) Kochi, J. K.; The role of electron transfer and charge transfer in organometallic chemistry. Pure. Appl. Chem. 1980,52, 571-605.
    (b) Fahey, D. R.; Mahan, J. E. Oxidative additions of aryl, vinyl, and acyl halides to triethylphosphinenickel(0) complexes. J. Am. Chem. Soc. 1977, 99,2501-2508
    45. Herrmann, W. A.; Brossmer, C.; Priermeier, T.; Ofele, K. Komplexchemie und mechanismen metallkatalysierter cc-kupplungsreaktionen : II. Oxidative addition von chloraromaten an Pd~0-komplexe: synthese, struktur und stabilitat von arylpalladium(II)-chloriden der phosphanreihe. J. Organomet. Chem. 1994, 481, 97-108.
    46. Portnoy, M.; Milstein, D.; Mechanism of aryl chloride oxidative addition to chelated palladium(O) complexes. Organometallics 1993,12, 1665-1673.
    47. Coulson, D. R.; Ready cleavage of triphenylphosphine. J. Chem. Soc., Chem. Commun. 1968,23, 1530-1531.
    48. Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. Reactivity of trialkylphosphine complexes of platinum(O). J. Am. Chem. Soc. 1971, 93, 3543-3544.
    49. Tsou, T. T.; Kochi, J. K.; Mechanism of oxidative addition. Reaction of nickel(0) complexes with aromatic halides. J. Am. Chem. Soc. 1979,101, 6319-6332.
    50. Rieke, R. D.; Kavaliunas, A. V.; Preparation of highly reactive metal powders. Preparation and reactions of highly reactive palladium and platinum metal slurries. J. Org. Chem. 1979, 44, 3069-3072.
    51. A. Hugo Klahn, Adriana Toro, Beatriz Oelckers, Gonzalo E. Buono-Core,
    ??Victor Manriquez, and Oscar Wittk.; Intermolecular C-Cl Activation Reaction of (η~5-C_5R_5)Re(CO)_3 (R =H, Me) with Pentachlorobenzene: X-ray Structure of cis- and frans-(η~5-C_5Me_5)Re(CO)_2(2,3,4,5-C_6HCl_4)Cl and Its Conversion to (η~6-C_5Me_4CH2)Re(CO)2(2,3,4,5-C_6HCl4) Organometallics 2000,19, 2580-2584
    
    52. Alvaro Aballay.; Fernando Godoy.; Photochemical C-Cl bond activation of trichloroarenes by the rhenium complex (η~5-C_5Me_5)Re(CO)_3. X-ray structure of trans-(η~5-C_5Me_5)Re(CO)_2(2-methoxy-4,5-dichlorophenyl)chloride. J.Organomet. Chem. 2003, 688, 168-173.
    
    53. Carmen Leiva.; Derek Sutton; Photochemical Intermolecular Oxidative Addition of the C-Cl Bond of Chlorobenzene to Rhenium Organometallics 1998,17, 4568-4572
    
    54 Thomas G. Richmond," Margaret A. Klng, Eric P. Kelson, and Atta M. Arlt Facile Chelate Assisted Carbon-Halogen Bond Cleavage at Tungsten( 0) Organometallics 1987, 6,1995-1996
    
    55. Sarath D. Perera 1, Jesus J. Fernandez-Sanchez, Bernard L. Shaw; Activation of C-X (X=C1 or Br) bonds in 2-halobenzaldehydes as their 2-pyridylhydrazone derivatives: oxidative addition to tungsten(O) to give aryl-tungsten(II) complexes. Inorg. Chim. Acta 2001, 325, 175-178
    
    56. Foil, M.; Francalanci, F.; Bencini, E.; Gardano,A.; Cobalt-catalysed carbonylation of aryl halides.J. Organomet.Chem. 1985,255,293-303.
    
    57. Foil, M.; Francalanci, F. J.; Cobalt-catalyzed low pressure double carbonylation of aryl and secondary benzyl halides. Organomet. Chem. 1986, 301, C 27-C 30.
    
    58. Foa, M.; Francalanci, F. Recent developments in cobalt-catalyzed carbonylation. J. Mol. Catal. 1987, 41, 89-107.
    
    59. Brunet J-J, Sidot C, Loubinoux B, Caubere P.; Activation of reducing agents. Sodium hydride containing complex reducing agents. 10. NaH-RONa-Co(OAc)2-CO, a new reagent for the carbonylation of aryl halides at atmospheric pressure. J Org Chem 1979, 44, 2199-2202.
    
    60. Avedissian. H.; Cobalt-catalyzed alkenylation of zinc organometallics Tetrahedron Lett. 1998 39 : 6163-6166..
    
    61. Cahiez. G.; Cobalt-catalyzed alkenylation of organomagnesium reagents??Tetrahedron Lett. 1998,39,6159-6162.
    
    62. Fujioka T.; Cobalt-catalyzed intramolecular Heck-type reaction of 6-halo-l-hexene derivatives Organic Lett. 2002,4, :2257-2259.
    
    63. IKEDA Y; Cobalt-catalyzed Heck-type reaction of alkyl halides with styrenes J. Am. Chem. Soc 2002,124,6514-6515.
    
    64. Mizutani K.; Shinokubo H.; Oshima K.;Cobalt-catalyzed three-component coupling reaction of alkyl halides, 1,3-dienes, and trimethylsilylmethylmagnesium chloride. Org. Lett. 2003, 5, 3959-3961.
    
    65. Ohmity A H; Cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic and benzylic grignard reagents and their application to tandem radical cyclization/cross-coupling reactions. Chem-Eur. J. 2004,10, 5640-5648.
    
    66. Wakabayashi, K.; Cobalt-catalyzed tandem radical cyclization and cross-coupling reaction: Its application to benzyl-substituted heterocycles. J. Am. Chem. Soc 2001, 123, 5374.
    
    67. Paulo Gomes; Cobalt-Catalyzed Direct Electrochemical Cross-Coupling between Aryl or Heteroaryl Halides and Allylic Acetates or Carbonates J. Org. Chem. 2003, 55,1142-1145.
    
    68. Korn, TJ.; Cobalt(II)-catalyzed cross-coupling of polyfunctional aryl copper reagents with aryl bromides and chlorides Angew. Chem., Int. Ed 2005,44, :2947-2951.
    
    69. KNOCHEL, P.; Cobalt-catalyzed cross-coupling reactions of heterocyclic chlorides with arylmagnesium halides and of polyfunctionalized arylcopper reagents with aryl bromides, chlorides, fluorides and tosylates Synthesis 2006, 21, 3547-3574.
    
    70. R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.), Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press,New York, 1994;
    
    71. R. Filler, Y. Kobayashi, L.N. Yagupolskii (Eds.), Organo-fluorine Compounds in Medicinal and Biomedical Applications, Elsevier, Amsterdam, 1993;
    
    72. Ojima, J.R. McCarthy, J.T. Welch (Eds.), Biomedical Frontiers of Fluorine Chemistry, ACS Editions, Washington, DC, 1996;
    
    73.Becker (Ed.), Inventory of Industrial Fluoro-Biochemicals, Eyrolles, Paris, 1996.
    74. Clark, J. H.; Wails, B.; Bastock, T. W. Aromatic Fluorination; CRC Press: Boca Raton, 1996.
    75. Rodriguez, C. F.; Bohme, D. K.; Hopkinson, A. C. Theoretical Enthalpies of Formation of CH_mCl_n: Neutral Molecules and Cations. J. Phys. Chem.1996,100, 2942-2949.
    76. Papasawa, S.; Illinger, K. H.; Kenny, J. E. Ab Initio Calculations on Fluoroethanes: Geometries, Dipole Moments, Vibrational Frequencies, and Infrared Intensities J. Phys. Chem.1996,100,10100-10110.
    77. Aizenberg M, Catalytic activation of carbon-fluorine bonds by a soluble transition-metal complex. Science 1994,265, 359-361.
    78. J. Burdeniuc, B. Jedlicka, R.H. Crabtree, Recent Advances in C-F Bond Activation Chem. Ber. 1997,130, 145-154.
    79. L. Kiplinger, T.G. Richmond, C.E. Osterberg, Activation of carbon fluorine bonds by metal-complexes. Chem. Rev. 1994, 94, 373-431.
    80. E.F. Murphy, R. Murugavel, H.W. Roesky, Organometallic fluorides: Compounds containing carbon-metal-fluorine fragments of d-block metals Chem. Rev. 1997, 97, 3425-3468.
    81. T.G. Richmond, in: S. Murai (Ed.), Topics in Organometallic Chemistry, vol. 3, Springer, New York, 1999, p243.
    82. Aizenberg M., Milstein D.; Homogeneous rhodium complex-catalyzed hydrogenolysis of C-F bonds J. Am. Chem. Soc. 1995,117, 8674-8675.
    83. Bruce. M. I.: Gardner, R. C. F.; Stone, F. G. A. Cyclometallation reactions. Part 10. Some reactions of polyfluorinated azobenzenes: metallation by fluorine abstraction. J. Chem. Soc, Dalton Trans., 1975, 7, 591-595
    84. Bruce. M. I.: Gardner, R. C. F.; Stone, F. G. A. Cyclometallation reactions. Part 16. Some reactions of η-cyclopentadienylruthenium phosphine complexes J. Chem. Soc., Dalton Trans. 1976,8, 81-89.
    85. Bruce, M. I.; Gardner, R. C. F.; Goodall, B. L.; Stone, F. G. A.;Doedens, R. J.; Moreland, Metallation of azobenzenes by fluorine-abstraction: structure of a ruthenium complex containing nonafluoro(phenylazo)phenyl-2C,N' and
    ??diphenyl-2-(η-cyclopentadienylphenyl)phosphine groups J. Chem. Soc, Chem. Commun., 1974,5, 185-186
    
    86. Richmond, T. G.; Oaterberg, C. E.; Arif, A. M. Activation of carbon-fluorine bonds by oxidative addition. J. Am. Chem. Soc 1987,109,8091-8092.
    
    87. Osterberg, C. E.; King, M. A.; A. M.; Richmond; T. G. Angew. Chem.. Int. Ed. Engl. 1990. 29,888-890.
    
    88. Osterberg, C. E.; Richmond, T. G. ACS Symp. Ser., in press.
    
    89. Anderson, C. M; Puddephatt, R. J.; Ferguson, G.; Lough, A. J. Oxidative addition of aryl-halogen bonds to platinum(II) and the structure of a complex formed by aryl-fluoride oxidative addition. J. Chem. Soc, Chem. Commun.. 1989,18, 1297-1298.
    
    90. Anderson, M.; Crespo, M.; Ferguson, G.; Lough, A. J.; Puddephatt, R. J. Activation of aromatic carbon-fluorine bonds by organoplatinum complexes Organometallics 1992, 11, 1177-1181.
    
    91. S.D. Perera, B.L. Shaw, M. Thornton-Pett, Cyclometallation of a pentafluorobenzaldehyde azine phosphine via a C---F bond fission by irridium(I): crystal structure of [IrCl_2(CO){Ph_2CH_2C(Bu~t) = N-N = CH(C_6F_4}]. Inorg. Chim. Acta 1995,233,103-107.
    
    92. P. Barrio, R. Castarlenas, M.A. Esteruelas, A. Lled'os, F. Maseras, E. Onate, J. Tom'as, Reactions of a Hexahydride-Osmium Complex with Aromatic Ketones: C-H Activation versus C-F Activation. Organometallics 2001,20 442-452.
    
    93. M.K. Whittlesey, R.N. Perutz, M.H. Moore, Facile intermolecular aromatic C-F bond activation reactions of [Ru(dmpe)_2H_2] (dmpe=Me_2PCH_2CH_2PMe_2) Chem. Commun. (1996) 787-788.
    
    94. M. Aizenberg, D. Milstein, Homogeneous metal-catalyzed hydrogenolysis of C-F bonds. J. Am. Chem. Soc. 1995,117, 8674-8675.
    
    95. D.A. Widdowson, R. Wilhelm, Palladium catalysed Suzuki reactions of fluoroarenes. Chem Commun. 2003,5, 578-579.
    
    96. T. Braun, R.N. Perutz; Routes to fluorinated organic derivatives by nickel mediated C-F activation of heteroaromatics. J. Chem. Soc, Chem. Commun. 2002, 2749-2757.
    97. Herrmann et al, Angew. Chem. Int. Ed., 2001, 40, 3387
    98. Mongin F.; Cross-Coupling Reactions of Phenylmagnesium Halides with Fluoroazines and Fluorodiazines J. Org. Chem. 2002, 67, 8991-8994.
    99. Imhof et al, J. Organomet. Chem., 2004, 689, 2707
    100. Radius U.; Catalytic C-C Bond Formation Accomplished by Selective C-F Activation of Perfluorinated Arenes J. Am. Chem. Soc. 2006,128, 15964-15965.
    101 H.-F. Klein, R. Beck, U. Floerke, H.-J. Haupt, Regiospecific cyclometalation of diphenyl(2-substituted phenyl)phosphane with methyltetrakis(trimethylphosphane)-cobalt(I). Eur. J. Inorg. Chem., 2003, 853-862.
    102. H.-F. Klein, R. Beck, U. Floerke, H.-J. Haupt, Five- and six-membered cobaltocycles with C,P-chelating ligands through regiospecific cyclometalation of mono(2-substituted) triphenylphosphane. Eur. J. Inorg. Chem., 2003, 1380-1387.
    103. H.-F. Klein, S. Camadanli, R. Beck, D. Leukel, U. Floerke, Cyclometalation of Substrates Containing Imine and Pyridyl Anchoring Groups by Iron and Cobalt Complexes. Angew. Chem. Int. Ed. 2005, 44, 975-977.
    104. H.-F. Klein, R. Beck, U. Floerke, H.-J. Haupt, Steric control of cyclometallation reactions in Schiff-base complexes of cobalt(I) containing an anchoring diphenylphosphanyl group. Eur. J. Inorg. Chem., 2002, 3305-3312.
    105. Li, X.; Sun, H.; Yu, F.; Florke, U.; Klein, H.-F. C-F Bond Cleavage and Unexpected C-CN Activation by Cobalt Compounds Supported with Phosphine Ligands Organometallics 2006, 25,4695-4697
    106. Klein, H.-F.; Camadanli, S.; Beck, R.; Eur. J. Inorg. Chem.,submitted.
    107. Li, X.; Yu, F.; Sun, H.; Hou, H.; Novel Stable Five-coordinate diorgano Cobalt(III) Complexes: Formation, Structure, and Reaction with Carbon Monoxide, Inorg. Chim. Acta, 2006, 359(10), 3117-3122
    108. W. Wolfsberger and H. Schmidbaur,Eine Befriedigende darstellungsmethode fur trimethylphosphin, Syn. React. Inorg. Metal-Org. Chem. 1974, 4,149-156.
    109. R. Alfred, Inorganic Syntheses 1957,153-156.
    110. H.-F. Klein and H. H. Karsch, Methylkobaltverbindungen mit nicht chelatisierenden Liganden, I. Methyltetrakis(trimethylphosphin)cobalt und seine Derivate, Chem. Ber. 1975,108, 944-955.
    111. H.-F. Klein and H. H. Karsch, Tris(trimethylphosphine)cobalt(I) Halides. Preparation and Properties. Inorg. Chem. 1975,14,473-477.
    (1) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94,1047-1062.
    
    (2) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39,2367-2370.
    
    (3) (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473-1478.
    
    (b)Hooper, M. W.; Hartwig, J. F. Organometallics 2003, 22, 3394-3403.
    
    (c) Hooper,M. W.; Utsunomiya, M.; Hartwig, J. F. J.Org. Chem. 2003, 68, 2861-2873.
    
    (4) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387-3388.
    
    (b) Littke,A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, 2411-2413.
    
    (c) Littke, A. F.; Dai,C.; Fu, G. C. J. Am. Chem. Soc. 2000,122,4020-4028.
    
    (5) (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J.P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369-4378.
    
    (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999,121, 9550-9561.
    
    (c) Wolfe,J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413-2416.
    
    (d) Yin, J.;
    ??Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162-1163.
    
    (e) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653-6655.
    
    (f) Walker, S. D.; Barder, T. E.; Martinelli, J. R. Buchwald, S. L. Angew. Chem., Int. Ed 2004, 43, 1871-1876..
    
    (g) De Lewis, A. K.; Caddick, S.; Cloke, F. G. N.; Billingham, N. C; Hitchcock, P. B.; Leonard, J. J. Am. Chem. Soc. 2003, 125, 10066-10073.
    
    (h) Navarro, O.; Kelly, R. A, III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 11818-11819.
    
    (6) Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41,1363-1365.
    
    (7) (a) Chen, C.; Yang, L.-M. Tetrahedron Letters 2007, 48,2427-2430.
    
    (b) Galland, J.-C; Savignac, M.; Genet, J.-P. Tetrahedron Lett. 1999, 40, 2323-2326.
    
    (c) Indolese, A. F. Tetrahedron Lett. 1997, 38, 3513-351.
    
    (d) Saito, S.; Ohtani, S.; Miyaura, N. J. Org. Chem. 1997, 62, 8024-8030.
    
    (8) (a) Reddy, C. K.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1700.
    
    (b) Korn, T. J.; Cahiez, G.; Knochel, P. Synlett. 2003, 1892.
    
    (c) Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44,2947 -2951
    
    (9) (a) Avedissian, H.; Brillon, L; Cahiez, G.; Knochel P. Tetrahedron Lett. 1998, 39, 6163;
    
    (b) Cahiez, G.; Avedissian, H. Tetrahedron Lett. 1998,39,6159.
    
    (10)(a) For an excellent review see: Shinokubo, H.; Oshima, K. Eur. J. Org. Chem. 2004, 2081;
    
    (b) Fujioka, T.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2257;
    
    (c) Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem. 2002, 114, 4311; Angew. Chem., Int. Ed. 2002, 41,4137;
    
    (d) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374;
    
    (e) Ohmiya, H.; Tsuji, T.; Yorimitsu, H.; Oshima, K. Chem. Eur. J. 2004,10, 5640;
    
    (f) Ikeda, Y.; Nakamura, T.; Yorimitsu H., Oshima, K. J. Am. Chem. Soc. 2002,124, 6514;
    
    g) Mizutani, K.; Shinokubo, H.; Oshima, K. Org. Lett. 2003,5, 3959.
    (11)(a) Gomes, P.; Gosmini, C.; Prichon, J. Org. Lett. 2003, 5, 1043;
    
    (b) Gomes, P.;Gosmini, C.; Prichon, J. Synthesis 2003,1909.
    (12)(a) Klein, H.-F.; Camadanli, S.; Beck, R.; Leukel, D.; Florke, U. Angew. Chem., Int. Ed. 2005, 44,975.
    
    (b) Klein, H.-F.; Camadanli, S.; Beck, R.; Florke, U. Chem. Commun. 2005, 381-382.
    
    (13) Li, X.; Sun, H.; Yu F.; Florke, U.; Klein, H.-F. Organometallics 2006,25, 4695.
    
    (14) Donnecke, D.; Halbauer, K.; Imhof, W. J. Organomet. Chem. 2004, 689, 2707.
    
    (15) Klein, H.-F.;. Karsch, H. H Chem. Ber. 1975,108, 944-955. Klein, H.-F.;. Karsch, H. H Inorg. Chem. 1975,14, 473-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700