含氮稠杂环化合物合成及抗肿瘤细胞活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据以DNA为靶点抗肿瘤药物的作用机理,通过对天然产物呋喃香豆素、抗癌先导化合物amonafide和苊并吡咯杂环类化合物进行结构改造,本文设计、合成、表征了三系列以DNA为靶点的抗肿瘤化合物:
     1.以具有良好DNA嵌入功能的光化治疗试剂呋哺喹啉酮为母体,通过在其喹啉酮环氮原子上引入柔性侧链,设计了一系列N-取代的角型呋哺喹啉酮衍生物。以间苯二胺为原料,经佩希曼缩合、重氮化、水解、取代、环合、偶联六步反应合成了十二个目标化合物(其中十一个未见报导)。体外抗肿瘤活性测试显示,碱性氨基侧链的引入有助于改善母体的抗肿瘤功效,其中活性最好的化合物1h(N-(2-dimethyl amino-ethyl)-2-(4,8,9-trimethyl-2-oxo-2H-furo-[2,3-h]quinolin-1-yl)-acetamide)对P388和A549肿瘤细胞的IC_(50)值分别为14.45μM和20.54μM,同样测试条件下母体化合物的IC_(50)值分别为>100μM和99.29μM。
     2.为了即保留萘酰亚胺类抗癌先导amonafide的生物活性,又降低其副作用,设计了5-位脂肪氨基和5-位芳香基团取代的萘酰亚胺衍生物。以1,8-萘酐为原料,经溴化、胺化和偶联三步反应合成目标化合物。在最后一步反应中,由于萘酰亚胺结构的特点,导致其5-位用传统的化学方法难以发生亲核取代反应。本论文首次应用碘化亚铜/脯氨酸和四三苯基膦钯催化的Suzuki偶联反应,合成八个新的5-位脂肪氨基取代的amonafide类似物和五个5-位芳香基团取代的萘酰亚胺衍生物(四个未见报导)。通过亲核取代反应得到了相应的八个6-位脂肪氨基取代的萘酰亚胺衍生物。这些新的萘酰亚胺化合物中有八个对HeLa和P388D1肿瘤细胞显示出优于amonafide(IC_(50)值分别为6.02μM和0.68μM)的体外抗肿瘤活性,对HeLa细胞3a(5-(dimethylamino-ethylamino)-2-[2-(dimethylamino)ethyl]-1H-benzo[de]-isoquinoline-1,3(2H)-dione,IC_(50)=0.69μM)、3b(5-(dimethylamino-propylamino)-2-[2-(dimethylamino)ethyl]-1H-benzo[de]isoquinoline-1,3(2H)-dione,IC_(50)=0.71μM)、4b(6-(dimethylamino-propylamino)-2-[2-(dimethylamino)ethyl]-1H-benzo[de]isoquinoline-1,3(2H)-dione,IC_(50)=0.64μM);对P388D1细胞3b(IC_(50)=0.23μM)、4b(IC_(50)=0.23μM)。由于结构中没有伯胺基团,可以避免类似amonafide的副作用。对比新合成的5-位氨基取代物和相对应的6-位氨基取代物体外抗肿瘤活性,发现6-位取代物的体外抗肿瘤活性普遍好于5-位取代物。这项研究不仅得到新的具有抗肿瘤活性的化合物,扩大临床药物筛选范围,而且丰富了萘酰亚胺类抗肿瘤化合物构效关系的研究。
     3.设计、合成了新的苊并吡咯羧酸类衍生物。以苊醌为原料,经KnoevenagelCondensation,环构化、水解、芳香亲核氢取代四步反应合成九个目标化合物(未见报导)。其中5d(3-(3-dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carboxylicacid)对HL-60细胞的IC_(50)为13.1μM,5g(3-Piperidin-8-oxo-8H-acenaphtho[1,2-b]-pyrrole-9-carboxylic acid)对HeLa、HL-60、HCT-8、A-3375和MCF-7细胞的IC_(50)分别为20.6、20.5、24.4、18.4和14.5μM,具有较好的体外抗肿瘤活性。流势细胞术法检测发现对HeLa细胞,化合物5d可以引起细胞周期阻滞于S期和诱导凋亡,同样实验条件下5g诱导凋亡:光谱学方法和粘度测试显示这两个化合物以同样的方式与DNA结合。
     4.利用紫外、荧光、圆二色谱及粘度测试方法研究了上述化合物与DNA之间的相互作用,结果显示这些化合物主要是通过嵌入结合的方式与DNA相互作用的。嵌入常数均达到10~5数量级,是中等强度DNA嵌入剂。
Based on the action mechanism of antitumor agents that target DNA,three series of compounds were designed,synthesized and charactered by structural modify to natural product furocoumarin and acenaphtho-pyrrole heteroaromatic system and the derivative of lead amonafide.The following studies are made.
     1.Based on parent compound,furoquinolinone,which is a phototherapeutical agent, N-substituted angular furoquinolinone derivatives were designed by introducing of the side chain to the N-position of furoquinolinone.Twelve target compounds(eleven compounds are not reported) were prepared from m-phenylenediamine and ethyl acetoacetate by six steps including Pechmann condensation,diazotization,hydrolysis,substitution,cyclization and coupling reaction.The evaluation for antitumor activities in vitro indicated that the introduction of amino side chain is an effective way to improve the antitumor activity of the parent.Compound 1h N-(2-dimethylamino-ethyl)-2-(4,8,9- trimethyl-2-oxo-2H- furo[2,3-h]-quinolin-1-yl)-acetamide exhibited the highest activities against P388 and A549 cell lines and its IC_(50) values are 14.45μM and 20.54μM,respectively.However,the IC_(50) of the parent compound are>100μM and 99.29μM at the same experiment,respectively.
     2.To retain the biological activity of the amonafide and reduce the side effects,5-position aliphatic amine substituted naphthalimide and 5-position aromatic substituted naphthalimide were designed.The target compounds were synthesized from naphthalic anhydride by three steps including bromization,amination and coupling reaction.The nucleophilic substitution reaction at the 5-position of the naphtahlimide is difficult to occur by traditional chemical method due to electron-charge accumulation induced by strong electron-withdrawing ability of carbonyl.Therefore,the third step reaction is the most difficult.In this paper,we first reported the synthesis of 5-aliphatic amine substituted and 5-aromatic substituted naphthalimide derivatives via CuI/proline catalyzed coupling reaction and Suzuki coupling reaction,respectively.Eight 6-aliphatic amine substituted naphthalimide derivatives were synthesized via nucleophilic substitution reactions.The eight new compounds exhibited better activity than amonafide(the IC_(50) vaIues are 6.02μM and 0.68μM,respectively)against HeLa and P388D1 cell under the same experimental conditions.Among the compounds,3a (5-(Dimethylamino-ethylamino)-2-[2-(dimethylamino)ethyl]-1H- benzo[de]- isoquinoline-1,3 (2H)-dione,IC_(50) = 0.69μM),3b(5-(Dimethylaminopropylamino)- 2-[2-(dimethylamino) ethyl]- 1H-benzo[de]isoquinoline- 1,3(2H)-dione,IC_(50) = 0.71μM),4b(6-(dimethylaminoproplamino) -2-[2-(dimethylamino)ethyl]-1H-benzo[de]isoquinoline-1,3(2H)-dione,IC_(50) = 0.64μM);against P388D1,3b(IC_(50) = 0.23μM),4b(IC_(50)= 0.23μM).The compounds can avoid the side effect of amonafide due to lack of a primary amine in their structure.The antitumor activities in vitro of the 6-amino substituted naphthalimide derivatives are better than those of 5-amino substituted.Therefore,this work not only can obtain new compounds with antitumor activities for clinical screen,but also expand the structure activity relationships studies of the naphthilimides.
     3.New 8-oxo-SH-acenaphtho[1,2-b]pyrrole-9-carboxylic acid derivatives were designed and synthesized.Nine target compounds were synthesized from acenaphthene quinone by four steps including Knoevenagel condensation,cyclization,hydrolysis and S_NAr~H reaction. Among the compounds,5d(3-(3-Dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carboxylic acid) and 5g(3-Piperidin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carboxylic acid) show better antitumor activities in vitro,the IC_(50) value of 5d against HL-60 cell is 13.11μM and the IC_(50) of 5g against HeLa,HL-60,HCT-8,A-3375 and MCF-7 cell are 20.61,20.52,24.42,18.43 and 14.51μM,respectively.Cell cycle analysis indicated that 5d could induce S-phase arrest followed by apoptosis and 5g only induced apoptosis,although the both compounds could bind to DNA in same way.
     4.DNA-binding of the above mentioned compounds are investigated by fluorescent, UV-vis,CD spectroscopic techniques and viscosity measurement.The results indicate that the compounds bind to DNA mainly via intercalation.The Scatchard-binding constants in 10~5 order of magnitude are actually moderate DNA-intercalators.
引文
[1]卫生部卫生统计中心制作的《2006年中国卫生事业发展情况统计公报》
    [2]Karnoffsky et al,1948;Farber et al,1960.
    [3]Nobili S,Landini I,Mini E,et al.Pharmacological Strategies for Overcoming Multidrug Resistance.Curr Drug Targets.2006,7:861-879.
    [4]李国青,张育.肿瘤多药耐药机制的研究进展.现代肿瘤医学.2005,13(6):841-843.
    [5]Prudhomme M.Combining DNA Damaging Agents and Checkpoint 1 Inhibitors.Curt Med Chem-Anti-Cancer Agents.2004,4:435-438.
    [6]Marchini S,D'Incalci M,Broggini M.New Molecules and Strategies in the Field of Anticancer Agents.Curr Med Chem - Anti-Cancer Agents.2004,4:247-262.
    [7]王金发.细胞生物学.北京:科学出版社,2003.
    [8]Hurley L H.DNA AND 1TS ASSOCIATED PROCESSES AS TARGETS FOR CANCER THERAPY.NAT REV CANCER.2002,2:188-200.
    [9]Evan G I,Vousden K H.Proliferation,cell cycle and apoptosis in cancer.Nature.2001,411:342-347.
    [10]Malumbres M,Barbacid M.TO CYCLE OR NOT TO CYCLE:A CRITICAL DECISION IN CANCER.NAT REV CANCER.2001,1:222-231.
    [11]Senderowicz A M.Targeting cell cycle and apoptosis for the treatment of human malignancies.Curr Opin Cell Biol.2004,16:670-678.
    [12]Brown J M,Attardi L D.The role of apoptosis in cancer development and treatment response.NAT REV CANCER.2005,5:231-237.
    [13]Kastan M B,Bartek J.Cell-cycle checkpoints and cancer.NATURE.2004,432:316-323.
    [14]Kawanishi S,Hiraku Y.Amplification of Anticancer Drug-Induced DNA Damage and Apoptosis by DNA-Binding Compounds.Curr Med Chem - Anti-Cancer Agents.2004,4:415-419.
    [15]Tolomeo M,Gebbia N,Simoni D.Anticancer Drugs Targeting the Apoptotic Pathway.Meal Chem Rev.2005,2:67-79.
    [16]Havelka A M,Olofsson M H,Linder S,et al.Mechanisms of Action of DNA-Damaging Anticancer Drugs in Treatment of Carcinomas:Is Acute Apoptosis an "Off-Target" Effect?.Mini-Rev Meal Chem.2007,7:1035-1039.
    [17]Zhou B B S,Elledge S J.The DNA damage response:putting checkpoints in perspective.NATURE.2000,408:433-439.
    [18]Scharer O D.Chemistry and Biology of DNA Repair.Angew Chem Int Ed.2003,42:2946-2974.
    [19]Zhou B B S,Bartek J.TARGETING THE CHECKPOINT KINASES:CHEMOSENSITIZATION VERSUS CHEMOPROTECTION.NAT REV CANCER.2004,4:1-10.
    [20]Kastan M B,Bartek J.Cell-cycle checkpoints and cancer.NATURE.2004,432(18):316-323.
    [21]蒋满荣.DNA损伤对哺乳动物细胞周期和凋亡的影响:(博士学位论文).上海:中国科学院研究生院中国科学院上海生命科学研究院生物化学与细胞生物学研究所,2004.
    [22]王缓缓.利用DNA拓扑结构探针研究DNA损伤信号转导(硕士学位论文).大连:大连理工大学,2008.
    [23]张礼和.以核酸为作用靶的药物研究[M].北京:科学出版社,1997
    [24]钟文英.药物分子与生物大分子相互作用的研究:(博士学位论文).南京:南京大学,2003.
    [25]杜江燕.药物分子与DNA相互作用机理的研究:(博士学位论文).长春:中国科学院长春应化所2004.
    [26]李楠.抗癌药物与DNA相互作用的电化学及光谱研究:(博士学位论文).长春:中国科学院长春应用化学研究所,2005.
    [27]Palchaudhuri R,Hergenrother P J.DNA as a target for anticancer compounds:methods to determine the mode of binding and the mechanism of action.Curr Opin Biotech.2007,18:497-503.
    [28]Long E C,Barton J K.On demonstrating DNA intercalation.Acc Chem Res.1990,23:271-273.
    [29]Graves D E,Velea L M.Intercalative Binding of Small Molecules to Nucleic Acids.Curr Org Chem.2000,4,915-929.
    [30]Ihmels H,Otto D.Intercalation of Organic Dye Molecules into Double-Stranded DNA General Principles and Recent Developments.Top Curr Chem.2005,258:161-204.
    [31]Martínez R,Chacón-García L.The Search of DNA-Intercalators as Antitumoral Drugs:What it Worked and What did not Work.Curr Med Chem.2005,12:127-151.
    [32]Holden J A.DNA Topoisomerases as Anticancer Drug Targets:From the Laboratory to the Clinic.Curr Med Chem - Anti-Cancer Agents.2001,1:1-25.
    [33]Denny W A,Baguley B C.Dual Topoisomerase Ⅰ/Ⅱ Inhibitors in Cancer Therapy.Curr Top Med Chem.2003,3:339-353.
    [34]Capranico G,Zagotto G,Palumbo M.Development of DNA Topoisomerase-Related Therapeutics:A Short Perspective of New Challenges.Curt Med Chem.- Anti-Cancer Agents.2004,4:335-345.
    [35]李志裕.新型拓扑异构酶抑制剂类抗肿瘤化合物的研究:(博士学位论文).南京:中国药科大学,2000.
    [36]Armitage B.Photocleavage of Nucleic Acids.Chem Rev.1998,98,1171-1200.
    [37]Eis P S,Smith J A,Rydzewski J M,Case D A,Boger D L,Chazin W J.High resolution solution structure of a DNA duplex alkylated by the antitumor agent duocarmycin SA.J Mol Biol.1997,272:237-252.
    [38]Gambari R,Lampronti I,Bianchi N,et al.Structure and Biological Activity of Furocoumarins.Top Heterocycl Chem.2007,9:265-276.
    [39]Via L D,Magno S M.Photochemotherapy in the Treatment of Cancer.Curr Med Chem.2001,8:1405-1418.
    [40]Kitamura N,Kohtani S,Nakagaki R.Molecular aspects of furocoumarin reactions:Photophysics,photochemistry,photobiology,and structural analysis.J Photoch Photobio C:Photochemistry Reviews.2005,6:168-185.
    [41]Tongqian Chen.Synthesis,Evaluation and Mechanistic Studies of Halogenated Psoralen and Acridine Photosensitizers:(PhD Thesis).Columbus:The Ohio State University,1995.
    [42]王来友.基于PUVA疗法补骨脂素类化合物吸收的药学研究:(博士学位论文).广州:中山大学,2006.
    [43]Via L D,Gia O,Magno S M,et al.New Tetracyclic Analogues of Photochemotherapeutic Drugs 5-MOP and 8-MOP:Synthesis,DNA Interaction,and Antiproliferative Activity.J Med Chem.1999,42:4405-4413.
    [44]Via L D,Quezada E,Dolmella A,et al.Novel Pyrone Side Tetracyclic Psoralen Derivatives:Synthesis and Photobiological Evaluation.J Med Chem.2003,46:3800-3810.
    [45]Gibbs N K,Quanten E,Baydoun S,et al.Photophysical,photochemicaland photobiological properties of pyrrolocoumarins;a new class of photoactive compounds.J.Photochem.Photobiol.B:Biol.1988,2:109-122.
    [46]Gia O,Magno S M,Via L D,et al.Design,synthesis and photobiological properties of 3,4-cyclopentenepsoralens.Bioorg Med Chem.2005,13:809-817.
    [47]Via L D,Magno S M,Rodighiero P,et al.Synthesis,photobiological activity and photoreactivity of methyl-thieno-8-azacoumarins,novel bioisosters of psoralen.Bioorg Med Chem Lett.2002,12:1253-1257.
    [48]Dall'Acqua F,Vedaldi D,Guitto A,et al.New monofunctional reagents for DNA as possible agents for the photochemotherapy of psoriasis:derivatives of 4,5-dimethylangelicin.J Med Chem.1981,24:178-184.
    [49]Giordanettoa F,Fossab P,Menozzib G,et al.In silico rationalization of the structural and physicochemical requirements for photobiological activity in angelicine derivatives and their heteroanalogues.J Comput Aid Mol Des.2003,17:53-64.
    [50]吴少华,张仲海,赵建斌.补骨脂素体内外抗癌活性的实验研究.中国中药杂志,1998,23(5):303-306.
    [51]Fox F E,Niu Z,Tobia A,et al.Photoactivated hypericin inhibits proliferation and induces a high rate of apoptotic death of normal and malignant T-lymphocytes from patients with CTCL.J Invest Def.1998,11:327-332.
    [52]闰晓光,周训银,吴军正补骨脂素类抗肿瘤作用的光敏特性研究.国外医学肿瘤分册.1999,26(2):83-86.
    [53]Garazd M M,Garazd Ya L,Shilin S V,et al.MODIFIED COUMARINS.4.SYNTHESIS AND BIOLOGICAL PROPERTIES OF CYCLOPENTANEANNELATED FUROCOUMARINS.Chem Nat Cpmpd.2002,38(3):230-242.
    [54]郭江宁.补骨脂抗氧化与抗癌活性成分的研究:(博士学位论文).沈阳:沈阳药科大学,2004.
    [55]Gasparro F R.Psoralen photobiology:recent advances.Photochem Photobiol.1996,63:553-557.
    [56]Urano K,Matsuyama T,Urano R,et al.PUVA suppresses the expression of Cell adhesion molecules of lymphocytes.Exp Dermatol.1995,4:36-41.
    [57]李祝,宋宝安.补骨脂素抗肿瘤机理及其应用研究进展.山地农业生物学报.2007,26(3):255-260.
    [58]赵益业,蔡宇.补骨脂素逆转人乳腺癌耐药细胞株MCF_7多药耐药性研究.中华中医药杂志(原中国医药学报) 2006,21(6):370-371.
    [59]蔡宇,蔡天革,唐凤德等.补骨脂素逆转K562_ADM多药耐药细胞系耐药性研究.中国肿瘤临床.2004,31(3):146-148.
    [60]Sardari S,Mori Y,Horita K.Synthesis and Antifungal Activity of Coumarins and Angular Furanocoumarins.Bioorg Med Chem.1999,7:1933-1940.
    [61]Wang C,Chen L G,Yen K,et al.Inducible Nitric Oxide Synthase Inhibitors of Chinese Herbs.Part 2:NaturallyoCcurring Furanocoumarins.Bioorg Med Chem.2000,8:2701-2707.
    [62]Brana M F,Castellano J M,Roldan C M.Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8- naphthalic acid.Cancer Chemother Pharmacol.,1980,4:61-66.
    [63]Brana M F,Sanz A M,Castellano J M.Synthesis and cytostatic activity of benz[de]iso-quinoline-1,3-diones:Structure-activity Relationships.Eur J Med Chem Chim Ther.1981,16:207-212.
    [64]Rosell R,Carles J,Abad A.Phase Ⅰ study of mitonafide in 120 hour continuous infusion in non-small cell lung cancer.Invest New Drugs.1992,10:171-175.
    [65]Llombart M.,Poveda A,Forner E.Phase Ⅰ study of mitonafide in solid tumors,Invest New Drugs.1992,2,10:177-181.
    [66]Diaz-Rubio E,Martin M,Lopez-Vege J M.Phase Ⅰ study of mitonafide with a 3-day administration schedule:early interruption due to severe central nervous system toxicity.Invest New Drugs.1994,12:277-281.
    [67]Malviya V K,Liu P Y,Alberts D S.Evaluation of amonafide in cervical cancer:phase Ⅱ.Am.J.Clin.Oncol.,1992,15:41-44.
    [68]Ratiain M J,Mick R,Berezin F.Phase Ⅰ study of amonafide dosing based on acetyllator phenotype.Cancer Res.,1993,53:2304-2308.
    [69]Allen S L,Budman D R,Fusco D.Proc Am Assoc Cancer Res.1994,35:225-240.
    [70]Warinbg M J,Gonzalez A,Jimeneza A.Intercalative binding to DNA of antitumor drugs derived from 3-nitro-1,8-naphthalic acid.Nucleic Acids Res.1979,7:217-230.
    [71]Feigon J,Deeny W A,Leupin W,Kearns D R.Interaction of antitumor drugs with natural DNA:HNMR study of binding mode and kinetics.J Med Chem.1984,27:450-465.
    [72]Hsiang Y H,Jiang J B,Liu L F.Topoisomerase Ⅱ-mediated DNA cleavage by amonafide and its structural analogs.Mol Phamacol.1989,36:371-376.
    [73]Brana M F,Castellano J M,Moran M,et al.Emling F,Kluge M,Schlick E,Klebe G,Walker N.Synthesis,structure and antitumor activity of new benz[d,e]isoquinoline-1,3-diones.Arzneim-Forsch.1995,45:1311-1318.
    [74]Zee-Cheng R K Y,Cheng C C.N-(Aminoalkyl)imide antineoplastic agents:Synthesis and biological activity.J Med Chem.1985,28:1216-1222.
    [75]Quaquebeke E V,Mahieu T,Kiss R,et al.2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-5-yl}carbamoyl)acetamide(UNBS3157),a Novel Nonhematotoxic Naphthalimide Derivative with Potent Antitumor Activity.J Med Chem.2007,50:4122-4134.
    [76]Norton J T,Witschi M A,Huang S,et al.Synthesis and anticancer activities of 6-amino amonafide derivatives.Anti-cancer Drugs.2008,19:23-36.
    [77]Sami S M,Dorr R T,Albert D S,et al.2-substituted 1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones.A new class of antitumor agent.J Med Chem.1993,36:765-770.
    [78]Sami S M,Dorr R T,Solyom A M,et al.Amino-substituted 2-[2'-(dimethylamino)ethyl]-1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones.Synthesis,antitumor activity,and quantitative structure-acitvity relationship.J Med Chem.1995,38:983-993.
    [79]Sami S M,Dorr R T,Albert D S,et al.Analogues of aminofide and azonafide with novel ring systems.J Med Chem.2000,43:3067-3073.
    [80]Brana M F,Cacho M,Carcia M A,et al.Synthesis,antitumor activity,molecular modeling and DNA binding properties of a new series of imidazonaphthalimides.J Med Chem.2002,45:5813-5816.
    [81]Brana M F,Cacho M,Ramos A.Synthesis,biological evaluation and DNA binding properties of novel mono and binaphthalimides.Org Biomol Chem.2003,1:648-6545.
    [82]Brana M F,Cacho M,Carcia M A,et al.New analogues of amonafide and elinafide,containing aromatic heterocycles:synthesis,antitumor activity,molecular modeling and DNA bonding properties.J Med Chem.2004,47:1391-1399.
    [83]李永刚.含硫稠环萘酰亚胺DNA嵌入剂和光敏切断剂及其抗肿瘤效果:(博士学位论文).上海:华尔理工大学,2003.
    [84]Zhu H,Huang M,Ding J,et al.R16,a novel amonafide analogue,induces apoptosis and G2-M arrest via poisoning topoisomerase Ⅱ.Mol Cancer Ther.2007,6(2):484-495.
    [85]Li Z,Yang Q,Qian X.Synthesis,antitumor evaluation and DNA photocleaving activity of novel methylthiazonaphthalimides with aminoalkyl side chains.Bioorg Med Chem Lett.2005,15:3143-3146.
    [86]Li Z,Yang Q,Qian X.Novel thiazonaphthalimides as efficient antiturnor and DNA photocleaving agents:Effects of intercalation,side chains,and substituent groups.Bioorg Med Chem.2005,13:4864-4870.
    [87]Yin H,Xu Y,Qian x.Novel antitumor agent family of 1H-benzo[c,d]indol-2-one with flexible basic side chains:Synthesis and biological evaluation.Bioorg Med Chem.2007,15:1356-1362.
    [88]Li F,Cui J,Qian X,et al.Molecular design,chemical synthesis,and biological evaluation of '4-1' pentacyclic aryl/heteroaryl-imidazonaphthalimides.Bioorg Med Chem.2007,15:5114-5121.
    [89]Ott I,Xu Y,Qian x,et al.Sulfur-substituted naphthalimides as photoactivatable anticancer agents:DNA interaction,fluorescence imaging,and phototoxic effects in cultured tumor cells.Bioorg Meal Chem.2008,16:7107-7116.
    [90]Brana M F,Castellano J M,Moran M,et al.Bis-naphthalimides:a class of antitumor agents.Anti-cancer Drug Des.1993,8:257-268.
    [91]Brana M F,Castellano J M,Moran M,et al.Bis-naphthalimides 3:synthesis and antitumor activity of N,N'-bis[2-(1,8-naphthalimido)-ethyl]alkanediamines.Anti-cancer Drug Des.1996,11:297-309.
    [92]Cobb P W,Degen D R,Clark G M.Activity of DMP 840,a new bis-naphthalimide,on primary human tumor colony-forming units.J Nat Can Inst.1994,86:1462-1465.
    [93]McRipley R J,Burns-Horwitz P E,Czerniak P M,et al.Efficacy of DMP 840:A novel bis-naphthalimide cytotoxic agent with human solid tumor xenograft selectivity.Cancer Res.1994,54:159-164.
    [94]Brana M F,Cacho M,Ramos A,et al.Synthesis,biological evaluation and DNA bingding properties of novel mono and binaphthalimies.Org Biomol Chem.2003,1:648-6545.
    [95]Brana M F,Gradillas A,Acero N,et al.Synthesis,Biological Activity,and Quantitative Structure-Activity Relationship Study of Azanaphthalimide and Arylnaphthalimide Derivatives.J Med Chem.2004,47:2236-2242.
    [96]Antonini I,Santoni G,Lucciarini R,et al.Synthesis and Biological Evaluation of New Asymmetrical Bisintercalators as Potential Antitumor Drugs.J Med Chem.2006,49:7198-7207.
    [97]杨鹏.新型杂环并蔡酞亚胺化合物的设计合成及生物活性研究:(博士学位论文).大连:大连理工大学,2005.
    [98]徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究.高等学校化学学报,2000,21:1187-1190.
    [99]Zhou Y L,Li Y Z.Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods.Biophys Chem.2004,107:273-281.
    [100]Solimani R.Quercetin and DNA in solution:analysis of the dynamics of their interaction with a linear dichroism study.Int J Biol Macromol.1996,18:287-295.
    [101]赵晓杰,江山,陆冬生,陆琳,毛慈波,安承武,范永昌,李再光.用共振拉曼光谱研究电子激发态铜卟啉与DNA的相互作用.高等学校化学学报.1994,15(4):600-602.
    [102]Garbett N C,Ragazzon P A,Chaires J B.Circular dichroism to determine binding mode and affinity of ligand-DNA interactions.NAT PROTOCOLS.2007,2(12):3166-3172.
    [103]Turro C,Bossmann S H,Leroi G E,et al.Ligand-Specific charge localization in the MLCT excited state of Ru(bpy)_2(dpphen)~(2+) monitored by time-resolved resonance raman spectroscopy.Inorg Chem.1994,33(7):1344-1347.
    [104]Carter M T,Rodriguez M,Bard A J.Voltammetric studies of the interaction of metal chelates with DNA.2.Tris-chelated complexes of cobalt(Ⅲ) and iron(Ⅱ) with 1,10-phenanthroline and 2,2'-bipyridine.J Am Chem Soc,1989,111(24):8901-8911.
    [105]王素芬,彭图治,李建平.更生霉素-DNA反应的电化学研究.高等学校化学学报.2002,24(8):1468-1471.
    [106]Erkkila K E,Odom D T,Barton J K.Recognition and Reaction of Metallointercalators with DNA.Chem Rev.1999,99:2777-2795.
    [107]Gibson D.Drug-DNA interactions and novel drug design.Pharmacogenomics J.2002,2:275-276.
    [108]Wheate N J,Brodie C R,Aldrich-Wright J R,et al.DNA intercalators in cancer therapy:organic and inorganic drugs and their spectroscopic tools of analysis.Mini-Rev Med Chem.2007,7:627-648.
    [109]Guiotto A,Chilin A,Dall'Acqua F,et al.Angular Furoquinolinones,Psoralen Analogs:Novel Antiproliferative Agents for Skin Diseases.Synthesis,Biological Activity,Mechanism of Action,and Computer-Aided Studies.J Med Chem.1996,39:1293-1302.
    [110]Marzano C,Chilin A,Guiotto A,et al.Photobiological properties of 1-(3%-hydroxypropyl)-4,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one,a new furocoumarin analogue.Ⅱ Farmaco.2000,55:650-658.
    [111]Chilin A,Marzano C,Guiotto A,et al.Synthesis and Biological Evaluation of a New Furo[2,3-h]quinolin-2(1H)-one.J Med Chem.2002,45:1146-1149.
    [112]Marzano C,Chilin A,Guiotto A,et al.DNA Damage and Biological Effects Induced by Photosensitization with New N1-Unsubstituted Furo[2,3-h]quinolin-2(1H)-ones.Bioorg Med Chem.2002,10:2835-2844.
    [113]Chilin A,Marzano C,Guiotto A,et al.4-Hydroxymethyl- and 4-Methoxymethylfuro[2,3-h]quinolin-2(1H)-ones:Synthesis and Biological Properties.Bioorg Med Chem.2003,11:1311 - 1318.
    [114]Marzano C,Chilin A,Guiotto A,et al.1,4,8-Trimethylfuro[2,3-H]quinolin-2(1H)-one,a new furocoumarin bioisoster.Eur J Med Chem.2004,39:411-419.
    [115]Brana M F,Cacho M,Gradillas A,et al.Intercalators as Anticancer Drugs.Curr Pharm Des.2001,7:1745-1780.
    [116]Chilin A,Rodighiero P,Guiotto A,et al.New Synthesis of Pyrrolo[3,2,1-ij]quinolin-4-one Derivatives.J Org Chem.1991,56:980-983.
    [117]Kuroda M,Mimaki Y,Sashida Y,et al.Novel cholestane glycosides from the bulbs of Omithogalum saundersiae and their cytostatic activity on leukemia HL-60 and MOLT-4 cells.Tetrahedron.1997,53:11549-11562.
    [118]Skehan P,Storeny R,Scudiero D,et al.New colorimetric cytotoxicity assay for anticancer-drug screening.J Natl Cancer Inst.1990,82:1107-1112.
    [1119]Xiao S,Lin W,Yang M,et al.Synthesis and biological evaluation of DNA targeting flexible side-chain substituted beta-carboline derivatives.Bioorg Meal Chem Lett.2001,11:437-441.
    [120]Guan H,Chen H,Xu A,et al.Design of β-carboline derivatives as DNA-targeting antitumor agents.Eur J Med Chem.2006,41:1167-1179.
    [121]Chan H,Ma D,Yang M,et al.Synthesis and Biological Activity of a Platinum(Ⅱ)6-Phenyl-2,2'-bipyridine Complex and Its Dimeric Analogue.ChemBioChem 2003,4:62-68.
    [122]贺茜,李永刚.抗肿瘤药双萘酰亚胺的研究进展.广州化学.2002,27(2):48-53.
    [123]徐宏.多吡啶钌(Ⅱ)配合物的合成、结构及其与DNA,RNA键合机理的研究:(博士学位论文).广州:中山大学,2003.
    [124]Scatchard G.The attractions of proteins for small molecules and ions.Ann.N.Y.Acad.Sci.1949,51:660-672.
    [125]Gupta M,Ali R.Fluorescence studies on the interaction of furocoumarins with DNA in the dark.J.Biochem,1984,95:1253-1257,
    [126]李志刚.新型萘系硫杂环类化合物的设计、合成及生物活性研究:(博士学位论文).大连:大连理工大学,2005.
    [127]Jiang X,Li S,Wang Z.Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA:pH effect.Biophysical chemistry,2002,118:42-50.
    [128]Zhang Z,Huang W,Tang J et al.Conformational transition of DNA induced by cationic lipid vesicle in acidic solution:spectroscopy investigation.Biophysical chemistry,2002,97:7-16.
    [129]Maheswari P U,Palaniandavar M.DNA binding and cleavage properties of certain tetrammine ruthenium(Ⅱ) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affinity.Journal of Inorganic biochemistry,2004,98(2):219-230.
    [130]Lerman L S.J Mol Biol.1961.3:18.
    [131]Chan H,Ma D,Yang M,et al.ChemBioChem.2003,4:62-71.
    [132]Brana M F,Ramos A.Curr.Med.Chem.- Anti-Cancer Agents.2001,1:237-255.
    [133]Ley S V,Thomas A W.Angew Chem Int Ed.2003,42:5400-5449.
    [134]Beletskaya I P,Cheprakov A V.Coordin Chem Rev.2004,248:2337-2364.
    [135]Ma D,Xia C,Jiang J,et al.Org Lett.2001,3:2189-2191.
    [136]Zou B,Yuan Q,Ma D.Angew Chem Int Ed.2007,46:2598-2601.
    [137]Shafir A,Buchwald S L.J Am Chem Soc.2006,128:8742-8743.
    [138]Miyaura N,Suzuki A.Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds.Chem Rev.1995,95:2457-2483
    [139]Hassan J,Gozzi C,Lemaire M.Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction.Chem Rev.2002,102:1359-1469
    [140]Shi Z,Li B,Wan X,et al.Suzuki-Miyaura Coupling Reaction by Pd~(11)-Catalyzed Aromatic C-H Bond Activation Directed by an N-Alkyl Acetamino Group.Angew Chem Int Ed.2007,46:5554 -5558.
    [141]Rule H G,Thompson S B.J Chem Soc.1937,1761-1767.
    [142]Schlummer B,Scholz U.Adv Synth Catal.2004,346:1599-1626.
    [143]Boger D L,DuffS R,Panek J.S,et al.J Org Chem.1985,50:5782-5789.
    [144]Klapars A,Huang X,Buchwald S L.J Am Chem Soc.2002,124:7421-7428.
    [145]Kwong F Y,Buchwald S L.Org Lett.2003,5:793-796.
    [146]Corbet J P,Mignani G.Selected Patented Cross-Coupling Reaction Technologies.Chem Rev.2006,106:2651-2710.
    [147]Antonini I,Polucci P,Magnano A,et al.J Med Chem.2001,44:3329.
    [148]Antonini I,Polucci P,Magnano A,et al.J Med Chem.2002,45:696
    [149]Kashanian S,Askari S,Ahmadi F,et al.In Vitro Study of DNA Interaction with Clodinafop-Propargyl Herbicide.DNA AND CELL BIOLOGY.2008,27:1-7.
    [150]Yang X,Liu W,Yu R,et al.DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone.Spectrochimica Acta Part A 1999,55:2719-2727.
    [151]Okada H,Mak T W.Nat Rev Tumor.2004,4:592-603.
    [152]Besson A,Assoian R K,Roberts J M Nat Rev Tumor.2004,4:948-957.
    [153]Fesik S W.Nat Rev Tumor.2005,5:876-888.
    [154]Nakayama K I,Nakayama K.Nat Rev Tumor.2006,6:369-383.
    [155]肖义.新荧光发色体系-含腈萘杂环:分子设计、合成、应用:(博士学位论文).大连:大连理工大学,2002.
    [156]Xiao Y,Liu F,Qian X,et al.A new class of long-wavelength fluorophores:strong red fluorescence,convenient synthesis and easy derivation.J.Chem.Soc.Chem.Commun.2005,239-240.
    [157]Liu F,Xiao Y,Qian X,et aI.Versatile acenaphtho[1,2-b]pyrrol-carbonitriles as a new family of heterocycles:diverse S_NAr~H reactions,cytotoxicity and spectral behavior.Tetrahedron.2005,61:11264-11269.
    [158]Zhang Z,Yang Y,Qian X,et al.Int J Bio Macromol.2006,38:59-64.
    [159]Liu F,Qian X,Cui J,et al.Design,synthesis,and antitumor evaluation of novel acenaphtho[1,2-b]-pyrrole-carboxylic acid esters with amino chain substitution.Bioorg Med Chem.2006,14:4639-4644.
    [160]Zhang Z,Yang Y,Zhang D,et al.Acenaphtho[1,2-b]pyrrole derivatives as new family of intercalators:Various DNA binding geometry and interesting antitumor capacity.Bioorg Med Chem.2006,14:6962-6970.
    [161]刘凤玉.新苊并杂环衍生物的合成、光谱及作为DNA靶向分子的研究:(博士学位论文).大连:大连理工大学,2006.
    [162]Zhang Z,Jin L,Qian X,et al.Novel Bcl-2 Inhibitors:Discovery and Mechanism Study of Small Organic Apoptosis-Inducing Agents.ChemBioChem.2007,8:113-121.
    [163]杨源源,张志超,盛辉等.一种苊并杂环有机小分子嵌入DNA的几何学模式研究.高等学校化学学报.2007,28(3):453-457.
    [164]杨源源.新型苊并杂环类化合物-与DNA的作用模式和抗癌活性的关系:(硕士学位论文).大连:在连理工大学,2007.
    [165]Hyatt J L,Wadkins R M,Tsurkan L,et al.J Med Chem..2007,50:5727-.
    [166]张曼,周爱儒.血管内皮生长因子受体的结构与功能.生物化学与生物物理展.1997,24(1):18-22.
    [167]陈樑,张红锋,杨帆.Akt抗凋亡机制与癌症治疗.生命的化学.2004,24(5):431-433.
    [168]Casey K G,Quitevis E L.Effect of solvent polarity on nonradiative processes in xanthene dyes:Rhodamine B in normal alcohols.J.Phys.Chem.1988,92:6590-6594.
    [169]Juskowiak B.,Galezowska E.,Takenaka S.Spectral properties and binding study of DNA complexes with a rigid bisintercalator 1,4-bis((N-methylquinolinium-4-yl)-vinyl)-Benzene.Spectrochim Acta A.2003,59:1083-1094.
    [170]Taima,H.;Okubo,A.;Yoshioka,N.;Inoue,H.Chem.Eur.J.2006,12:6331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700