纳米氧化铝的制备及改性工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了纳米氧化铝的性质、用途、国内外研究现状及制备方法。讨论了液相法制备纳米粉体的理论基础,着重对前驱体制备全过程的防团聚机理进行了深入的理论分析。运用微波干燥的原理分析了对纳米氧化物进行微波干燥的可行性和优越性。论述了对纳米氧化铝进行表面改性的必要性和可行性。
     本文对以氧化铝和碳酸钠为原料,采用直接沉淀法制备纳米氧化铝以及对纳米氧化铝进行表面改性工艺进行了较为系统的深入研究。在纳米氧化铝制备实验部分,首先设计了单因素试验对纳米氧化铝制备工艺进行了研究,探索了各个因素对纳米氧化铝制备的影响,然后以正交试验法筛选出制备过程的优化工艺条件。在改性试验部分,用单因素试验和正交试验筛选出了月桂酸钠改性的优化工艺条件;且以不同的工艺路线用三乙醇胺进行了改性研究,优选出了较佳的改性工艺路线。
     试验结果表明:
     (1)采用两段微波干燥的方式对反应沉淀物进行干燥,可极大地提高干燥速率和能量利用效率,对液相法制备纳米粉体过程是一种新的有效的干燥方式。
     (2)以氯化铝和碳酸钠为原料,采用直接沉淀法制备纳米氧化铝的工艺是可行的。直接沉淀法制备纳米氧化铝的优化工艺条件为:反应时间25min;反应温度40℃;碳酸钠浓度1.0M;氯化铝浓度0.4M;优化混合方式;煅烧温度500℃;煅烧时间1.5h。在此工艺条件下所得粒子的平均粒径8.7nm。
     (3)纳米氧化铝经月桂酸钠处理可以得到表面亲油化的粒子,优化改性工艺条件为:改性温度30℃;改性pH=4;改性浓度3.0g/L;改性时间70min。在此条件下经改性后的产品的亲油化度为0.53。月桂酸钠与纳米氧化铝发生键合。
     (4)以机械化学改性方法用三乙醇胺改性纳米氧化铝,可以得到能良好分散于乙醇的纳米氧化铝。三乙醇胺与纳米氧化铝发生键合。
The properties, applications and research situation, and preparation method of
    nanometer alumina at home and abroad has been presented in this paper. The theoretical
    foundation of nanometer particles of liquid-phase precipitation reaction was reviewed;
    especially theoretical analysis of preventing agglomeration mechanism in preparing nanometer particles was focused on. Furthermore, the feasibility and superiority of microwave drying method to prepare nanometer oxide has been analyzed based on the principle of microwave drying theory. In addition, the necessity and possibility of surface modification of nanometer alumina has been discussed.
    The process of both preparation of nanometer alumina in direct precipitation method(DPM) using sodium carbonate and aluminum chloride as materials and its surface modification has been deeply investigated. In the experimental section for preparation of nanometer alumina, a series of single-factor experiments has been firstly designed to do research on the preparation technology of nanometer alumina in order to study the effect of different factors in nanometer alumina preparation process; then the optimal preparation conditions have been obtained through multi-factor orthogonal experiment. On the other hand, in the experimental section for surface modification of nanometer alumina, both the mono-factor and multi-factor orthogonal method have been used to achieve selection of optimal surface modification processing conditions as sodium laurate was chosen as the modifying addition. Different surface modification technologies have also been practiced with triethanolamine to get an optimum process course.
    The experimental results are shown the following as follows:
    
    
    (1) Using a two-part microwave-drying method to dry nanometer alumina can significantly improve the drying rate and the energy utilization efficiency. It is a new efficient way to dry nanometer oxide.
    (2)The process of preparing nanometer alumina using the direct precipitation method with sodium carbonate and aluminum chloride as materials is possible. The optimal process conditions for preparation of nanometer alumina are: the reaction time is 25 min, the reaction temperature is 40 , and the concentration of sodium carbonate and that of aluminum chloride are 1.0 mol/1 and 0.4 mol/1, respectively; The optimum drop style was chosen; The calcination temperature and time are 500℃ and 1.5h. Under this optimal condition mentioned above, the average diameter of the nanometer alumina is 8.7nm.
    (3) Nanometer alumina turns to hydrophobic after surface modification with sodium laurate. The optimum conditions of surface modification are: temperature is 30℃ , the pH is 4, the concentration of modifying agent is 3.0g/L; modification time is 70min. The hydrophobic is about 0.53 under the above processing condition.
    (4) Nanometer alumina can be well dispersed in ethanol through modification with triethanolamine in mechanical chemical modification method. A new bond was produced between nanometer alumina and triethanolamine.
引文
[1] 张立德,牟季美.纳米材料学.辽宁科技出版社,1994.
    [2] 张志煜,崔作霖.纳米技术与纳米材料.北京:国防工业出版社.
    [3] 张立德.纳米材料.北京:化学工业出版社,2000.
    [4] 古宏晨,徐华蕊.纳米材料亚就在我国的进展.化工进展.1999,(4):5~7.
    [5] Lilia S. Nature. 1991, 354.
    [6] 侯万国,孙德军,张春光.应用胶体化学.北京:科学出版社,1998.
    [7] 陈万坤.铝工业发展趋势.世界有色金属.1996年第7期.
    [8] 陆钦芳.关于我国氧化铝工业竞争能力的几点思考.轻金属.1997年No.1
    [9] Karakas Y, et al. British Ceram Trans, 1994, 93(2).
    [10] 李芳宇,刘维平.纳米粉体制备方法及其应用前景[J].中国粉体技术,2000,6(5):29-32.
    [11] 顾立新,成庆堂,石劲松.纳米Al_2O_3——一种前景广阔的新型化工材料[J].化工新型材料,2000,28(11):20-21.
    [12] 马荣骏,邱电云,马文骥.湿法制备纳米级氧化铝[J].湿法冶金,1999,70(2):31-35.
    [13] 孟季茹,赵磊,梁国正,秦华宇.无机非金属纳米微粒的制备方法[J].化工新型材料,2000,28(4):23-27.
    [14] 张泰.纳米材料的制备技术及进展[J].辽宁化工,1999,28(1):3-8.
    [15] Vollath D, Sickafus KE, Nanostructured Material. 1993, 2: 45~46.
    [16] Shi Jl. Lin Z X. Ceram, Int. 1998, 15: 107~112.
    [17] 张喜梅,陈玲,李琳等.纳米材料制备研究现状及其发展方向[J].现代化工,2000,20(7):13-16.
    [18] 李启厚,肖松文,刘志宏.湿法化学制粉中的粉末结构形貌控制研究进展[J].中国粉体技术,1999,5(2):21-23.
    [19] 邵庆辉,古国榜,章莉娟.微乳化技术在纳米材料制备中的应用研究[J].化工新型材料,2001,29(7):9-12.
    [20] 刘伯元,黄锐,赵赤安.非金属纳米材料[J].中国粉体技术,2001,7(1):
    
    12-18, (2): 33-37, (3): 26-31.
    [21] Blendell J. E., Kent, B. H., Coble R. L. Ceramic Bulletin, 1984; 63(6): 797-802.
    [22] Johnson D. W., Jr-Ceramic Bulletin, 1981: 60(2): 221~224.
    [23] 章跃,丁红艳等.匀相沉淀法制各纳米Al_2O_3粉末.新技术新工艺·材料与表面处理.2001,,(6):43-44.
    [24] 高正中.实用催化.北京:化学工业出版社,1996,180.
    [25] 朱履冰,表面与界面物理.天津:天津大学出版社.
    [26] 华东理工大学技术化学物理研究所编.超细颗粒制备科学与技术.上海:华东理工大学出版社.
    [27] 尾崎义治.超微颗粒导论.武汉工业大学出版社.
    [28] 丁绪淮.工业结晶.北京:化学工业出版社,1985,75~81.
    [29] Bailar J C, et al. Comrehensive Inorganic Chemistry. Oxford: Pergamon Press, 1973, 607~618.
    [30] 赵九生等.催化剂生产原理.北京:科学出版社,1986,64~67.
    [31] Kaliszewski M S, Heuer A H, J Am Ceram Soc, 1990, (73): 1504
    [32] Uok Maskra, J Am Ceram Soc, 1997, (80): 1715
    [33] Ray J, et al. J Mater Sci Lett, 1993, (12): 1755
    [34] 唐浩林,潘牧,等.溶胶凝胶法制各α-Al_2O_3纳米材料团聚控制研究新进展.材料导报,2002,16(9),44~45.
    [35] 杨咏来,宁桂玲,等.液相法制备纳米粉体时防团聚方法概述.材料导报,1998,12(2),11~13.
    [36] 叶兴乾,刘东红等.不同干燥方法对栗粉的理化性质与功能特性的影响.农业工程学报,2001,17(4),95-98.
    [37] 张建成.多孔物料微波冷风对流干燥Re自模区研究.南京化工学院学报,1995,17(2),11~16.
    [38] 胡建人.微波快速烘干硅胶的生产工艺的研究.包装工程,1999,(1),14-18.
    [39] 范红图,刘雅琴.影响微波干燥各因素的分析及试验研究.能源研究与利用,1994,(2),24~28.
    
    
    [40] 王训等.纳米二氧化钛表面改性,化工进展,2001(1).
    [41] 谭立新,蔡一湘.超细粉体粒度分析的分散条件比较.中国粉体技术.2000 6(1),23~25.
    [42] 祖庸,王训,等.超细二氧化钛分散性研究.涂料工业,1999,(6),6~8.
    [43] 陈宗伟等.抗紫外纳米氧化锌粉体的表面改性与脂肪酸机理探讨.化学世界,2002,(5),227~232.
    [44] 李晓娥等.纳米二氧化钛有机化改性工艺研究.无机盐工业,2001,33(4),5~7.
    [45] 郑水林.粉体表面改性.中国建材工业出版社,1995,12.
    [46] 沈钟.固体表面改性及其应用.化工进展,1993(5).
    [47] 李正民,虞伟钧等.微粒大小及分布的电镜图像分析测定法.中国粉体技术.2000,6(3).
    [48] 胡松青,李琳等.现代颗粒粒度测量技术.现代化工.2002,22(1).
    [49] 宁桂玲,丛昱等.Al_2O_3纳米粒子在TEM测试中分散性的研究.分析测试学报.1997,16(1).
    [50] 胡荣泽.超微颗粒的性能表征.中国粉体技术.2001,7(4).
    [51] 郭振琪.X射线衍射技术及其应用.西北大学分析测试研究中心.
    [52] 丛秋滋.多晶二维X射线衍射.科学出版社,1997,220.
    [53] G. carturan, R. D. Maggio. J Mater. Sci. 25. 2705(1990).
    [54] 宁永成.有机化合物结构鉴定与有机波谱学.清华大学出版社,1989,254.
    [55] 周玉.材料分析测试技术.哈尔滨工业大学出版社,1996.
    [56] 陈宗淇.胶体与界面化学.高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700