纳米TiO_2表面改性研究及其在涂料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子应用于涂料中组成新型功能复合涂料,已成为研究的热点。但是由于纳米粒子表面极强的活性,使它们很容易团聚在一起从而形成带有若干弱连接界面的尺寸较大的团聚体,这大大降低甚至消除了纳米颗粒的实际应用效果,同时由于纳米粒子表面亲水疏油,在有机高分子树脂中难于均匀分散,界面上会出现空隙,当空气中的水分进入空隙中就会触发界面处高聚物的降解、脆化,导致涂层失效。所以,必须对纳米粒子进行表面改性,削弱或者消除团聚现象,提高纳米粒子在有机高分子中的分散性。近年来,对纳米氧化物表面改性已有不少的相关报道和应用。随着近年来对微波技术研究的深入,人们发现把微波技术用在化学反应上往往可以产生意外的效果。本文即是试图探讨纳米TiO_2粒子改性两种方法,一是用月硅酸钠通过物理吸附作用对纳米TiO_2粒子进行改性,此工艺改性产物不稳定。另一种方法是利用微波作为加热装置的纳米TiO_2粒子表面改性工艺以及分析其改性机理。实验结果表明:以微波为纳米粒子改性工艺的加热装置,既可以为反应提供热源,同时又有效的抑制了纳米粒子的长大。通过对改性后粒子的性能进行测试发现用油酸作为纳米改性剂可以很好的改善纳米粒子的表面性质。最佳改性工艺为:每2克纳米二氧化钛使用50ml油酸,改性剂浓度为V_(油酸)/V(正丁(?))=1/2,改性时间为先满功率辐射3分钟,然后小功率辐射半小时,经改性后的纳米TiO_2表面亲油性大大增强了。对产物进行红外光谱分析证明本改性试验产物中
    
    梭酸根离子和Ti离子是以鳌合的方式结合的;对产物进行热重和差
    热分析测试包覆率达到了29.14%。产物是在二氧化钦无机内核表面
    包裹了一层表面有机修饰层。把改性后的纳米TIO:添加到环氧树脂
    涂料中发现,涂层的结合力、耐盐雾性、抗划痕性和柔韧性能大大提
    局。
Nano-partical has applied preliminary in the field of the functional coatings,. But for the strong activity of Nano-TiO2, the conglobation will happen easily, and it will greatly reduce the application effect in coating. And for the hydrophilicity , it's hard to break up uniform in resins, so air gaps appear in the interface, then the high polymer in the interface will
    happen degradation reaction or embrittlement reaction, and coatings
    performance will fall down. So, in order to increase the dispersity of the
    Nano-partical in coatings, it's necessary to modify the surface of Nano-partical. At present, some research documents and application have been given about the modification of nano-partical. With the developing of Microwave technology, wonderful effect happened when the Microwave technology was used in chemical reaction. A new process on surface modification of Nano-partical was studied in this paper, microwave was used as the heater equipment in this process. The results showed: the microwave supplied enough energy for the chemical reaction, and controlled the growth of Nano-partical. The experiments proved that it's effective of using oleic acid to modify the surface of Nano-TiO2 particle. The best modification process is: 25ml oleic acid for per gramme Nano-TiO2 particle, modification agent is v油酸
    /v正丁=1/2, modification time is 3min with full power, then 30min with small power. After been
    
    
    
    modified, the Nano-TiO2 particle shows better lipophilicity. It was proved that the combine between carboxylic acid group and TiO2 particle is chelation by analyzing infra-red spectrum. The total clad ratio reached 29.14% by measuring TG-DTA curve. The final result is TiO2 particle being surrounded by organic carbon chains. The performances of cohesion, corrosion resistance, flexibility and shock strength increase when nano-TiO2 be added.
引文
[1] 林安,中前胜彦.表面-面积曲线2.2酸酸共重合体吸着形态.日本接着协会志。1998(14)
    [2] 虞兆年,防腐蚀涂料和涂装,化学工业出版社,p.3
    [3] 崛野政章,化妆料[P].日本:JP0948716,1996
    [4] Park H K, Moon Y T, et al, Formation of Monodisperse Spherical TiO_2 Powders by Thermal Hydrolysis of Ti(SO4)2[J]. j Am Ceram Soc, 1996, 79(10): 2727~2732
    [5] 张治军,薛群基,张军等,脂肪酸修饰金属氧化物或氢氧化物的纳米微粉及制备方法[P].中国:CN1180079A,1998
    [6] 郑国梁,程如烟,常压微波等离子体气相法制取纳米二氧化钛,钛工业进展,2001.5
    [7] 杨伯伦,贺拥军,微波加热在化学反应中的应用进展,现代化工,2001.4
    [8] 艾德生,李庆丰,戴遐明等,用透过高度法测定粉体的湿润接触角,理化检验—物理分册,2001.3
    [9] 高濂,陈锦元,黄军华等,醇盐水解法制备二氧化钛纳米粉体,无机材料学报,Vol.10,No.4,1995
    [10] 丁延伟,范崇政,纳米二氧化钛表面包覆的研究,现代化工,Vol.21,No.7,2001
    [11] Stamataskis P. Optimum Particle Size of Titanium Dioxide and Zinc Oxide for Attenuation of Ultraviolet Radiation [J]. Journal of Coatings Technology, 1990,62(789):95
    [12] 蒋子铎,吴壁耀,刘安华,二氧化钛的表面化学改性,现代化工,No.5,1991
    [13] 王世兴,王命泰,雷勇等,纳米TiO2的高分子“锚定位”包覆,无机材料学报,Vol.15,No.1,2000
    [14] 李晓娥,邓红,张粉艳等,纳米二氧化钛有机化改性工艺研究,无机盐工业,Vol.33,No.4,2001
    [15] 鄢程,李竟先,潘志东,纳米TiO2颗粒的表面改性研究进展,
    
    陶瓷学报,Vol.23,No.1,2002
    [16] 李谦,周大鹏,孙蓉等,有机酸修饰溶胁凝胶法制备的二氧化钛纳米薄膜的表征,Vol.31,No.2,2001
    [17] Deng C, Wright P, James P. Ormocer Coatings Based on Titanium and Tetraethylene Glycol Malonate [J]. J. Sol-Gel Sci.Tech, 1998.13:489-493
    [18] Nobuaki Negishi, Koi Takeuchi Ibusuki, Preparation of the Tio2 Film Photocatalyst by the Dip-Coating Process[J]. J.Sol-Gel. Sci.Tech. 1998,13:691-694
    [19] 邹玲,乌学东,陈海刚等,表面修饰二氧化钛纳米粒子的结构表征及形成机理,物理化学学报,Vol.17,No.4,2001
    [20] Yoichi I, Ryoji T, Mitsunobu I, Hiroaki T, J.Colloid Interface Sci. 1998,200:220
    [21] 胡征,王喜章,吴强等,多功能微波等离子体化学反应装置及其应用,化学通报,No.1,2001
    [22] Thostenson E T Chou T W. Microwave Processing: Fundamentals and Applications[J]. Composites: part A, 1999,30(9): 1055-1071
    [23] 戴长虹,杨静漪,蔺玉胜,微波法合成SiC微粉,青岛化工学院学报,Vol.20,No.1,1999
    [24] 杨升红,张小明,张延杰等,微波法制备纳米TiO2粉末,稀有金属材料与工程,Vol.29,No.5,2000
    [25] Li Q, Wei Y.Materials Research Bulletin[J],1998;5(33):719-782
    [26] 刘洪波,微波诱导等离子体热解法合成碳膜包裹的TiO2纳米微晶,化学研究与应用,Vol.9,No.4,1997
    [27] 杜振霞,贾志谦,饶国瑛等,纳米碳酸钙表面改性及在涂料中的应用研究,北京化工大学学报,Vol.26,No.2,1999
    [28] 刘福春,韩恩厚,柯伟,纳米复合涂料的研究进展,材料保护,Vol.34,No.2,2001
    [29] 郑亚萍,宁荣昌,乔生儒,环氧树脂基纳米复合材料研究进展,化工新型材料,Vol.28,No.3,2000
    [30] 徐存英,段云彪,张鹏翔等,纳米二氧化钛的表面改性研究,
    
    云南化工,Vol.27,No.5,2000
    [31] Look J L Byers C H. Colloidal Stability and Titania Precipitate Morphology, Influece of Short-range Repulsions[J].J Am Ceramic Soc, 1995,78(1):21-23
    [32] 李国辉,李春忠,吕志敏,纳米氧化钛颗粒表面处理及表征,华东理工大学学报,Vol.26,No.6,2000
    [33] 邓晓燕,崔作林,杜芳林等,纳米二氧化钛的热分析表征,无机材料学报,Vol.16,No.6,2001
    [34] N.Kossovsky. A.Gelman, H.J.Hnatyszyn, E.Sponsler, Conformationally Stabilizing Self-assembling Nanostmctured Delivery Vehicles For Biochemically Reactive Pairs, Nanostructured Materials, Vol. 5,No.2,1995
    [35] LinAn, Chengxuequn, The Surface Chemical Modifications of Nano-Titanium Oxide and its Applications in Coating, 3rd International Conference on Surface Engineering, Chengdu, 2002
    [36] Peter Quedaau,非水系涂料湿润·分散,涂装涂料,p46~48.No.347,1982
    [37] 植原秀郎,长期暴露后附着力安定性优树脂下涂涂料开发,防锈管理.2001(9):332~337
    [38] 闫建忠等,有机防腐膜层测试技术研究进展,Surface Technology vol.27,NO.2,p.30-32
    [39] Stand Methods of Test for Water Vapor Transmission of Materials in Steel Form, E96-66
    [40] Barnett S A, Strivens T A, Williams-Wynn D E A. A Simple Measurement Technique for Paint Film Resistance and its Applications to the Study of Water Permeation. J. Oil Colour Chem. Assoc, 1984, 67(11),p.275-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700