超细微粒分散稳定性和表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细粉体由于表面自由能大,不易在液相中均匀分散。其在液相中的分散稳定性直接关系到其应用性能和工业前景,因此超细粉体的分散稳定性及其表面改性的研究是目前超细粉体应用研究的一项重要内容。目前,对超细粉体进行表面改性的方法很多。但在实际应用中,由于各种条件的限制,通常采用物理吸附法及酯化法对其进行表面有机修饰。虽然这样做的人很多,但系统地、规律性地研究表面改性的影响因素很少,修饰后的产品的表征也不完善。
     本文讨论了超细氧化铟锡和氧化锡的性质和用途,根据胶体的分散稳定理论,研究了超细氧化铟锡乙醇分散体系的稳定机理,旨在为实际应用中的超细氧化铟锡在乙醇相的稳定分散提供理论指导和参考的操作条件;采用几种表面改性剂对超细氧化锡粒子进行表面改性,对改性粒子进行表征,并对以超细粉体作为添加材料制得的隔热材料进行研究。
     本文研究了超细氧化铟锡在乙醇分散体系中的分散性能,以沉降高度、吸光度、透过率为评价指标,考察了pH值、分散剂的种类与用量及分散工艺条件对分散稳定性的影响,对分散稳定性和粒径分布进行了表征;实验结果表明:超细氧化铟锡在乙醇中pH=6时分散性最差,大于或者小于此值分散稳定性均有提高,分散剂KH570分散效果较好,最佳用量为超细粒子质量的1%左右。考察了高速分散和超声分散对分散稳定性的影响,高速剪切用时较长,超声分散可以在短时间内达到较好的分散效果,在上述最佳配比及分散工艺条件下,超细氧化铟锡分散体系的平均粒径从8.17μm降为0.85μm左右,且粒径分布集中。
     本文分别采用了偶联剂法和酯化反应法对超细氧化锡进行表面改性,通过红外光谱分析和亲油化度值的测定考察了硅烷偶联剂KH570和活化剂硬脂酸对超细氧化锡表面改性的工艺条件,研究了超细氧化锡制备透明隔热涂料的制备工艺及对隔热效果影响。结果表明无论用KH570还是硬脂酸改性,粒子表面均有改性剂包覆,且与粒子表面有效键和,得到表面亲油化粒子,用硬脂酸改性效果要明显好于在用KH570改性效果。KH570优化改性工艺条件为:改性剂用量为粉体质量的2%,反应温度为50℃,反应时间30min,在此条件下得到的改性产品亲油化度值为0.37。硬脂酸优化改性工艺条件为:硬脂酸质量为粉体质量10%;硬脂酸浓度为2.67g/L;反应温度为60℃;反应时间为1h。在此条件下,得到的改性产品亲油化度值为0.56,改性后的超细粉体在有机介质中的分散性得到了提高,表面由亲水性变成了亲油性。通过对透明隔热涂料的隔热效果测试表明,该涂料具有明显的隔热效果,在红外灯照射下透明隔热玻璃和普通玻璃之间的底板温差可以达到10℃左右,通过对比不同粉体添加量和不同喷板厚度对隔热效果的影响,得到优化粉体添加量和喷板厚度,综合其效果和成本,适宜条件为添加粉体量为丙烯酸树脂与粉体的质量比200/3,喷板四遍漆。虽然隔热涂料隔热效果比较明显,但与在线CVD工艺技术、高温热解成膜制作的镀膜玻璃相比尚有一定差距。本研究采用真空喷涂技术不完善,因此有待进一步提高。由于隔热涂料的透明性较好,所以研究该透明隔热涂料有很大的实用价值。
The study on the dispersion stability and surface modification is the important part of the application of the ultra-fine powder, which relate directly to the ultra-fine powder performance and prospect in industry. There were many ways to surface modification of Ultra-fine powder up to now. But in application, the surface of ultra-fine powder was usually modified by physical adsorption or esterification for diversified conditions limit. Although many people have done in this subject, few influencing factors which study on surface modification completely and regularly, and the characterization of the surface modified ultra-fine is imperfect.
     The properties and applications of ultra-fine indium tin oxide and tin oxide have been presented in this thesis. Based on colloidal dispersion stabilization theory, the mechanism of stabilization of ultra-fine indium tin oxide dispersed in a liquid ethanol system is investigated. The purpose of the research is to provide theoretical guide and operation conditions for stabilized ultra-fine indium tin oxide dispersed in a liquid ethanol system in practical applications. The surface of the indium tin oxide powder was modified by several surfactants and the performances of the powder were tested. The preparation of heat insulation material made from the powder was studied.
     The dispersion behaviors of ultra-fine indium tin oxide in a liquid ethanol system were studied in this paper. The influence of pH value variety and content of dispersants and different dispersing methods on dispersion stability results were discussed, The dispersion stability and diameter of indium tin oxide were tested. The experimental results indicated that the equipotential point determined in liquid ethanol is pH=6. The dispersion stability improves when the pH value are higher or lower than that. The most effective dispersant in the dispersion system is KH570 and its optimum consumption is 1% of the weight of ultra-fine particles. The influences of high-speed dispersing method and ultrasonic dispersing method on the dispersion stability were discussed. High-speed dispersing way needs lots of time and the ultrasonic dispersing way can reach better effect in a short time. The ultra-fine powder whose average diameter is 0.85μm was made under the optimization conditions and its size distributing is narrow.
     The surface of ultra-fine tin oxide was respectively modified by coupling method with silane coupling agent KH570 and esterification reaction with stearic acid in this thesis. The technologic conditions of surface modification of ultra-fine tin oxide and the preparation of the heat insulation material made from the powder were discussed. The influences factors on heat insulation were studied. The results showed that the surface of the ultra-fine powder modified by KH570 or stearic acid was covered with surfactants and the chemical bond occurred between them. The powder which is lipophilicity was obtained. The effect of the surface modification was better modified by stearic acid than KH570. The hydrophobic value of the ultra-fine powder modified by KH570 was 0.37 under the following conditions: the dosage of modifier reagent is 2%,the modification temperature is 50℃, the time is 30min; The hydrophobic value of the ultra-fine powder modified by stearic acid was 0.56 under the following conditions: the dosage of modifier reagent is 10%, the concentration of the stearic acid is 2.67g/L, the modification temperature is 60℃, the time is one hour. The dispersion of the modified ultra-fine powder in the organic solvent was improved and the surface of the ultra-fine powder was changed from hydrophilicity to lipophilicity. The test results show the production has good obvious performance of heat insulation effect, which has a difference in temperature about 10℃between the heat insulating and ordinary glass under infrared radiation. From the experiment the optimization conditions was discovered: the mass ratio of acrylate resin and the powder is 200/3 and the glasses were sprinkled for four times. Although the production has good obvious performance of heat insulation, there is a bigger difference between the standard and heat insulating glass, So further studies on this should be made. The heat insulating glass has better diaphaneity than the standard glass. The study on the heat insulation production has great significance because of its better transparency.
引文
[1] 李凤生.超细粉体技术[M].北京:国防工业出版社,2000年第1版
    [2] 张立德等.超细粉体制备及应用技术[M].北京:中国石化出版社,2001.
    [3] Gisela Kaltenpoth;Michael Himmelhuas;Lorenz Slansky. Conductive Core-Shell Particles: An Approach to Self-assembled Mesoscopic Wires [J]. Advanced Materials 2003(15).1113-1118
    [4] 李青山,张金朝,宋鹂等 掺锑二氧化锡超细粉水分散体系的制备[J],玻璃与搪瓷 2002,4(30)22-24
    [5] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [6] Z.M. Jarzebski, J.P. Marton, Physical Properties of SnO_2 Materials [J], Electrochemical Soc., 1976, 123,199-205.
    [7] V. Dusastre, D.E. William, Sb(Ⅲ) as a Surface Site for Water Adsorption on Sn(Sb)O_2,and its Effect on Catalytic Activity and Sensor Behavior, J.Phys.Chem.B,1998,102,6732-6737
    [8] Waheed A B. Improved n-Si/oxide Junctions for environmentally safe solar energy conversion [J]. Solar Energy Materials & Solar Cells, 2002,(71):281-294
    [9] 范志新.ITO薄膜载流子浓度的理论上限.现代显示,2000,25(3):18-22
    [10] 朱归胜等.单分散纳米氧化铟锡粉末的水热合成.无机材料学报[J],2005,20(2):479—483.
    [11] 张贤高,贺平,贾志杰等.ITO纳米粉的低温制备.电子元件与材料[J],2004,23(6):44—45.
    [12] 周洪庆,吕军华等.ITO纳米粉制备及表面修饰研究.南京工业大学学报[J].2004,26(4):27-30.
    [13] 何小虎,韦莉.铟锡氧化物及其应用[J].稀有金属与硬质合金,2003,31(4):51—57.
    [14] 黄苏萍,张清岑.超微SiO_2的分散机理[J],中国有色金属学 2001,6,522-526
    [15] 冯拉俊.纳米颗粒团聚的控制[J].微纳电子技术,2003,7(8):536-542.
    [16] 张世伟,杨乃恒.纳米粒子在气体流动中的团聚过程研究[J].真空科学与技术,2001,21(3)87.
    [17] 李松杰,侯翠红,张宝林。液相法制备纳米氧化锡防团聚方法综述[J],化学研究,2005,16(4)105-107
    [18] 高镰.纳米粉体的分散及表面修饰[M].第一版.化学工业出版社,2003,12,
    [19] 刘剑.表面活性剂在纳米粉体制备中的应用[J]北工新型材料.2003,31(7):37-40
    [20] 陆厚根,张庆红,梅芳.超细CaCO_3;粉体分散性研究[J].上海化工.1996 21(4):15—18
    [21] 纪守峰,李桂春.超细粉体团聚机理研究进展[J].中国矿业,2006,8(15)54-56
    [22] 马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展—分散方法与机理(Ⅰ)[J].中国粉体技术.2002,8(3):28-31
    [23] 王浩,张丽鹏.高聚物对陶瓷料浆性能的影响机理[J].山东陶瓷.2000,23(4):16-18
    [24] Y.M. Jiang, X.H. Li, B. Feng. The Effect of Different Surface Modification Agents on the Dispersion of Nano-Hydroxyapatite (n-HA) [J]. Key Engineering Materials 2005, 284/286,55-58
    [25] M.J. Alam, D.C. Cameron.Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process[J]. Thin Solid Films 2000: 455~459
    [26] Swarup S, Schoff Clifford K. A survey of surfactants in coatings technology. Progress in Organic Coatings.1993, 23: 1-22
    [27] 王树强.涂料工艺(增订本)[M].第三分册.北京:化学业出版社,1996
    [28] 祖庸,王训,郭晓英等.超细二氧化钛分散性研究[J].涂料工业1999(6):6—8
    [29] 陈礼永,袁继祖.陶瓷浆料稳定机理的研究[J].中国陶瓷.1995(3):1-3
    [30] 郑忠,胡纪华.表面活性剂的物理化学原理[M].华南理工大学出版社,1995
    [31] 聂福德,李凤生,宋洪吕等.超细粉体在液相中的分散性研究进展[J]化工进展.1996(4):24—28
    [32] Waheed A B. Improved n-Si/oxide Junctions for environmentally safe solar energy conversion[J]. Solar Energy Materials & Solar Cells, 2002, (71):281-294
    [33] 佐藤T,鲁赫R T.聚合物吸附对胶态分散体稳定性的影响[M].江龙等译.北京科学出版社,1988
    [34] Marcelja S, Radic N.Repulsion of interfaces due to boundary water Chemical Physics Letters. 1976(1): 129—130
    [35] 天津大学物理化学教研室物理化学(上册).北京:高等教育出版社.1992
    [36] 丁虹.纳米粉体水悬浮液的制备及其在外墙涂料中的应用研究,重庆大学硕士论文[G]2005 14-15
    [37] 马运柱等.超细/纳米颗粒在水介质中的分散行为[J].矿冶土程.2003,23(15)43—46
    [38] 季光明,陶杰.偶联剂对纳米ZnO粒子在聚丙烯中的分散性影响[J],南京航空航天大学学报,2004,36(2)262-266
    [39] Miao H Y, Ding C S, et al. Antimony-doped Tin Dioxide Nanometer Powders Prepared by Hydrothermal Method[J]. Micro-electronic Engineering, 2003, (66):142-146
    [40] S. Manjula; S. Mahesh Kumar; G M. Madhu;A sedimentation study to optimize the dispersion of alumina nanoparticles in water[J],2005, (51) 121-127
    [41] PANG Jinxing; GONG Yun, XIONG Yan, Preparation of SiO_2 Nanoparticles by Silicon and Their Dispersion Stability 2005, (20)1000-2413
    [42] 刘阳桥,高镰,郭景坤.丙烯酸类共聚物对Al_2O_3表面及沉积物分形特性的影响[J],高等化学学报,2000,21(8),1265-1268
    [43] 刑欣,谢凯,盘毅等.纳米陶瓷微粉的表面性能研究进展平[J]材料导报,2000,8(14),41-42
    [44] 邓攀,陈孟晋,杨泳.分形方法对裂缝性储集层的定量预测研究和评价[J] 大庆石油地质与开发2006,25(4)18-21
    [45] 丁保华,李文超等,分形理论在无机材料烧结与氧化过程中的应用[J],硅酸盐通报,1999,1(3)
    [46] 刘阳桥,高镰,郭景坤.PBTCA稳定Al_2O_3悬浮液及沉积物分形特性的研究[J], 无机材料学报,2000,15(5),855-861
    [47] 钟杰;杨雁;沈志刚,超细头孢拉定的超重力法制备及制剂研究[J],北京化工大学学报(自然科学版),2006,33(1),1-4
    [48] Mikito Kitayama, et al., J. Am. Ceram. Soc., 1996, 79,(8), ,2003-2011
    [49] Wei Wu, Jianfeng Chen and Shouci Lu ULTRA-FINE POWDER SURFACE MODIFICATION[M] Chemical Industry Press, 2004
    [50] 丁延伟,范崇正.纳米二氧化钛表面包覆的研究,现代化工[J].2001,2(1):18-22
    [51] 安崇伟,郭艳丽,王晶禹.纳米氧化锌的制备和表面改性技术进展[J],应用化工,2005,34(3)141-143
    [52] Kislenko V N, Verlinskaya R M, Adsorption of Polyacrylic Acid and Its Copolymers withAcrylonitrile on Zinc Oxide Particles, Colloid and Interface Science[J]. 2002. 250: 478-483.
    [53] 赵心怡.叶明泉,韩爱军.无机超细粒子表面改性技术研究进展[J]塑料工业.2006,34(5)16-19
    [54] Bourgeat-Lami E,Espiard Ph,Guyot A,Polu(ethyl acrylate)Latexes Encapsulating Nanoparticles of Silica: 1. Functionalization and Dispersion of Silica, Polymer[J]. 1995.36:4385-4389.
    [55] Espiard Ph, Guyot A, Polu(ethyl acrylate) Latexes Encapsulating Nanoparticles of Silica:Grafting Process onto Silica, Polymer[J]. 1995. 36: 4392-4395.
    [56] Jose-Luiz Luna-Xavier, Alain Guyot, Elodie Bourgeat-Lami.,Synthesis and Characterization of Silica/Poly(Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator, Colloid and Interface Science[J]. 2002. 250:82-92.
    [57] 王兴雪,刘峻,吴文华等.无机抗菌剂的表面改性[J],合成纤维工业,2005,28(2)1-3
    [58] 崔海萍,闫军,杜仕国.CT136对超细氧化铝粉体的表面改性[J],表面技术,2005,(8)73-75
    [59] 金鸣林,房永征,王建等.超细CaO制备与表面改性研究[J],现代化工 2003,(4)32-34
    [60] 朱静,裴秀中,表面改性氢氧化铝超细粉体填料的红外光谱研究[J],材料保护 2003,36(8)16-17
    [61] 张瑞萍,杨静新.纳米氧化锌的分散及纳米整理剂的制备.研究与技术[J],2006.1:27—29.
    [62] 施周,许光眉,张彬。纳米颗粒的分散及其在水与废水处理中的应用[J],环境污染治理技术与设备,2003,4(11)
    [63] R. A. Williams, S. J. R. Simons. Colloid and Surface Engineering[M]. Oxford:Butterwirth-Heinemann Ltd.,1992.
    [64] 毛黎明.纳米ITO粉体与浆料的制备及其性能[G]中南大学硕士论文 2005:43-44
    [65] Ji-hui He; Wen-shi Ma; Shao-zao Tan; Study on surface modification of ultrafine inorganic antibacterial particles Applied Surface Science 2005, 241,279-286
    [66] M.E.ABU-ZEID AND L.A.TAHSEEN, Photoacoustic study of the interaction of atitanate coupling agent with calcium carbonate, Colloid and Interface, 1985(16),301-307
    [67] E. PAOIRER, J.SCHULTZ and C.TURCHL, Surface properties of a Calcium Carbonate Filler Treated with Stearic Acid, Eur. Polym.Sci., 1984,20(12),1155
    [68] X.Y.Chen; S.P.Armes; S.J.Greaves; Synthesis of Hydrophilic Polymer-Grafted Ultrafine Inorganic Oxide Particles in Protic Media at Ambient Temperature via Atom Transfer Radical Polymerization:Use of an Electrostatically Adsorbed Polyelectrolytic Macroinitiator, Langmuir 2004, 20(3)587-595
    [69] 陈忠伟,余爱萍,罗美芳等.抗紫外纳米ZnO粉体的表面改性与脂肪酸改性机理探讨[J].化学世界,2002,(5):227
    [70] Donley M S, Vreugdenhil A J. Nanostructured silicon sol-gel surface treatments for A12024-T3 Protection. Journal of Coatings Technology. 2001, 73(915):35-43
    [71] Chan Chiming, Wu Jingshen, Li Jianxiong, et al. Polypropylene/calcium carbonate nanocomposites. Polymer, 2002 43(10):2981-2992
    [72] Batdorf, Uemon H, Anderson Troy R, et al. Ultra violet light protective coating[P].US Patent. 2002, 1:342-556.
    [73] 何龙辉.隔热涂料的节能分析[J]石油化工腐蚀与防护 2006,2(23)29-31
    [74] Schicht, Heinz, Schmidt, et al. Transparent substrate provided with thin layers having reflection properties in the infrared[P].US Patent 6,306,525.Octomber 23, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700