一株拟南芥敏感突变体的筛选及表型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属镉(Cd)毒性高,难降解,是对生物体有较强遗传毒性的物质。近年来,有关植物对重金属Cd胁迫响应的基因已有很多报道,这些基因主要有ZIP家族,HMA家族等。通过对这些基因的研究了解了一些植物应答重金属Cd胁迫过程中的自我保护机制,例如HMA家族基因对区室化的作用等。但是,植物应对Cd胁迫是一个复杂的过程,这其中涉及的应答机制相关研究尚不深入。
     我们通过优化拟南芥Cd敏感突变体筛选条件,从化学诱导激活型拟南芥T-DNA插入突变体库中筛选出一些具有Cd胁迫敏感表型的株系;将其中表型最明显的植株为命名为atcsr-2,作为本研究的材料。通过Tail-PCR鉴定表明该突变体的T-DNA插入位点为At2g36130(相应地称作AtCSR).该基因能够编码一种肽酰-脯氨酰顺反式异构酶(Peptidyl-Prolyl cis/trans Isomerase),此酶能够降低蛋白质折叠过程中所需的能量,有助于蛋白质正确折叠。
     为了探究CSR基因位点突变在生理水平上对拟南芥应答Cd胁迫的影响,我们对根长、Cd含量累积量、叶绿素含量、MDA、H202、脯氨酸、可溶性糖、可溶性蛋白等植物胁迫损伤重要指标进行了检测。通过对比Col-0和atcsr-2在Cd胁迫处理条件下这些指标的差异,发现atcsr-2突变体体内积累了大量的Cd2+、MDA、H2O2,受到了更加严重的自由基损伤。在确定atcsr-2突变体受到的氧化胁迫较野生型更为明显后,为进一步了解其相关的抗氧化机制,我们对比了两者在Cd胁迫条件下抗氧化酶活性和相关基因表达量变化以及Cd转运蛋白编码基因的表达情况。结果表明atcsr-2突变体中CAT、SOD、POD、APX等抗氧化酶活性均低野生型植株,其编码基因表达水平变化与酶活性变化趋势一致。而Cd的内转运蛋白编码基因IRT1表达量增高,Cd离子区室化转运蛋白MRP3的表达量降低,这导致细胞质中Cd离子累积,毒害增强。另外,我们将CSR构建到原核表达载体在大肠杆菌中进行诱导表达,观察大肠杆菌在Cd胁迫条件下的耐受性变化,并且测定了SOD、CAT酶活性。结果表明诱导表达AtCSR的细菌对Cd的耐受性明显增强,抗氧化酶活性相应升高。
     本研究分别从表型水平、生理生化水平、分子水平等多个方面分析了atcsr-2突变体Cd敏感表型的原因,为进一步了解AtCSR响应重金属Cd胁迫的机制奠定基础。
Cd is considered to be highly toxic, difficult to degrade and genetically toxic substance. In recent years, it has been reported that a large number of genes in plants are related to cadmium stress response. These genes mainly include ZIP family, HMA family and so on. Through studying those genes in response to cadmium stress, some self-protection mechanisms including chelation, sequestration and etc have been found. However, it is a complex process that how plants respond to cadmium stress, during which some relevant mechanisms are still not deeply understood.
     We optimized screening conditions for Arabidopsis cadmium sensitive mutant, and have founded some plants that are sensitive to cadmium stress in the T-DNA insertion Arabidopsis mutant library. After that, we chose the mutant with the most obvious phenotype and named it atcsr-2, which was used for the following experiment materials. According to Tail-PCR, we knew that the insertional locus of atcsr-2is in At2g36130(correspondingly called AtCSR). This gene encodes peptidyl-prolyl cis/trans isomerases that could reduce energy in the process of protein folding, thus helping protein fold exactly.
     In order to explore the influence of the AtCSR gene locus mutation on Arabidopsis responding to cadmium stress at the physiological level, we measured some important physiological indexes, such as root length, cadmium cumulant、chlorophyll content、MDA content、H2O2level、proline content、soluble sugar and soluble protein. Therefore, after contracting these indexes between wide type and mutant with cadmium stress, we found that cadmium caused more damage to atcsr-2. It accumulated higher level of Cd2+, MDA, H2O2, and suffered more free radical damage. After identifying (confirming) atcsr-2suffering more significant oxidativestress than Col-O, we compared antioxidase activity and the expression of genes that encode those enzymes as well as gene expressions related to cadmium transportation between Col-0and atcsr-2with or without cadmium stress, all of which is in order to learn more correlative oxidation mechanisms. The results showed that oxidativestress activities such as CAT, SOD, POD, APX were lower in atcsr-2than those in wide type, and the results of gene expression matched well with those of oxidativestress activities. The expression of Cd intracellular transporter activity IRT1was elevated, while the expression of MRP3was downregulated, which led to Cd accumulation and enhancement of toxicity. In addition, through prokaryotic expression of AtCSR, we studied E. coli growth with cadmium stress, and assayed SOD, CAT activity. The findings revealed that inducible E. coli was less restrained contrast to not inducible E. coli, and oxidativestress activities were higher in the former.
     In conclusion, we studied sensitive phenotype of atcsr-2from physiological and biochemical index as well as molecular level, thus laying the foundation for further research in cadmium sensitive mechanism of atcsr-2.
引文
[1]何俊瑜,任艳芳,朱诚,等.镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响[J].中国水稻科学,2008,22(4):399-404.
    [2]陈世军,韦美玉.镉对辣椒幼苗生长与生理特性的影响[J].江苏农业科学,2009,4:180-182.
    [3]秦天才,吴玉树,黄巧云,等.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志.1997,16(3):59-66.
    [4]Petterson O. Differences in cadmium uptake between plant species and cultivars[J]. Swedish Journal of Agricultural Research,1997,7:21-24.
    [5]Jin Y H, Clark A B, Slebos R J, et al. Cadmium is a mutagen that acts by inhibiting mismatch repair[J]. Nature Genetics,2003,34:326-329.
    [6]韦江玲.镉胁迫对茳芏生理生态特征的影响[J].安徽农业科学,2011,39(20):12125-12128.
    [7]熊愈辉,杨肖娥.镉对植物毒害与植物耐镉机理研究进展[J].安徽农业科学,2006,34(13):2969-2971.
    [8]王辉,牛络风,杜惠玲,等.对芹菜叶绿素及保护酶活性的影响[J].山西农业大学学报,2006,26(3):259-261.
    [9]惠俊爱,党志,叶庆生.镉胁迫对玉米光合特性的影响[J].农业环境科学学报,2010,29(2):205-210.
    [10]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].生理学通报,2001,18(4):459-465.
    [11]杨建超,袁方,王新慧.不同浓度NaCl胁迫下盐芥与拟南芥有机渗透调节物质与抗氧化酶系统的比较[J].山东农业科学,2009,12:48-51.
    [12]李小安.低温胁迫对不同扁蓿豆种子内游离脯氨酸和可溶性糖含量的影[J].研究与讨论,2011(2):40-42.
    [13]郭志,王涛,奥岩松.镉对龙葵幼苗生长和生理指标的影响[J].农业环境科学学报,2009,28(4):755-760.
    [14]方志宏,董宽虎.NaCl胁迫对碱蒿可溶性糖和可溶性蛋白含量的影响[J].中国农学通报,2010,26(16):147-149.
    [15]Singh N K. Protein associated with adaptation of culture tobacco cells to NaCl[J]. Plant Physiology,1987,84(2):324-331.
    [16]余日安.镉与DNA损伤、癌因表达、细胞凋亡[J].国外医学卫生学分册,2000,27(6):359-363.
    [17]林爱军,张旭红,朱永官.镉对小麦叶片DNA伤害的彗星实验研究[J].环境科学学报,2005,25(3):329-333.
    [18]徐勤松,施国新,周红卫,等.Cd、Zn复合污染对水车前叶绿索含量和活性氧清除系统的影响[J].生态学杂志,2003,22(1):5-8.
    [19]唐东明,伍钧,唐勇.重金属胁迫对植物的毒害及其抗性机理研究进展[J].四川环境,2008,27(5):79-83.
    [20]郑世英,张秀玲,王丽燕.Cd2+胁迫对蚕豆抗氧化酶活性及丙二醛含量的影响[J].河南农业科学,2007,2:35-37.
    [21]陈志良,莫大伦.镉污染对生物有机体的危害及防治对策[J].环境保护科学,2001,27(3):37-39.
    [22]徐正浩,沈国军,诸常青.植物镉忍耐的分子机理[J].应用生态学报,2006,17(6):1112-1116.
    [23]李梦梅,龙明华.植物抗镉胁迫的研究综述[J].广西农业科学,2005,36(4):319-322.
    [24]Hu C H, Zhang L, Zhu D W. Biosynthesis and detoxi fication mechanism of phytochelatin and its application prospectin remediation of heavy metal [J]. Journal of Huazhong Agricultural University (Natural Science Edition),2006,25 (5):575-580.
    [25]Ortiz D F, Ruscitti T, Mccue K F. Transport of metal-binding peptides by HWMT1, affission yeast ABC-type vacuolar membrane protein [J]. The Journal of Biological chenmistry,1995,270:4721-4728.
    [26]Prass M N. Cadmium toxicity and tolerance in vascular plants[J]. Environmental. And Experiment Botany,1995,35(4):525-545.
    [27]Liu Y G, Whitter R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of inserend fragment from P1 and YAC clones for chromosome walking[J]. Genomics,1995,25:674-681.
    [28]刘立辉,李宁求,石存斌TAIL-PCR方法克隆约氏黄杆菌aroA基因序列[J].安徽农业科学,2010,38(32):18074-18076.
    [29]刘浩,苏凡,王棚涛.利用TAIL-PCR方法克隆拟南芥干旱主效基因NCED3[J]. 河南大学学报,2009,39(6):621-625.
    [30]郑岑,张立平,唐忠辉TAIL-PCR技术及其在植物基因中的克隆[J].基因组学与应用生物学,2009,28(3):544-548.
    [31]Liu Y G, Norihiro M S, Robert F W. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. The Plant Journal,1995,8(3):457-463.
    [32]Chin H G, Mi S C, et al. Molecular analysis of rice plants harboring an Ac/Ds transposable element mediatd gene trapping system[J]. The Plant Journal,1999,9(5): 615-623.
    [33]Handsch R E, Harding M W, Rice J, et al. Cyclophilin:a specific cytosolic binding proteinfor cyclosporin A [J]. Science,1984,226(4674):544-547.
    [34]周波,罗玉萍,龚熹,等.亲环蛋白的结构、细胞定位和生物学功能[J].中国细胞生物学学报,2008,30(4):291-296.
    [35]Leonardo M Z, Baudo M M, Palva E T, et al. Isolation and characterization of a cDNA corresponding to a stress-activated cyclophilin gene in Solanum commersonii [J]. Journal of Experimental Botany,1998,49(325):1451-1452.
    [36]王宝明,谭晓风.植物亲环素基因的结构、功能及表达调控[J].中南林业科技大学学报,2008,28(1):168-174.
    [37]白宇杰,马华生,王火旭.植物细胞亲环素研究进展[J].植物生理学通讯,2010,46(9):881-888.
    [38]Romano P G, Horton P, Gray J E. The Arabidopsis Cyelophilin Gene Family[J]. Plant Physiology,2004,134:1268-1282.
    [39]慈凌坤,江力,狄东伟,等.拟南芥耐硒突变体的筛选和鉴定[J].合肥工业大学学报,2011,34(6):927-930.
    [40]张健,徐金相,孙英珍,等.化学诱导激活型拟南芥突变体库的构建及分[J].遗传学报,2005,32(10):1082-1088.
    [41]杜伟,吕应堂.拟南芥高盐耐受突变体的筛选与鉴定[J].武汉大学学报,2004,50(6):781-785.
    [42]陈晓婷,陈芳芳,陈立群,等.拟南芥草酸不敏感突变体的筛选与分[J].生物工程学报,2008,24(2):203-208.
    [43]Yan S Y, Zhi Q W, Liu X J. Generation and Identification of Rice T-DNA Insertional Mutant Lines [J]. Article in Chinese,2004,12:1388-1394.
    [44]王凤华,李光远.T-DNA插入突变及其研究进展[J].河南农业科学,2007,6:12-13.
    [45]魏然,阮颖,王莹,等.化学诱导激活系统的研究进展[J].作物研究,2006,5:586-588.
    [46]Sambrook J, Fritsch E F, Maniatis T. MOLECULAR CLONING [M]. London, Cold Spring Harbor Laboratory Press,1995.
    [47]罗丽娟,施季森.一种DNA侧翼序列分离术TAIL-PCR[J].南京林业学报,2003,27(4):87-90.
    [48]Lindak N, Kun P L. Prolyl cis-trans Isomerization as a Molecular Timer in Crk Signaling [J]. Molecular Cell,2007,484-485.
    [49]Sanitdi T L, Lambardi M, Pazzagli L. Response to cadmium in carrot invitro plants and cell suspension cultures[J]. Plant Science,1998,137:119-129.
    [50]杨双春,刘玲,潘一,等.Hg2+,Cd2+胁迫对玉米生理生态的影响[J].辽宁石油化工大学学报,2004,24(3):62-65.
    [51]Hendng G A, Baker A J, Wart C F. Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium tolerant and cadmium-sensitive of Holus lanatus L [J]. Acta Bot Neer,1992,41:271-281.
    [52]李合生主编.植物生理生化实验原理和技术[M].北京,北京高等教育出版社,2000.
    [53]王喜全.原子吸收光谱法测定植物叶中微量重金属[J].理化检验-化学分册,2007,43(5):360-361.
    [54]宇克莉,孟庆敏,邹金华.镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响[J].华北农学报,2010,25(3):112-123.
    [55]龚双娇,马陶武,蒋叶芳.镉胁迫下三种藓类植物的细胞伤害及光合色素含量的变化[J].西北植物学报,2008,28(9):1765-1771.
    [56]王丽香,范仲学,张欣.不同品种燕麦对镉胁迫响应的差异性研究[J].农业科学环境学报,2011,30(1):14-20.
    [57]王正秋,江行玉,王长海.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响[J].过程工程学报,2002,2(6):558-563.
    [58]宇克莉,邹姑,邹金华.镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影 响[J].农业环境科学学报,2010,29(6):1050-1056.
    [59]陈宏,徐秋曼,王葳.镉对小麦幼苗脂质过氧化和保护酶活性的影响[J].西北植物学报,2000,20(3):399-403.
    [60]薛艳,周东美.土壤铜锌复合污染条件下两种青菜的响应差异[J].土壤,2005,37(4):400-404.
    [61]李子芳,刘惠芬,熊肖霞,等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学报,2005,24(S1):17-20.
    [62]李元,王焕校,吴玉树,等.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    [63]石桂玉,李佳枚,苇颖.钙对Cd胁迫下生菜幼苗生长和生理的影响[J].浙江农业科学,2010,4:717-720.
    [64]张司南,高培,谢庆恩.镉诱导拟南芥根尖过氧化氢积累导致植物根生长抑制[J].中国生态农业学报,2010,18(1):136-140.
    [65]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学学报,2003,19(2):103-108.
    [66]Cheng Y, Song C P. Hydrogen peroxide homeostasis and signaling in plant cells[J]. Science China Life Science,2006,49:1-11.
    [67]李忠光,李江鸿,杜朝昆.在单一提取系统中同时测定五种植物抗氧化酶[J].云南师范大学学报,2002,22(6):44-48.
    [68]Luisa L M, Miguel P M, Ana I C. Oxidative stress induced by cadmium in Nicotiana tabacum L.:effects on growth parameters, oxidative damage and antioxidant responses in different plant parts[J]. Acta Physiologiae Plantarum,2011,33: 1375-1383.
    [69]陈宏徐,秋曼.镉对小麦幼苗脂质过氧化和保护酶活性的影响[J].2000,20(3):399-403.
    [70]丁海东,齐乃敏,朱为名,等.镉、锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响[J].中国生态农业学报,2006,14(2):53-55.
    [71]Tommasini R, Vogt E, Fromenteau M, et al. An ABC-transporter of Arabidopsis thallana has both glutathione-conjugate and chlorophyll catabolite transport activity[J]. The Plant Journal,1998,13:773-780.
    [72]Willekens H, Langebartels C, Tire C. Differential expression of catalase gene in Nicotiana plumbaginifolia[J]. Proceedings of the National Academy of Science,1994, 91(22):10450-10454.
    [73]Aliya S, Abdul R S. Evaluation of physiological importance of metallothioneinprotein expressed by Tetrahymena cadmium metallothionein 1 (TMCdl) gene in Escherichia coli [J]. Journal of Cellular Biochemistry,2012,113:1616-1622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700