基于新型对亚苯基亚乙炔基衍生物的小分子化学/生物传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂的食品、药品、生物样品、环境样品中相关小分子的定性定量检测,是食品安全与卫生、疾病预防与诊断、环境污染与监测的核心问题。发展快速、简单、灵敏的用于复杂样品中单组份或多组份检测的新方法具有重要意义。化学/生物传感检测技术作为新型的检测技术已被广泛用于复杂的食品、药品、生物样品和环境样品中的相关小分子的定性定量检测。而创新传感方法,开发高效和信号放大的新型传感材料,是制备高灵敏度和高选择性传感器的关键。
     本学位论文对化学/生物传感器进行了简要概述,重点对新型化学传感器的设计与构建,尤其对纳米材料、电子媒介体和分子导线等在化学和生物传感领域的应用进行了详细综述。作为一类极为重要的分子导线,低聚对亚苯基亚乙炔基衍生物以其所具有的诸如整流、存储和开关等奇特性质而被广泛应用于分子电子学的各个方面。利用此类化合物的优良光电性质,可望建立一些对小分子检测具有灵敏响应特性的检测方法。基于此,本论文中设计并合成两类功能化对亚苯基亚乙炔基类化合物,结合纳米材料和环糊精等构建了系列具有优异传感性能的传感器并用于生命体系和环境体系中相关小分子的检测。主要工作内容如下:
     1.通过亲电取代、亲电加成、加成消去、Sonogashira偶联等反应合成了四种共轭对亚苯基亚乙炔基化合物,即N-甲基-4-(4-硫代乙酸苯酯基-2-乙炔基)-1,8-萘酰胺(化合物1),4-(4-硫代乙酸苯酯基-2-乙炔基)苯胺(化合物2),4-(4-甲硫醚苯基-2-乙炔基)苯胺(化合物3),N-甲基-4-(4-甲硫醚苯基-2-乙炔基)-1,8-萘酰胺(化合物4)。中间体和目标化合物均通过1H NMR、13C NMR、 MS和IR进行了结构表征。荧光和紫外光谱研究表明,这一系列化合物在有机溶剂如三氯甲烷或四氢呋喃中具有良好的光谱性质,而在水溶液中其荧光迅速被猝灭。在β-环糊精存在时,化合物2和3在水溶液中的荧光性质明显改善。光谱分析结果显示,荧光增强是由于化合物与β-环糊精形成了稳定的超分子包合物。详细探讨了该超分子包合反应过程,并推导了相应的包合机理。将化合物3与β-环糊精的超分子包合物用于水溶液中水杨醛的检测。在最优条件下,随着水杨醛的加入,超分子化合物的荧光被猝灭,据此可定量检测水杨醛,线性范围为0.6-240μM,检测下限为1×10-8M。
     2.设计并合成了两种共轭对亚苯基亚乙炔基分子导线(4-(4-甲硫醚苯基-2-乙炔基)苯甲醛(化合物5)和4-(4-甲硫醚苯基-2-乙炔基)苯甲酸(化合物6),并对这两种化合物的结构进行了表征确认。详细研究了这两种化合物的光谱性质及其与β-环糊精的包合反应,探讨了超分子反应过程并推导了相应的包合机理。研究发现:随着包合物的形成,这两种化合物的荧光明显增强;在三聚氰胺的存在下,化合物5和6的环糊精包合物的荧光被猝灭,由此建立了灵敏检测水中三聚氰胺的新方法,检测范围为分别为0.15-10μM和0.15-25μM。
     3.设计合成了一种新型的二茂铁乙炔衍生物,即4-(二茂铁基-2-乙炔基)苯胺(化合物7,简写为Fc-NH2)。该分子中含有苯乙炔骨架,封端基分别为二茂铁和氨基砌块,该化合物拥有优良的电化学性质,可以作为新型的电子媒介体用于构建电化学传感器。通过一锅法将石墨烯的水溶液和Fc-NH2溶液混合,制备了Fc-NH2/石墨烯复合物,滴于玻碳电极,再滴上一层Nafion膜,构建了新型Nafion/graphene/Fc-NH2修饰的玻碳电极。将Fc-NH2固定于石墨烯基体中,不但可以增强石墨烯复合物的电子传输性能和稳定性,同时也能有效防止二茂铁的泄露。研究表明,多巴胺(DA)在复合物修饰电极上的检测信号显著增强,石墨烯的电催化性能和二茂铁的电子媒介作用对检测信号的放大起主要作用。无论尿酸(UA)和抗坏血酸(AA)存在与否,多巴胺的电流响应与其浓度均呈良好的线性关系,线性范围分别为5×10-8-2×10-4M和1×10-7-4×10-4M,检测限分别为20和50nM。采用标准加入法,该修饰电极可很好地用于实际样品中多巴胺的检测。我们还进一步深入探讨了这一新检测方法中的信号放大的可能机理。
     4.将新合成的新型的二茂铁乙炔衍生物,即4-(二茂铁基-2-乙炔基)苯胺(化合物7,Fc-NH2)与石墨烯片(GS)之间良好的相互作用制备了GS/chi/Fc-NH2复合物,并成功用于细胞色素c (Cytc)的固定,获得GS/chi/Fc-NH2/Cytc修饰电极。实验研究发现,GS/chi/Fc-NH2复合物可以实现Cytc与电极间的快速电子传递,GS/chi/Fc-NH2/Cytc修饰电极在-0.2V附近出现一对峰,对应于Cytc的可逆氧化还原峰。该电极对亚硝酸钠有良好的电催化作用,在0.1-150μM范围内呈良好的线性关系,检测限低至0.01μM。
     5.设计、合成一种新型二茂铁乙炔衍生物,即4-(二茂铁基-2-乙炔基)硫代乙酸苯硫醇酯(化合物9,Fc-SAc),此化合物以低聚对弧苯基亚乙炔基作为骨架,以二茂铁和硫酯基为端基。将Fc-SAc的水解产物4-(二茂铁基-2-乙炔基)苯硫酚(Fc-SH)通过金-硫键固定在金纳米粒子(AuNPs)修饰电极表面,构建了新型、高灵敏芦丁传感器。将二茂铁乙炔衍生物结合纳米金、石墨烯/壳聚糖构建了两种不同的修饰电极,即Fc-S/AuNPs/GCE(电极1)和Fc-S/AuNPs/graphene-chitosan/GCE(电极2)。实验发现,芦丁在电极1上的电化学过程是受扩散控制,而在电极2上的电化学过程是受传质控制的。在最优实验条件下,电极1上芦丁检测的浓度线性范围为0.1-30μM,线性回归系数为0.998;而在电极2上,线性范围扩大至0.04-100μM,线性回归系数为0.997。研究表明,电极2检测芦丁的线性范围更宽、检测限更低、稳定性更好。
     6.首次报道了一种双重信号放大检测平台用于超灵敏检测抗坏血酸(AA)、多巴胺(DA)、尿酸(UA)和乙酰氨基酚(AC)的四组份混合物。这一双重信号放大平台是由新合成的4-(二茂铁基-2-乙炔基)硫代乙酸苯硫醇酯(化合物9, Fc-SAc,)的水解产物4-(二茂铁基-2-乙炔基)苯硫酚(Fc-SH)修饰的金包磁纳米粒子(Au@Fe3O4)和石墨烯纳米片(GS)及玻碳电极构成。由于纳米材料如Au@Fe3O4纳米粒子和GS的催化作用以及二茂铁作为电子媒介体可加速电子传递,检测的灵敏度大大提高。新型Fc-SH修饰的Au@Fe3O4纳米复合物表现出良好的电化学性质和电催化性能。将Fc-S-Au@Fe3O4与GS/chitosan(石墨烯/壳聚糖)一锅法混合,可以得到Fc-S-Au@Fe3O4/GS/chitosan纳米复合物。将这一纳米复合物滴于玻碳电极表面,构建Fc-S-Au@Fe3O4/GS/chitosan/GCE修饰电极。实验发现此修饰电极可以用于AA、DA、UA和AC共存条件下各组份的灵敏检测。在50mVs-1的扫速下,四组份可以很好地分开,峰电位分别位于-0.03,0.15,0.26和0.37V, AA-DA, DA-UA和UA-AC的峰-峰电位差分别为0.18,0.11和0.11V。采用微分脉冲伏安法对四组份进行检测发现,各物质的峰电流都随着浓度的增加而增加。当保持其他三组份的浓度不变,只改变待测组分浓度时,四组份体系中AA、DA、UA和AC分别在5-100,0.5-80,2-120和0.5-35μM浓度范围内呈良好的线性关系。同时改变四组份的浓度时,AA、DA、UA和AC分别在6-350,0.5-50,1-100和0.2-30μM范围内呈良好的线性。根据三倍信噪比计算出AA、DA、UA和AC的最低检测限分别为1、0.08、0.1和0.01μM。
Quantitative and qualitative determination of physiologically-related species in complex food, medicine, biological matrixes, and environmental sample is the core issue of food safety, disease screening and diagnosis and sanitation, environmental monitoring and pollution. It is very important to develope fast, simple, sensitive methods for detection of individual and multiple components in the complex samples. Chemo/biosensing is a new detection technique, and has widely applied in food, medicine, biological matrixes and environmental samples. And innovativing sensing methods, developing effective and amflification material is the key to constructing biosensors for small molecules with higher sensitivity and selectivity.
     In this dissertation, we briefly reviewed the chemo/biosensors, and especially stated how to design and construct new chemical sensors. The recent applications of nanomaterials, electron mediators and molecular wires in the area of chemo/biosensing were reviewed in detail. As one of important molecular wires, oligo-(phenylene-ethynylene)s (OPEs) derivatives have excellent properities such as rectifier, storage and switch, and have widely employed in molecular electronics area. Take advantage of the good optical and electrotronic properties, it is expected to build some sensitive detection methods for small molecules. Based on this, serials of new OPEs were synthesized and characterized. Combined with nanomaterials and β-cyclodextrin, several biosensors for life-related biomolecules were constructed. The main contents are as follows:
     1. Four new conjugated oligo-phenylene-ethynylenes derivatives, N-methyl-4-(4-acetylthiophenylethynyl)-1,8-naphthalimide (1), thioacetic acid S-[4-(4-aminophenyl-ethynyl) phenyl]ester (2),4-methylthiophenylethynyl-benzenamine (3), and N-methyl-4-(4-methyl-thiophenyl-ethynyl)-1,8-naphthalimide (4), were synthesized by nucleophilic substitution, electrophilies addition and Sonogashira reactions. The structures of the four compounds were confirmed by1H NMR,13C NMR, MS and IR and their spectral characteristics were studied by ultraviolet and visible (UV-vis) spectroscopy as well as fluorescence spectroscopy in different mediums. It was found that the fluorescence properties of compounds2and3were notably improved in the aqueous solutions in the presence of β-cyclodextrin (β-CD). Spectral analysis supported the supposition that the fluorescence intensity enhancement was due to the formation of inclusion complex with β-CD. The supramolecular interaction was investigated in detail and the reaction mechanism was provided. A salicylaldehyde determination method in aqueous medium was established based on the supramolecular complex of compound3. Under the optimum conditions, the supramolecular complex exhibited a dynamic fluorescence response range for salicylaldehyde from0.6to240μM, with a detection limit of1×10-8M.
     2. Two new conjugated oligo-phenylene-ethynylenes derivatives,4-((4-(methylthio) phenyl)ethynyl)benzaldehyde (5),4-((4-(methylthio) phenyl) ethynyl) benzoic acid)(6) were designed and synthesized for the first time. Their structures of the two compounds were thoroughly confirmed by1H NMR,13C NMR, MS and IR. The spectral characteristics were studied by UV-vis spectroscopy as well as fluorescence spectroscopy in different solvents. The inclusion processes with β-CD were investigated in detail and the possible inclusion mechanism was induced. It was found that the fluorescence intensity of the two compounds was enhanced after the complex was formed. In the presence of melamine, the fluorescence intensity of the supramolecular complex was quickly quenched. A simple melamine determination method in aqueous medium was established based on the supramolecular complex of β-CD with compound5and6. Under the optimum conditions, the supramolecular complex exhibited dynamic fluorescence response ranges for melamine from0.15-10μM and0.15-25μM, respectively.
     3. A new ferrocene derivative (1-[(4-amino) phenyl ethynyl] ferrocene,(compound7, Fc-NH2) was synthesized for the first time. The ferrocene derivative molecule contained phenylethynyl skeleton, ferrocene and amino groups with excellent electrochemical property. Graphene/Fc-NH2nanocomposite was prepared by mixing graphene solution and Fc-NH2solution in one pot and the nanocomposite was utilized to construct Nafion/graphene/Fc-NH2modified glass carbon electrode (GCE). The ferrocene derivative immobilized on the graphene can enhance the charge-transport ability of the nanocomposite, stabilize the graphene and prevent the leakage of ferrocene. The detection signal of dopamine (DA) was significantly amplified on the Nafion/graphene/Fc-NH2/GCE. It was experimentally demonstrated that the signal enhancement is resulted from the synergy amplification effect of graphene and the Fc-NH2. The oxidation peak currents of DA were linearly related to the concentrations in the range of5×10-2×10-4M with the detection limit of20nM in the absence of urine acid (UA) and ascorbic acid (AA). In the presence of10-3M AA and10-4M UA, the linear response range was1×10-7-4×10-4M, and the detection limit was50nM at S/N=3. Using the proposed Nafion/Fc-NH2/graphene/GCE, DA was successfully determined in real samples with the standard addition method.
     4. A new ferrocene-terminated phenylethynyaniline (Fc-NH2, compound7) was synthesized by Sonogashira reaction. The structures of the new intermediate and target compound were identified by IR,1H NMR,13C NMR, MS. Stable GS/chi/Fc-NH2complex was prepared combined with graphene, and the GS/chi/Fc-NH2/Cytc modified electrode was fabricated. It was found that Cytc can immobilize on GS/chi/Fc-NH2and the fast electron transfer can be realized between the electrode and Cytc molecules. There is a pair of peaks near-0.2V, which can be attributed to Cytc. The GS/chi/Fc-NH2/Cytc modified GCE shows good catalysis towards NaNO2, and it shows good linearity in the range of1×10-7-1.5×10-4M,0.1-150μM, and the determination limit is bellow at4×10-8M.
     5. A new ferrocene benzyne derivative (Fc-SAc, compound9) that contained oligo-(phenylene-ethynylene) skeleton, ferrocene and thiolate terminal groups was firstly synthesized. The hydrolysis product of Fc-SAc (Fc-SH) was immobilized onto gold nanoparticles (AuNPs) modified glass carbon electrode (GCE) as sensing element for rutin detection with high sensitivity. The new sensing strategy was proposed by using two Fc-SH modified electrodes:Fc-S/AuNPs/GCE (Electrodel) and Fc-S/AuNPs/graphene-chitosan/GCE (Electrode2). The electrochemical oxidation of rutin on Electrode2was a diffusion-controlled process, which was different from a mass-controlled process on Electrode1. Under the optimal conditions, the peak currents of the sensors were linearly related to the concentrations of rutin. The linear response ranges were0.05-30μM and0.04-100μM with the regression coefficients of0.998and0.997on Electrodel and Electrode2, respectively. Electrode2presented wider linear range, superior sensitivity, lower detection limit and better stability on determination of rutin.
     6. A double signal amplification platform for ultrasensitive simultaneous detection of a quaternary mixture of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) is fabricated by assembling newly synthesized ferrocene thiolate (phenylethynyl ferrocene thiolate, Fc-SAc, compound9) on core/shell structured Fe3O4@Au and coupling with graphene sheet/chitosan (GS/chitosan). By immobilization of the electron mediator on Fe3O4@Au nanoparticles (NPs), a Fe3O4@Au-S-Fc nanocomposite possessing excellent electric-catalytic and signal amplification behavior was obtained. Mixing the Fe3O4@Au-S-Fc with GS/chitosan, the Fe3O4@Au-S-Fc/GS/chitosan nanocomposites were obtained and utilized to construct a multicomponent sensor. Using the Fe3O4@Au-S-Fc/GS/chitosan modified glass carbon electrode (GCE), the double signal amplification strategy was realized by the synergistic catalytic effect of Fe3O4@Au NPs and GS, and the amplification effect of the ferrocene electron mediator. The individual and simultaneous determinations of AA, DA, UA and AC were performed using differential pulse voltammetry (DPV) with the modified electrode. This modified electrode exhibits potent and persistent electro-oxidation behavior followed by well-separated oxidation peaks towards AA, DA, UA and AC. For the quaternary mixture, the four compounds can be well separated from each other at a scan rate of50mVs-1with the peak potentials at-0.03,0.15,0.24and0.35V, respectively. The peak-to-peak potential separations of AA-DA, DA-UA and UA-AC were0.18,0.09and0.11V, respectively, which were large enough to determine AA, DA, UA and AC simultaneously. The catalytic peak currents were linearly dependent on the concentrations of AA, DA, UA and AC in the range of5-100,0.5-80,2-120and0.5-35μM, respectively, in the individual detection of each component under the condition of keeping the concentrations of the other3compounds constant. By simultaneously changing the concentrations of the4constituents, good linear current responses were obtained in the range of6-350,0.5-50,1-90and0.4-32μM for AA, DA, UA and AC, respectively. And the determination limits for AA, DA, UA and AC were1,0.2,0.3and0.05μM, respectively. The analytical performance of this sensor has been evaluated for simultaneous detection of AA, DA, UA and AC in serum and urine samples.
引文
1. Brecht, A.; Gauglitz, G, Recent Developments in Optical Transducers for Chemical or Biochemical Applications. Sensors and Actuators B:Chemical 1997,38 (1-2),1-7.
    2.吴世康,超分子光化学导论:基础与应用.2005.
    3. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B., An Effective Fluorescent Chemosensor for Mercury Ions. Journal of the American Chemical Society 2000,122 (28),6769-6770.
    4. Descalzo, A.B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J., Coupling Selectivity with Sensitivity in An Integrated Chemosensor Framework:Design of A Hg2+ -Responsive Probe, Operating Above 500 nm. Journal of the American Chemical Society 2003,125 (12),3418-3419.
    5. Kim, J.S.; Choi, M.G.; Song, K.C.; No, K.T.; Ahn, S.; Chang, S.K., Ratiometric Determination of Hg2+ Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide. Organic Letters 2007,9(6),1129-1132.
    6. Coskun, A.; Akkaya, E.U., Signal Ratio Amplification via Modulation of Resonance Energy Transfer:Proof of Principle in an Emission Ratiometric Hg(Ⅱ) Sensor. Journal of the American Chemical Society 2006,128(45),14474-14475.
    7. de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews 1997,97 (5),1515-1566.
    8. Trautwein, A.X., Bioionorganie Chemistry.1997.
    9. Speiser, S., Photophysics and Meehanisms of Intramoleeular Electron Energy Transfer in Bichromophoric Molecular Systems:Solution and Supersonic Jet Studies. Chemical Reviews 1996,96 (6),1953-1976.
    10. Martinez-Manez, R.; Sancenin, F., Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews 2003,103 (11),4419-4476.
    11.黄彩海,杨丽娟.,硝酸根电极连续测定雨水中硝酸盐(氮)亚硝酸盐(氮)和铵氮.分析实验室1990,51(9),34-36.
    12. Chen, C.T.; Chen, Y.C., Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2005,77 (18),5912-5919.
    13. Choi, M.G.; Ryu, D.H.; Jeon, H.L.; Cha, S.; Cho, J.; Joo, H.H.; Hong, K.S.; Lee, C.; Ahn, S.; Chang, S.K., Chemodosimetric Hg2+ -Selective Signaling by Mercuration of Dichlorofluorescein Derivatives. Organic Letters 2008,10 (17),3717-3720.
    14. Yu, P.; Qian, Q.; Lin, Y.; Mao, L., In Situ Formation of Three-Dimensional Uniform Pt/Carbon Nanotube Nanocomposites from Ionic Liquid/Carbon Nanotube Gel Matrix with Enhanced Electrocatalytic Activity toward Methanol Oxidation. The Journal of Physical Chemistry C 2010,114 (8),3575-3579.
    15. Zhang, X.; Guo, Q.; Cui, D., Recent advances in nanotechnology applied to biosensors. Sensors 2009,7,1033-1053.
    16. Rosi, N.L.; Mirkin, C.A., Nanostructures in Biodiagnostics. Chemical Reviews 2005,105 (4), 1547-1562.
    17. Wang, J., Nanomaterial-based Amplified Transduction of Biomolecular Interactions. Small 2005, 1,1036-1043.
    18. Liu, T.; Zhang J.; Gan, X.; Fan, C.; Li, G.; Matsuda, N., Wiring Electrons of Cytochrome C with Silver Nanoparticles in Layered Films. Chemphyschem 2003,4,1364-1366.
    19. Luo, X.; Killard, A.J.; Smyth, M.R., Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006,18,319-326.
    20. Wang., J., Nanomaterial-Based Electrochemical Biosensors. Analyst 2005 130,421-426.
    21. Ajayan, P.M., Nanotubes from Carbon. Chemical Reviews 1999,99 (7),1787-1800.
    22. Mann, S., Shenton, W., Li, M., Connolly, S., Fitzmaurice, D., Biologically Programmed Nanoparticle Assembly. Advance Material 2000,12,147-150.
    23. Elghanian, R.S., Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A, Selective Colorimetric Detection of Polynucleotides based on the Distance-dependent Optical properties of Gold nanoparticles. Science 1997,277,1078-1081.
    24. Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B 2006,110 (14), 7238-7248.
    25. Jensen, T.R.; Malinsky, M.D.; Haynes, C.L.; Van Duyne, R.P., Nanosphere Lithography:Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B 2000,104(45),10549-10556.
    26. Zhu, Z.; Su, Y.; Li, J.; Li, D.; Zhang, J.; Song, S.; Zhao, Y.; Li, G.; Fan, C., Highly Sensitive Electrochemical Sensor for Mercury(II) Ions by Using a Mercury-Specific Oligonucleotide Probe and Gold Nanoparticle-Based Amplification. Analytical Chemistry 2009,81 (18),7660-7666.
    27. He, P.; Shen, L.; Liu, R.; Luo, Z.; Li, Z., Direct Detection of β-Agonists by Use of Gold Nanoparticle-Based Colorimetric Assays. Analytical Chemistry 2011,83 (18),6988-6995.
    28. Zhang, X.; Zhao, H.; Xue, Y.; Wu, Z.; Zhang, Y.; He, Y.; Li, X.; Yuan, Z., Colorimetric Sensing of Clenbuterol Using Gold Nanoparticles in The Presence of Melamine. Biosensors and Bioelectronics 2010,34 (1),112-117.
    29. Demers, L.M.; Mirkin, C.A.; Mucic, R.C.; Reynolds, R.A.; Letsinger, R.L.; Elghanian, R.; Viswanadham, G., A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Analytical Chemistry 2000,72 (22),5535-5541.
    30. Liu, J.; Lu, Y., Stimuli-Responsive Disassembly of Nanoparticle Aggregates for Light-Up Colorimetric Sensing. Journal of the American Chemical Society 2005,127 (36),12677-12683.
    31. Jiang, Y.Z., H.; Zhu, N.N.; Lin, Y.Q.; Yu, P.; Mao, L.Q., A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles. Angew Chem Int Ed 2008,47,8601-8604.
    32. Li, F.; Feng, Y.; Zhao, C.; Tang, B., Simple Colorimetric Sensing of Trace Bleomycin Using Unmodified Gold Nanoparticles. Biosensors and Bioelectronics 2011,26 (11),4628-4631.
    33. Ding, N.; Zhao, Y.; Yang, L.; Zeng, Y.; He, K.; Xiang, G. Wang Colorimetric Assay for Determination of Lead (II) Based on Its Incorporation into Gold Nanoparticles during Their Synthesis. Sensors 2010,10(2),11144-11155.
    34. Xue, Y.; Zhao, H.; Wu, Z.; Li, X.; He, Y.; Yuan, Z., Colorimetric Detection of Cd2+ Using Gold Nanoparticles Cofunctionalized with 6-mercaptonicotinic Acid and L-Cysteine. Analyst 2011,136 (18),3725-3730.
    35. Ai, K.; Liu, Y.; Lu, L., Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. Journal of the American Chemical Society 2009,131 (27),9496-9497.
    36. Ding, N.C., Zhao, H.; Yang, Y.; Zeng, L.; He, Y.; Xiang, K.; Wang, G., Colorimetric Assay for Determination of Lead (Ⅱ) Based on Its Incorporation into Gold Nanoparticles during Their Synthesis. Sensors 2010,10(2),11144-11155.
    37. Wu, Z.; Zhao, H.; Xue, Y.; Cao, Q.; Yang, J.; He, Y.; Li, X.; Yuan, Z., Colorimetric Detection of Melamine During the Formation of Gold Nanoparticles. Biosensors and Bioelectronics 2011,26 (5), 2574-2578.
    38. Liu, T. Zhang, J.; Gan, X.; Fan, C.; Li, G.; Matsuda, N., Wiring Electrons of Cytochrome c with Silver Nanoparticles in Layered Films. Chemphyschem 2003,4,1364-1366.
    39. Mitchell, J.S.; Lowe, T.E., Ultrasensitive Detection of Testosterone Using Conjugate Linker Technology in a Nanoparticle-Enhanced Surface Plasmon Resonance Biosensor. Biosensors and Bioelectronics 2009,24 (7),2177-2183.
    40. Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D., Amino-functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. Journal of Colloid and Interface Science 2010,349 (1),293-299.
    41. Wang, J.; Li, Y.F.; Huang, C.Z.; Wu, T., Rapid and Selective Detection of Cysteine Based on its Induced Aggregates of Cetyltrimethylammonium Bromide Capped Gold Nanoparticles. Analytica Chimica Acta 2008,626 (1),37-43.
    42. Wu, X.; Jiang, H.; Zheng, J.; Wang, X.; Gu, Z.; Chen, C., Highly Sensitive Recognition of Cancer Cells by Electrochemical Biosensor Based on The Interface of Gold Nanoparticles/Polylactide Nanocomposites. Journal of Electroanalytical Chemistry 2011,656 (1-2),174-178.
    43. Pingarren, J.M.; Yanez-Sedeno, P.; Gonzalez-Cortes, A., Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta 2008,53 (19),5848-5866.
    44. Bertin, P.A.; Georganopoulou, D.; Liang, T.; Eckermann, A.L.; Wunder, M.; Ahrens, M.J.; Blackburn, G.F.; Meade, T.J., Electroactive Self-Assembled Monolayers on Gold via Bipodal Dithiazepane Anchoring Groups. Langmuir 2008,24 (16),9096-9101.
    45. Wang, P.; Li, Y.; Huang, X.; Wang, L., Fabrication of Layer-by-Layer Modified Multilayer Films Containing Choline and Gold Nanoparticles and Its Sensing Application for Electrochemical Determination of Dopamine And Uric Acid. Talanta 2007,73 (3),431-437.
    46. Cui, YP.; Yang, C.; Pu, W.H.; Oyama, M.; Zhang. J.D., Electrochemical Determination of Nitrite Using a Gold Nanoparticles-Modified Glassy Carbon Electrode Prepared by the Seed-Mediated Growth Technique, Analytical Letter 2010,43,22-33.
    47. Yang, Z., Chen, X., Zhao, J., Zhao, G., The Nano-Au Self-Assembled Glassy Carbon Electrode for Selective Determination of Epinephrine in The Presence of Ascorbic Acid. Colloids Surf B Biointerfaces 2007,54,230-235.
    48. Komathi, S.; Lee, K.P., Nanomolar Detection of Dopamine at Multi-Walled Carbon Nanotube Grafted Silica Network/Gold Nanoparticle Functionalised Nanocomposite Electrodes. Analyst 2010, 135,397-403.
    49. Pandey, P.S.; Arya, S.K.; Sharma, A., Datta, A.M.; Malhotra, B.D., Gold Nanoparticle-Polyaniline Composite Films for Glucose Sensing. Journal of Nanoscience Nanotechnology 2008,8,3158.
    50. Rakhi, R.B.; Sethupathi, K.; Ramaprabhu, S., A Glucose Biosensor Based on Deposition of Gucose Oxidase onto Crystalline Gold Nanoparticle Modified Carbon Nanotube Electrode. The Journal of Physical Chemistry B 2009,113 (10),3190-3194.
    51. Wang, Y.; Wei, W.; Liu, X.; Zeng, X., Carbon Nanotube/Chitosan/Gold Nanoparticles-Based Glucose Biosensor Prepared by A Layer-By-Layer Technique. Materials Science and Engineering:C 2009,29(1),50-54.
    52. Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H., Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. Journal of Physical Chemistry C 2009,113 (32),14071-14075.
    53. Cherevko, S.; Chung, C.H., Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors and Actuators B:Chemical 2009,142 (1),216-223.
    54. Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li. J., Preparation, Structure, Andelectrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Material 2009,19,2782-2789.
    55. Wang, Z.; Chen, D.; Gao, X.; Song, Z., Subpicogram Determination of Melamine in Milk Products Using a Luminol-Myoglobin Chemiluminescence System. Journal of Agricultural and Food Chemistry 2009,57 (9),3464-3469.
    56. Ragupathy, D.; Gopalan, A.I.; Lee, K.P., Synergistic Contributions of Multiwall Carbon Nanotubes And Gold Nanoparticles in A Chitosan-Ionic Liquid Matrix towards Improved Performance for A Glucose Sensor. Electrochemistry Communications 2009,11 (2),397-401.
    57. Zhang, M.; Gong, K.; Zhang, H.; Mao, L., Layer-by-layer Assembled Carbon Nanotubes for Selective Determination of Dopamine in The Presence of Ascorbic Acid. Biosensors and Bioelectronics 2005,20 (7),1270-1276.
    58. Scheuermann, G.M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R., Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuk-Miyaura Coupling Reaction. Journal of the American Chemical Society 2009, 131 (23),8262-8270.
    59. Ambrosi, A.; Airo, F.; Merkoci, A., Enhanced Gold Nanoparticle Based ELISA for a Breast Cancer Biomarker. Analytical Chemistry 2009,82 (3),1151-1156.
    60. Lee J, Chang, H.; Kim S. Molecular Monolayer Nonvolatile Memory with Tunable Mol ecules. Angew Chem. Int. Ed.2009,48,8501-8504.
    61. Ahirwal, G.K.; Mitra, C.K., Gold Nanoparticles Based Sandwich Electrochemical Immunosensor. Biosensors and Bioelectronics 2010,25 (9),2016-2020.
    62. He, X.L.; Yuan, R.; Chai, YQ. Shi, Y.T. A Sensitive Amperometric Immunosensor for Carcinoembryonic Antigen Detection with Porous Nanogold Film and Nano-Au/Chitosan Composite as Immobilization Matrix. Joutnal Biochemistry Biophysics Method 2008,70,823-829.
    63. Zhuo, Y.; Yu, R.; Yuan, R.; Chai, Y.; Hong, C., Enhancement of Carcinoembryonic Antibody Immobilization on Gold Electrode Modified by Gold Nanoparticles and SiO2/Thionine Nanocomposite. Journal of Electroanalytical Chemistry 2009,628 (1-2),90-96.
    64. Connor E.E., Mwamuka, J., Gole A., Murphy C.J., Wyatt M.D., Gold Nanoparticles Are Taken up by Human Cells But Do Not Cause Acute Cytotoxicity. Small 2005,1,325-327.
    65. Kim, D.; Daniel, W.L.; Mirkin, C.A., Microarray-Based Multiplexed Scanometric Immunoassay for Protein Cancer Markers Using Gold Nanoparticle Probes. Analytical Chemistry 2009,81 (21), 9183-9187.
    66. Stoeva, S.I.; Lee, J.S.; Smith, J.E.; Rosen, S.T.; Mirkin, C.A., Multiplexed Detection of Protein Cancer Markers with Biobarcoded Nanoparticle Probes. Journal of the American Chemical Society 2006,128(26),8378-8379.
    67. Xu, K.; Huang, J.; Ye, Z.; Ying, Y.; Li, Y., Recent Development of Nano-Materials Used in DNA Biosensors. Sensors 2009,9 (7),5534-5557.
    68. Selvaraju, T.; Das, J.; Jo, K.; Kwon, K.; Huh, C.-H.; Kim, T. K.; Yang, H., Nanocatalyst-Based Assay Using DNA-Conjugated Au Nanoparticles for Electrochemical DNA Detection. Langmuir 2008,24(17),9883-9888.
    69. Park, H.Y.; Schadt, M.J.; Wang; Lim, I.I.S.; Njoki, P.N.; Kim, S.H.; Jang, M.-Y.; Luo, J.; Zhong, C.J., Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-separation. Langmuir 2007,23 (17),9050-9056.
    70. Weizmann, Y.; Patolsky, F.; Katz, E.; Willner, I., Amplified DNA Sensing and Immunosensing by the Rotation of Functional Magnetic Particles. Journal of the American Chemical Society 2003, 125(12),3452-3454.
    71. Martin, J.I., Nogues, J., Liu, K., Vicent, J.L., Schuller, I.K., Journal of Magnet Material 2003, 256,449-501.
    72. Dobson, J., Magnetic Nanoparticles for Drug Delivery, Drug Development Research 2006,67, 55-60.
    73. Niemeyer, C.M., Nanoparticles, Proteins, And Nucleic Acids:Biotechnology Meets Materials Science. Angewandte Chemie International Edition 2001,40 (22),4128-4158.
    74. Navaee, A.; Salimi, A.; Teymourian, H., Graphene Nanosheets Modified Glassy Carbon Electrode for Simultaneous Detection of Heroine, Morphine and Noscapine. Biosensors and Bioelectronics 2012,31 (1),205-211.
    75. Chauhan, N.; Pundir, C.S., An Amperometric Biosensor Based on Acetylcholinesterase Immobilized onto Iron Oxide Nanoparticles/Multi-Walled Carbon Nanotubes Modified Gold Electrode for Measurement of Organophosphorus Insecticides. Analytica Chimica Acta 2011,701 (1), 66-74.
    76. Qu, J.; Liu, G.; Wang, Y.; Hong, R., Preparation of Fe3O4-Chitosan Nanoparticles Used for Hyperthermia. Advanced Powder Technology 2010,21 (4),461-467.
    77. Li, J.; Wei, X.; Yuan, Y., Synthesis of Magnetic Nanoparticles Composed by Prussian Blue And Glucose Oxidase for Preparing Highly Sensitive and Selective Glucose Biosensor. Sensors and Actuators B:Chemical 2009,139 (2),400-406.
    78. Liang, G.; Cai, S.; Zhang, P.; Peng, Y.; Chen, H.; Zhang, S.; Kong, J., Magnetic Relaxation Switch and Colorimetric Detection of Thrombin Using Aptamer-Functionalized Gold-Coated Iron Oxide Nanoparticles. Analytica Chimica Acta 2011,689 (2),243-249.
    79. Zou, Z.; Ibisate, M.; Zhou, Y.; Aebersold, R.; Xia, Y.; Zhang, H., Synthesis and Evaluation of Superparamagnetic Silica Particles for Extraction of Glycopeptides in the Microtiter Plate Format. Analytical Chemistry 2008,80 (4),1228-1234.
    80. Kouassi, G.K.; Irudayaraj, J., Magnetic and Gold-Coated Magnetic Nanoparticles as A DNA Sensor. Analytical Chemistry 2006,78 (10),3234-3241.
    81. Fang, H.; Ma, C.; Wan, T.; Zhang, M.; Shi, W., Fabrication of Monodisperse Magnetic Fe3O4-SiO2 Nanocomposites with Core-Shell Structures. The Journal of Physical Chemistry C 2006, 111 (3),1065-1065.
    82. Tang, D.; Yuan, R.; Chai, Y., Magnetic Core-Shell Fe3O4@Ag Nanoparticles Coated Carbon Paste Interface for Studies of Carcinoembryonic Antigen in Clinical Immunoassay. The Journal of Physical Chemistry B 2006,110 (24),11640-11646.
    83. Hou, S.; Ou, Z.; Chen, Q.; Wu, B., Amperometric Acetylcholine Biosensor Based on Self-Assembly of Gold Nanoparticles and Acetylcholinesterase on The Sol-Gel/Multi-Walled Carbon Nanotubes/Choline Oxidase Composite-Modified Platinum Electrode. Biosensors and Bio electronics 2012,33(1),44-49.
    84. Zhao, X.; Cai, Y.; Wang, T.; Shi, Y.; Jiang, G, Preparation of Alkanethiolate-Functionalized Core/Shell Fe3O4@Au Nanoparticles and Its Interaction with Several Typical Target Molecules. Analytical Chemistry 2008,80 (23),9091-9096.
    85. Wang, L.; Sun, Y.; Wang, J.; Wang, J.; Yu, A.; Zhang, H.; Song, D., Preparation of Surface Plasmon Resonance Biosensor Based on Magnetic Core/Shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 Nanoparticles. Colloids and Surfaces B:Biointerfaces 2011,84 (2),484-490.
    86. Du, X.; He, J.; Zhu, J.; Sun, L.; An, S., Ag-Deposited Silica-Coated Fe3O4 Magnetic Nanoparticles Catalyzed Reduction Of p-nitrophenol. Applied Surface Science 2012,258 (7), 2717-2723.
    87. Qiu, J.; Peng, H.; Liang, R., Ferrocene-Modified Fe3O4@SiO2 Magnetic Nanoparticles as Building Blocks for Construction of Reagentless Enzyme-Based Biosensors. Electrochemistry Communications 2007,9 (11),2734-2738.
    88. Chen, X.; Zhu, J.; Chen, Z.; Xu, C.; Wang, Y.; Yao, C., A Novel Bienzyme Glucose Biosensor Based on Three-Layer Au-Fe3O4@SiO2 Magnetic Nanocomposite. Sensors and Actuators B: Chemical 2011,159 (1),220-228.
    89. Fan, A.; Lau, C.; Lu, J., Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label. Analytical Chemistry 2005,77 (10),3238-3242.
    90. Gestetner, B.; Birk, Y.; Tencer, Y., Soybean Saponins. Fate of Ingested Soybean Saponins and The Physiological Aspect of Their Hemolytic Activity. Journal of Agricultural and Food Chemistry 1968,16(6),1031-1035.
    91. Caruntu, D.; Cushing, B.L.; Caruntu, G.; O'Connor, C.J., Attachment of Gold Nanograins onto Colloidal Magnetite Nanocrystals. Chemistry of Materials 2005,17 (13),3398-3402.
    92. Mikhaylova, M.; Kim, D.K.; Berry, C.C.; Zagorodni, A.; Toprak, M.; Curtis, A.S.G.; Muhammed, M., BSA Immobilization on Amine-Functionalized Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials 2004,16 (12),2344-2354.
    93. Jin, E.; Lu, X.; Cui, L.; Chao, D.; Wang, C., Fabrication of Graphene/Prussian Blue Composite Nanosheets and Their Electrocatalytic Reduction of H2O2. Electrochimica Acta 2010,55 (24), 7230-7234.
    94. Mayra, S.; Artiles, C.S.R.; Timothy S., Graphene-Based Hybrid Materials and Devices for Biosensing. Advanced Drug Delivery Reviews 2011,63,1352-1360.
    95. Pan, D.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue Luminescent Graphene Quantum Dots. Adv. Mater.2010,22,734-738
    96. Gokus, T.; Nair, R.R.; Bonetti, A.; Bohmler, M.; Lombardo, A.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.; Hartschuh, A., Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano 2009,3 (12),3963-3968.
    97. Swathi, R., Resonance Energy Transfer from A Dye Molecule to Graphene. Journal of Chemistry Physics 2008,82,2341-2346.
    98. Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J., Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Analytical Chemistry 2010,82 (6),2341-2346.
    99. Lu, C.; Yang, H., Zhu, C.; Chen, X.; Chen, G. A graphene Platform for Sensing Biomolecules. Angewandte Chemie 2009,121,4879-4881.
    100. Jiang, Z., Graphene-CdS Composite, Synthesis and Enhanced Photocatalytic Activity. Applied Surface Science 2012,258,2473-2478.
    101. Zhou, M.; Zhai, Y.; Dong, S., Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry 2009,81 (14),5603-5613.
    102. Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li J., Preparation, Structure, And Electrochemical Properties of Reduced Graphene Sheet Films. Advance Functional Material 2009,19,2782-2789.
    103. Choi, W.; Lahiri,1.; Seelaboyina, R.; Kang, Y., Synthesis of Graphene and Its Applications:A Review. Solid State Material Science 2010,35,52-71.
    104. Pumera., M., Electrochemistry of Graphene:New Horizons for Sensing and Energy Storage. Chem. Rec.2009,9,211-223.
    105. Qiu, J.D.; Zhou, W.M.; Guo, J.; Wang, R.; Liang, R.P., Amperometric Sensor Based on Ferrocene-Modified Multiwalled Carbon Nanotube Nanocomposites as Electron Mediator for The Determination of Glucose. Analytical Biochemistry 2009,385 (2),264-269.
    106. Luo, J.; Liu, M.; Zhao, Q.; Zhao, J.; Zhang, Y.; Tan, L.; Tang, H.; Xie, Q.; Li, H.; Yao, S., A Study on the Electro-Oxidation And Electropolymerization of A New OPE Linear Molecule by EQCM and in Situ FTIR Spectroelectrochemistry. Electrochimica Acta 2010,56 (1),454-462.
    107. Xu, L.Q.; Wan, D.; Gong, H.F.; Neoh, K.G.; Kang, E.T.; Fu, G.D., One-Pot Preparation of Ferrocene-Functionalized Polymer Brushes on Gold Substrates by Combined Surface-Initiated Atom Transfer Radical Polymerization and click Chemistry? Langmuir 2010,26 (19),15376-15382.
    108. Zhao, Y.; Gao, Y.; Zhan, D.; Liu, H.; Zhao, Q.; Kou, Y.; Shao,Y.; Li, M.; Zhuang, Q.; Zhu, Z.; Selective Detection of Dopamine In The Presence of Ascorbic Acid and Uric Acid by A Carbon Nanotubes-Ionic Liquid Gel Modified Electrode. Talanta 2005,66,51-57.
    109. Kim, Y.R.; Bong, S.; Kang, Y.J.; Yang, Y.; Mahajan, R.K.; Kim, J.S.; Kim, H., Electrochemical Detection of Dopamine in The Presence of Ascorbic Acid Using Graphene Modified Electrodes. Biosensors and Bioelectronics 2010,25 (10),2366-2369.
    110. Liu, Q.; Zhu, X.; Huo, Z.; He, X.; Liang, Y.; Xu, M., Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 2012,97,557-562.
    111. Liu, S.Q.; Sun, W.H.; Hu, F.T., Graphene Nano Sheet-Fabricated Electrochemical Sensor for The Determination of Dopamine in The Presence of Ascorbic Acid Using Cetyltrimethylammonium Bromide as The Discriminating Agent. Sensors and Actuators B:Chemical 2012,173,497-504.
    112. He, P.; Wang, W.; Du, L.; Dong, F.; Deng, Y.; Zhang, T., Zeolite A Functionalized with Copper Nanoparticles and Graphene Oxide for Simultaneous Electrochemical Determination of Dopamine And Ascorbic Acid. Analytica Chimica Acta 2012,739 (0),25-30.
    113. Sun, C.L.; Lee, H.H.; Yang, J.M.; Wu, C.C., The Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, And Uric Acid Using Graphene/Size-Selected Pt Nanocomposites. Biosensors and Bioelectronics 2012,26 (8),3450-3455.
    114. Li, F.; Li, J.; Feng, Y.; Yang, L.; Du, Z., Electrochemical Behavior of Graphene Doped Carbon Paste Electrode And Its Application for Sensitive Determination of Ascorbic Acid. Sensors and Actuators B:Chemical 2011,157 (1),110-114.
    115. Zhou, K.; Zhu, Y.; Yang, X.; Luo, J.; Li, C.; Luan, S., A novel Hydrogen Peroxide Biosensor Based on Au-Graphene-HRP-Chitosan Biocomposites. Electrochimica Acta 2010,55 (9),3055-3060.
    116.王瑞,二茂铁衍生物的电化学剂在生物传感中的应用[硕士学位论文].2008.
    117. Liu, B.; Tian, H. Shape-Dependent Magnetic Properties of Low-Dimensional Nanoscale Prussian Blue (PB) Analogue SmFe(CN)6-4H2O, Chemical Communications 2005,3156-3158.
    118. Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Shakeri, M.; Zare, H., Methylene Blue as Electron Promoters in Microbial Fuel Cell. International Journal of Hydrogen Energy 2011,36 (20), 13335-13341.
    119. Shahrokhian, S.; Ghalkhani, M., Simultaneous Voltammetric Detection of Ascorbic Acid And Uric Acid at A Carbon-Paste Modified Electrode Incorporating Thionine-Nafion Ion-Pair as An Electron Mediator. Electrochimica Acta 2006,51 (13),2599-2606.
    120. Yabuki, S.; Mizutani, F.; Hirata, Y., Hydrogen Peroxide Determination Based On A Glassy Carbon Electrode Covered With Polyion Complex Membrane Containing Peroxidase And Mediator. Sensors and Actuators B:Chemical 2000,65 (1-2),49-51.
    121. LU Z(吕紫玲),D.S.(董绍俊),Acta Physico-Chimica Sinica(物理化学学报)1986,2(5),406.
    122. Flechsig, G.U.; Peter, J.; Hartwich, G.; Wang, J.; Grundler, P., DNA Hybridization Detection at Heated Electrodes. Langmuir 2005,21 (17),7848-7853.
    123. Chen, Y.; Banerjee, I.A.; Yu, L.; Djalali, R.; Matsui, H., Attachment of Ferrocene Nanotubes on β-Cyclodextrin Self-Assembled Monolayers with Molecular Recognitions. Langmuir 2004,20 (20), 8409-8413.
    124. Kandimalla, V.B.; Tripathi, V.S.; Ju, H., A conductive Ormosil Encapsulated with Ferrocene Conjugate And Multiwall Carbon Nanotubes for Biosensing Application. Biomaterials 2006,27 (7), 1167-1174.
    125. Kealy,T.J., Nature 1951,168,1039.
    126. Tripathi, V.S.; Kandimalla, V.B.; Ju, H., Amperometric Biosensor for Hydrogen Peroxide Based on Ferrocene-Bovine Serum Albumin And Multiwall Carbon Nanotube Modified Ormosil Composite. Biosensors and Bioelectronics 2006,21 (8),1529-1535.
    127. Bourigua, S.; El Ichi, S.; Korri-Youssoufi, H.; Maaref, A.; Dzyadevych, S.; Jaffrezic Renault, N., Electrochemical Sensing of Trimethylamine Based on Polypyrrole-Flavin-Containing Monooxygenase (FMO3) And Ferrocene as Redox Probe for Evaluation of Fish Freshness. Biosensors and Bioelectronics 2011,28 (1),105-111.
    128. Kerman, K.; Saito, M.; Tamiya, E.; Yamamura, S.; Takamura, Y., Nanomaterial-Based Electrochemical Biosensors for Medical Applications. TrAC Trends in Analytical Chemistry 2008,27 (7),585-592.
    129. Isnin, R.; Salam, C.; Kaifer, A. E., Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing N-Alkyl Chains f Varying Length. The Journal of Organic Chemistry 1991, 56(1),35-41.
    130. Siegel, B.; Breslow, R., Lyophobic Binding of Substrates by Cyclodextrins in Nonaqueous Solvents. Journal of the American Chemical Society 1975,97 (23),6869-6870.
    131.王晓蕾,张国荣,史兴旺,孙天麟,β-环糊精与二茂铁包合物修饰碳糊电极上抗坏血酸的催化氧化波研究.高等学校化学学报2000,21(9),1383-1385
    132.刘海鹰,邓家祺,二茂铁Nafion修饰葡萄糖传感器的研究.分析化学1994,22(12),1282-1885.
    133. Chen, Y.; Banerjee, I.A.; Yu, L.; Djalali, R.; Matsui, H., Attachment of Ferrocene Nanotubes on β-Cyclodextrin Self-Assembled Monolayers with Molecular Recognitions. Langmuir 2004,20 (20), 8409-8413.
    134. Qiu, J.; Xiong, M.; Liang, R.; Peng, H.; Liu F., Synthesis and Characterization of Ferrocene Modified Fe3O4@Au Magnetic Nanoparticles and Its Application. Biosensors and Bioelectronics 2009,24 (8),2649-2653
    135. Alonso, B.; Armada, P.G. a.; Losada, J.; Cuadrado, I.; Gonzalez, B.; Casado, C. M., Amperometric Enzyme Electrodes for Aerobic And Anaerobic Glucose Monitoring Prepared by Glucose Oxidase Immobilized in Mixed Ferrocene-Cobaltocenium Dendrimers. Biosensors and Bioelectronics 2004,19 (12),1617-1625.
    136. Goff, A.L.; Moggia, F.; Debou, N.; Jegou, P.; Artero, V.; Fontecave, M.; Jousselme, B.; Palacin, S., Facile and Tunable Functionalization of Carbon Nanotube Electrodes with Ferrocene by Covalent Coupling and π-Stacking Interactions and Their Relevance to Glucose Bio-Sensing. Journal of Electroanalytical Chemistry 2010,641 (1-2),57-63.
    137. Wei, Z.; Li, Z.; Sun, X.; Fang, Y.; Liu, J., Synergistic Contributions of Fullerene,Ferrocene, Chitosan and Ionic Liquid towards Improved Performance for a Glucose Sensor. Biosensors and Bioelectronics 2010,25 (6),1434-1438.
    138. Pawlak, M.; Grygolowicz-Pawlak, E.; Bakker, E., Ferrocene Bound Poly(vinyl chloride) as Ion to Electron Transducer in Electrochemical Ion Sensors. Analytical Chemistry 82 (16),6887-6894.
    139. Singh, P.; Menard-Moyon, C.; Kumar, J.; Fabre, B.; Verma, S.; Bianco, A., Nucleobase-Pairing Triggers The Self-Assembly of Uracil-Ferrocene on Adenine Functionalized Multi-Walled Carbon Nanotubes. Carbon 2012,50 (9),3170-3177.
    140. Senel, M.; Cevik, E.; Abasiyanik, M.F., Amperometric Hydrogen Peroxide Biosensor Based on Covalent Immobilization of Horseradish Peroxidase on Ferrocene Containing Polymeric Mediator. Sensors and Actuators B:Chemical 145 (1),444-450.
    141. Li, T.; Yang, M., Electrochemical Sensor Utilizing Ferrocene Loaded Porous Polyelectrolyte Nanoparticles as Label for the Detection of Protein Biomarker IL-6. Sensors and Actuators B: Chemical 2011,158 (1),361-365.
    142. Xu, L.Q.; Wan, D.; Gong, H.F.; Neoh, K.G.; Kang, E.T.; Fu, G.D., One-Pot Preparation of Ferrocene-Functionalized Polymer Brushes on Gold Substrates by Combined Surface-Initiated Atom Transfer Radical Polymerization and click Chemistry? Langmuir 2010,26 (19),15376-15382.
    143. Peng, R.; Zhang, W.; Ran, Q.; Liang, C.; Jing, L.; Ye, S.; Xian, Y., Magnetically Switchable Bioelectrocatalytic System Based on Ferrocene Grafted Iron Oxide Nanoparticles. Langmuir 27 (6), 2910-2916.
    144. Huang, X.J.; lm, H.S.; Lee, D.H.; Kim, H.S.; Choi, Y.K., Ferrocene Functionalized Single-Walled Carbon Nanotube Bundles. Hybrid Interdigitated Construction Film for L-Glutamate Detection. The Journal of Physical Chemistry C 2007,111 (3),1200-1206.
    145. Zhou, H.; Yang, W.; Sun, C., Amperometric Sulfite Sensor Based on Multiwalled Carbon Nanotubes/Ferrocene-Branched Chitosan Composites. Talanta 2008,77 (1),366-371.
    146. Senel, M.; Cevik, E.; AbasIyanIk, M.F., Amperometric Hydrogen Peroxide Biosensor Based on Covalent Immobilization of Horseradish Peroxidase on Ferrocene Containing Polymeric Mediator. Sensors and Actuators B:Chemical 2010,145 (1),444-450.
    147. Senel M.; Cevik, E.; Abasiyanik, M.F., Amperometric Hydrogen Peroxide Biosensor Based on Covalent Immobilization of Horseradish Peroxidase on Ferrocene Containing Polymeric Mediator. Sensors and Actuators B:Chemical 2010,145 (1),444-450.
    148. Radhakrishnan, S.; Paul, S., Conducting Polypyrrole Modified with Ferrocene for Applications in Carbon Monoxide Sensors. Sensors and Actuators B:Chemical 2007,125 (1),60-65.
    149. Le, H.Q.A.; Chebil, S.; Makrouf, B.; Sauriat-Dorizon, H.; Mandrand, B.; Korri-Youssoufi, H., Effect of The Size of Electrode on Electrochemical Properties of Ferrocene-Functionalized Polypyrrole Towards DNA Sensing. Talanta 2010,81,1250-1257.
    150. Wang, J.; Li, J.; Baca, A.J.; Hu, J.; Zhou, F.; Yan, W.; Pang, D.W., Amplified Voltammetric Detection of DNA Hybridization via Oxidation of Ferrocene Caps on Gold Nanoparticle/Streptavidin Conjugates. Analytical Chemistry 2003,75 (15),3941-3945.
    151. Senel, M., Construction of reagentless glucose biosensor based on ferrocene conjugated polypyrrole. Synthetic Metals 2011,161 (17-18),1861-1868.
    152. Padeste, C.; Grubelnik, A.; Tiefenauer, L., Ferrocene-avidin Conjugates for Bioelectrochemical Applications. Biosensors and Bioelectronics 2000,15 (9-10),431-438.
    153. Sabahat, S.; Janjua, N.K.; Brust, M.; Akhter, Z., Electrochemical Fabrication of Self Assembled Monolayer Using Ferrocene-Functionalized Gold Nanoparticles on Glassy Carbon Electrode. Electrochimica Acta 2011,56 (20),7092-7096.
    154. Bucher, C.; Devillers, C.H.; Moutet, J.C.; Royal, G.; Saint-Aman, E., Ferrocene-Appended Porphyrins:Syntheses and Properties. Coordination Chemistry Reviews 2009,253 (1-2),21-36.
    155. Lakshmi, V.; Santosh, G.; Ravikanth, M., Synthesis and properties of covalently Linked Thiaporphyrin-Ferrocene Conjugates. Journal of Organometallic Chemistry 2011,696 (4),925-931.
    156. Chen, M.; Diao, G., Electrochemical Study of Mono-6-Thio-(3-Cyclodextrin/Ferrocene Capped on Gold Nanoparticles:Characterization and Application to the Design of Glucose Amperometric Biosensor. Talanta 2009,80 (2),815-820.
    157. Nagarale, R.K.; Lee, J.M.; Shin, W., Electrochemical Properties of Ferrocene Modified Polysiloxane/Chitosan Nanocomposite and Its Application to Glucose Sensor. Electrochimica Acta 2009,54(26),6508-6514.
    158. Qiu, J.D.; Deng, M.Q.; Liang, R.P.; Xiong, M., Ferrocene-Modified Multiwalled Carbon Nanotubes as Building Block for Construction of Reagentless Enzyme-Based Biosensors. Sensors and Actuators B:Chemical 2008,135 (1),181-187.
    159. Razumiene, J.; Vilkanauskyte, A.; Gureviciene, V.; Laurinavicius, V.; Roznyatovskaya, N.V.; Ageeva, Y.V.; Reshetova, M.D.; Ryabov, A.D., New Bioorganometallic Ferrocene Derivatives as Efficient Mediators for Glucose And Ethanol Biosensors Based on PQQ-Dependent Dehydrogenases. Journal of Organometallic Chemistry 2003,668 (1-2),83-90.
    160. Zhang, F.F.; Wan, Q.; Wang, X.L.; Sun, Z.D.; Zhu, Z.Q.; Xian, Y.Z.; Jin, L.T.; Yamamoto, K., Amperometric Sensor Based on Ferrocene-Doped Silica Nanoparticles as An Electron Transfer Mediator for The Determination of Glucose in Rat Brain Coupled to in Vivo Microdialysis. Journal of Electroanalytical Chemistry 2004,571 (2),133-138.
    161. Wei, Z.; Li, Z.; Sun, X.; Fang, Y.; Liu, J., Synergistic Contributions of Fullerene, Ferrocene, Chitosan and Ionic Liquid towards Improved Performance for A Glucose Sensor. Biosensors and Bioelectronics 25 (6),1434-1438.
    162. nel M.; Cevik, E.; Abasiyanik, M.F., Amperometric Hydrogen Peroxide Biosensor Based on Covalent Immobilization of Horseradish Peroxidase on Ferrocene Containing Polymeric Mediator. Sensors and Actuators B:Chemical 2010,145 (1),444-450.
    163. Vidal, J.C.; Yague, M.A.; Castillo, J.R., A Chronoamperometric Sensor for Hydrogen Peroxide Based on Electron Transfer Between Immobilized Horseradish Peroxidase on A Glassy Carbon Electrode and A Diffusing Ferrocene Mediator. Sensors and Actuators B:Chemical 1994,21 (2), 135-141.
    164. Zhao, G.C.; Xu, M.Q.; Zhang, Q., A novel hydrogen peroxide sensor based on the redox of ferrocene on room temperature ionic liquid film. Electrochemistry Communications 2008,10 (12), 1924-1926.
    165. Garci, M.P.; Losada, J.; Cuadrado, I., Alonso, B., Gonzalez, B., Ramirez-Oliva, E.; Casado Carmen, M., Electrodes Modified With A Siloxane Copolymer Containing Interacting Ferrocenes for Determination of Hydrogen Peroxide And Glucose. Sensors and Actuators B:Chemical 2003,88 (2), 190-197.
    166. Beer, P.D.G., P. A.; Chen, G.Z., Design of Anion Receptors:Applications. Coordination Chemistry Reviews 1999,185-186.
    167. Dorokhin, D.; Tomczak, N.; Velders, A.H.; Reinhoudt, D.N.; Vancso, G.J., Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Molecular Ferrocene and Ferrocenyl Thiol Ligands. The Journal of Physical Chemistry C 2009,113 (43),18676-18680.
    168. Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J., Highly Selective Chromogenic and Redox or Fluorescent Sensors of Hg2+ in Aqueous Environment Based on 1,4-Disubstituted Azines. Journal of the American Chemical Society 2005,127(45),15666-15667.
    169. Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P., A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and Fluorescent Receptor for Highly Selective Recognition of Zn2+ Ions. Organic Letters 2007,9 (12),2385-2388.
    170. Alfonso, M.; Taaraga, A.; Molina, P., Ferrocene-Based Heteroditopic Receptors Displaying High Selectivity toward Lead and Mercury Metal Cations through Different Channels. The Journal of Organic Chemistry 2011,76 (3),939-947.
    171. Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P., A Selective Redox and Chromogenic Probe for Hg(Ⅱ) in Aqueous Environment Based on a Ferrocene-Azaquinoxaline Dyad. Inorganic Chemistry 2009,48 (24),11566-11575.
    172. Zhang, D.Z.; Su, J.; Tian, H.2009,1700, A dual-ion-switched molecular brake based on ferrocene. Chemical Communications 2009,13,1700-1702.
    173. Beer, P. D., Gale, P.A., and Chen, G.Z., Design of Anion Receptors:Applications. Coordination Chemistry Reviews 2003, (185-186),3-36.
    174. Steed, J. W., Coordination and organometallic compounds as anion receptors and sensors. Chemical Society Review 2009,38,506-519.
    175. Oton, F.; Espinosa, A.; Tarraga, A.; Ratera, I.; Wurst, K.; Veciana, J.; Molina, P., Mononuclear Ferrocenophane Structural Motifs with Two Thiourea Arms Acting as a Dual Binding Site for Anions and Cations. Inorganic Chemistry 2009,48 (4),1566-1576.
    176. Stalin Elanchezhian, V.; Kandaswamy, M., Multi-signaling Detection of Hg2+ and Cu2+ by a Ferrocene-pyrazole Dyad Associated with Molecular-scale Arithmetic. Inorganic Chemistry Communications 2010,13 (10),1109-1113.
    177. Lee, M.H.; Cho, B.K.; Yoon, J.; Kim, J.S., Selectively Chemodosimetric Detection of Hg(Ⅱ) in Aqueous Media. Organic Letters 2007,9 (22),4515-4518.
    178. Lee, M.H.; Lee, S.W.; Kim, S.H.; Kang, C.; Kim, J.S., Nanomolar Hg(Ⅱ) Detection Using Nile Blue Chemodosimeter in Biological Media. Organic Letters 2009,11 (10),2101-2104.
    179. Zhang, J.F.; Lim, C.S.; Cho, B.R.; Kim, J.S., A Two-Photon Excited Luminescence of Water-Soluble Rhodamine-Latinum(Ⅱ) Complex:Fluorescent Probe Specific for Hg2+ Detection in Live Cell. Talanta 2010,83 (2),658-662.
    180. Wang, X.; Dong, P.; He, P.; Fang, Y., A solid-State Electrochemiluminescence Sensing Platform for Detection of Adenosine Based on Ferrocene-Labeled Structure-Switching Signaling Aptamer. Analytica Chimica Acta 2010,658 (2),128-132.
    181. Liao, Y.; Yuan, R.; Chai, Y.; Mao, L.; Zhuo, Y.; Yuan, Y.; Bai, L.; Yuan, S., Electrochemiluminescence Quenching Via Capture of Ferrocene-Labeled Ligand-Bound Aptamer Molecular Beacon for Ultrasensitive Detection of Thrombin. Sensors and Actuators B:Chemical 2011,158(1),393-399.
    182. Misra, R.; Kumar, R.; Chandrashekar, T.K.; Suresh, C.H.; Nag, A.; Goswami, D., 22π Smaragdyrin Molecular Conjugates with Aromatic Phenylacetylenes and Ferrocenes:Syntheses, Electrochemical, and Photonic Properties. Journal of the American Chemical Society 2006,128 (50), 16083-16091.
    183. Yuan, Y.F.; Cardinaels, T.; Lunstroot, K.; Van Hecke, K.; Van Meervelt, L.; Gerller-Walrand, C.; Binnemans, K.; Nockemann, P., Rare-Earth Complexes of Ferrocene-Containing Ligands: Visible-Light Excitable Luminescent Materials. Inorganic Chemistry 2007,46 (13),5302-5309.
    184. Lim, Y.K.; Wallace, S.; Bollinger, J. C.; Chen, X.; Lee, D., Triferrocenes Built on a C3-Symmetric Ligand Platform:Entry to Redox-Active Pseudo-Triphenylenes via Chelation-Driven Stereoselection of Triple Schiff Bases. Inorganic Chemistry 2007,46 (5),1694-1703.
    185. Xu, G.L.; Xi, B.; Updegraff, J.B.; Protasiewicz, J.D.; Ren, T.,1,6-Bis(ferrocenyl)-1,3,5-hexatriyne:Novel Preparation and Structural.Study. Organometallics 2006,25 (22),5213-5215.
    186. Zhang W.; Yang Y.-G.; Lu, Z., Ferrocene-Phenothiazine Conjugated Molecules:Synthesis, Structural Characterization, Electronic Properties and DFT-TDDFT Computational Study. Organometallics 2007,26,865-873.
    187. Leth, J.M., Supramolecular Chemistry-Scope and Perspectives:Molecules, Supermolecules, and Molecular Devices (Nobel lecture). Angewandte Chemie International Edition 1988,27,89-112.
    188. Tour, J.M., Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures. Chemical Reviews 1996,96 (1),537-554.
    189. Yoo, J.E.; Krekelberg, W.P.; Sun, Y.; Tarver, J.D.; Truskett, T.M.; Loo, Y.L., Polymer Conductivity through Particle Connectivity. Chemistry of Materials 2009,21 (9),1948-1954.
    190. Martin, C.A.; Smit, R.H.M.; van der Zant, H.S.J.; van Ruitenbeek, J.M., A Nanoelectromechanical Single-Atom Switch. Nano Letters 2009,9 (8),2940-2945.
    191. Liu, K.; Wang, X.; Wang, F., Probing Charge Transport of Ruthenium-Complex-Based Molecular Wires at the Single-Molecule Level. A CS Nano 2008,2 (11),2315-2323.
    192. Dieck, H.A.; Heck, F.R., Palladium Catalyzed Synthesis of Aryl, Heterocyclic and Vinylic Acetylene Derivatives. Journal of Organometallic Chemistry 1975,93 (2),259-263.
    193. Cassar, L., Synthesis of Aryl- And Vinyl-Substituted Acetylene Derivatives by the Use of Nickel and Palladium Complexes. Journal of Organometallic Chemistry 1975,93 (2),253-257.
    194. Sonogashira, K.; Tohda, Y.; Hagihara, N., A Convenient Synthesis of Acetylenes:Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes and Bromopyridines. Tetrahedron Letters 1975,16 (50),4467-4470.
    195. Donhauser Z.J.; Kelly K.F.; Bumm L.A.; Monnell J.D., Conductance Switching in Single Molecules through Conformational Changes. Science,2001,292,2303-2307.
    196.Osorio, E.A.; Moth-Poulsen, K.; van der Zant, H.S.J.; Paaske, J.; Per Hedegard, P.; Flensberg, K.; Bendix, J.; Bj(?)rnholm, T., Electrical Manipulation of Spin States in a Single Electrostatically Gated Transition-Metal Complex. Nano Letters 2009,10 (1),105-110.
    197. Shirai, Y.; Sasaki, T.; Guerrero, J.M.; Yu, B.C.; Hodge, P.; Tour, J.M., Synthesis and Photoisomerization of Fullerene and Oligo(phenylene ethynylene) Azobenzene Derivatives. ACS Nano 2007,2(1),97-106.
    198. Ciszek, J.W.; Stewart, M.P.; Tour, J.M., Spontaneous Assembly of Organic Thiocyanates on Gold Sufaces. Alternative Precursors for Gold Thiolate Assemblies. Journal of the American Chemical Society 2004,126(41),13172-13173.
    199. Huang, H.; Wang, K., Tan, W.; Design of a Modular-Based Fluorescent Conjugated Polymer for Selective Sensing. Angewandte Chemie International Edition 2004,43,5635.
    200. Jeong, S.; Kang, W.Y.; Song, C.K.; Park, J.S., Supramolecular Cyclodextrin-Dye Complex Exhibiting Selective and Efficient Quenching by Lead Ions. Dyes and Pigments 2012,93 (1-3), 1544-1548.
    201.路崎,王献红,王佛松,含二茂铁齐聚苯乙炔分子导线的合成.应用化学2011,28(2),136-141.
    202. Ziener U., Synthesis and Characterization of Monodisperse Oligo(phenyleneethynylene)s. The Journal of Organic Chemistry 1997,62 (18),6137-6143.
    203. Yamada, R.; Kumazawa, H.; Noutoshi, T.; Tanaka, S.; Tada, H., Electrical Conductance of Oligothiophene Molecular Wires. Nano Letters 2008,8 (4),1237-1240.
    204. Jia, L.; Zhang, Y.; Guo, X.; Qian, X., A Novel Chromatism Switcher with Double Receptors Selectively for Ag+ In Neutral Aqueous Solution:4,5-Diaminoalkeneamino-N-alkyl-L,8-Naphthalimides. Tetrahedron Letters 2004,45 (20),3969-3973.
    205. Liu, B. Tian, H., A Selective Fluorescent Ratiometric Chemodosimeter for Mercury Ion. Chemical Communications 2005,3156-3158.
    206. Wang, Y.; Wang, L.; Shi, L.L.; Shang, Z.B.; Zhang, Z.; Jin, W.J., Colorimetric and Fluorescence Sensing of Cu2+ in Water Using 1,8-Dihydroxyanthraquinone-β-Cyclodextrin Complex with The Assistance of Ammonia. Talanta 2012,94 (0),172-177.
    207. Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G., Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors. The Journal of Physical Chemistry C2010,114 (4),1822-1826.
    208. Aravind, S.S.J.; Baby, T.T.; Arockiadoss, T.; Rakhi, R.B.; Ramaprabhu, S., A Cholesterol Biosensor Based on Gold Nanoparticles Decorated Functionalized Graphene Nanoplatelets. Thin Solid Films 2011,519 (16),5667-5672.
    209. Hu, S.; Wang, Y.; Wang, X.; Xu, L.; Xiang, J.; Sun, W., Electrochemical Detection of Hydroquinone with A Gold Nanoparticle And Graphene Modified Carbon Ionic Liquid Electrode. Sensors and Actuators B:Chemical 2012,168 (0),27-33.
    210. Yang, M.; Javadi, A.; Gong, S., Sensitive Electrochemical Immunosensor for the Detection of Cancer Biomarker Using Quantum Dot Functionalized Graphene Sheets as Labels. Sensors and Actuators B:Chemical 2011,155 (1),357-360.
    211. Rakhi, R.B.; Sethupathi, K.; Ramaprabhu, S., A Glucose Biosensor Based on Deposition of Glucose Oxidase onto Crystalline Gold Nanoparticle Modified Carbon Nanotube Electrode. The Journal of Physical Chemistry B 2009,113 (10),3190-3194.
    212. Hu, J.; Li, F.; Wang, K.; Han, D.; Zhang, Q.; Yuan, J.; Niu, L., One-step Synthesis of Graphene-Aunps by HMTA And The Electrocatalytical Application for O2 and H2O2. Talanta 2012, 93 (0),345-349.
    213. Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J.J., Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine. Analytical Chemistry 2011,83 (3),661-665.
    214. Jayakumar, K.; Rajesh, R.; Dharuman, V.; Venkatasan, R.; Hahn, J.H.; Karutha Pandian, S., Gold Nano Particle Decorated Graphene Core First Generation PAMAM Dendrimer for Label Free Electrochemical DN A Hybridization Sensing. Biosensors and Bioelectronics 2012,31 (1),406-412.
    215. Bai, L.; Yuan, R.; Chai, Y.; Zhuo, Y.; Yuan, Y.; Wang, Y., Simultaneous electrochemical Detection of Multiple Analytes Based on Dual Signal Amplification of Single-Walled Carbon Nanotubes And Multi-Labeled Graphene Sheets. Biomaterials 2012,33 (4),1090-1096.
    216. Yin, H.; Zhou, Y.; Ma, Q.; Ai, S.; Ju, P.; Zhu, L.; Lu, L., Electrochemical Oxidation Behavior of Guanine And Adenine on Grapheme-Nafion Composite Film Modified Glassy Carbon Electrode And The Simultaneous Determination. Process Biochemistry 2010,45 (10),1707-1712.
    217. Yang, Y.C.; Dong, S.W.; Shen, T.; Jian, C.X.; Chang, H.J.; Li, Y.; Zhou, J.X., Amplified Immunosensing Based on Ionic Liquid-Doped Chitosan Film as A Matrix And Au Nanoparticle Decorated Graphene Nanosheets as Labels. Electrochimica Acta 2011,56 (17),6021-6025.
    218. Kong, F.Y.; Li, X.R.; Zhao, W.W.; Xu, J.J.; Chen, H.Y., Graphene Oxide-Thionine-Au Nanostructure Composites:Preparation And Applications in Non-Enzymatic Glucose Sensing. Electrochemistry Communications 2012,14 (1),59-62.
    219. Chen, M.; Wei, X.; Qian, H.; Diao, G., Fabrication of Gnps/CDSH-Fc/Nafion Modified Electrode for the Detection of Dopamine in The Presence of Ascorbic Acid. Materials Science and Engineering:C2011,31 (7),1271-1277.
    220. Kaur, P.; Kaur, M.; Singh, K., Ferrocene Based Chemosensor For Cu2+ -A Dual Channel Signaling System. Talanta 2011,85 (2),1050-1055.
    221. Devaraj, S.; Elanchezhian, V.S.; Kandaswamy, M., Dual Chemosensing Properties of New Ferrocene-Based Receptors towards Fluoride and Copper (II) Ions. Inorganic Chemistry Communications 2011,14(10),1596-1601.
    222. Leininger, S.; Olenyuk, B.; Stang, P.J., Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chemical Reviews 2000,100 (3),853-908.
    223. Oh, S.; Choi, H.S.; Jie, H.S.; Park, J.K., Submicro Photopatterning of Alkanethiolate Self-Assembled Monolayer Using A Negative Mask And Its Application in The Fabrication of Biomolecular Photodiode, Materials Science and Engineering C2004,24,91-94.
    224. Oh, S.; Chung, C.; Yoo. C.; Kim, D.H.; Lee, S.G., Characteristics and Fabrication of Oligophenyleneethynylene Thiol Self-Assembled Monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008,313-314,600-603.
    226. Fan, F.R.F.; Yang, J.; Dirk, S.M.; Price, D.W.; Kosynkin, D.; Tour, J.M.; Bard, A.J., Determination of the Molecular Electrical Properties of Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics. Journal of the American Chemical Society 2001,123 (10), 2454-2455.
    227. Reed, M.A.; Chen, J.; Rawlett, A.M.; Price, D.W.; Tour, J.M., Molecular Random Access Memory Cell. Applied Physics Letters 2001,78 (23),3735-3737.
    228. Seminario, J.M.; Zacarias, A.G.; Tour, J.M., Molecular Current-Voltage Characteristics. The Journal of Physical Chemistry A 1999,103 (39),7883-7887.
    229. Donhauser, Z.J.; Mantooth, B.A.; Kelly, K.F.; Bumm, L.A.; Monnell, J.D.; Stapleton, J.J.; Price, D.W.; Rawlett, A.M.; Allara, D.L.; Tour, J.M.; Weiss, P.S., Conductance Switching in Single Molecules Through Conformational Changes. Science 2001,292 (5525),2303-2307.
    230. Cai, L.; Yao, Y.; Yang, J.; Price, D.W.; Tour, J.M., Chemical and Potential-Assisted Assembly of Thiolacetyl-Terminated Oligo(phenylene ethynylene)s on Gold Surfaces. Chemistry of Materials 2002,14 (7),2905-2909.
    231. Bibby, D.C., Davies, N.M., Tucker, I.G., International Journal Pharmaceutics 2000,197,1-11.
    232. Tang, B.; Ma, L.; Wang, H.; Zhang, G., Study on the Supramolecular Interaction of Curcumin and β-cyclodextrin by Spectrophotometry and Its Analytical Application. Journal of Agricultural and Food Chemistry 2002,50 (6),1355-1361.
    233. Arancibia, A.; Escandar, G., Complexation Study of Diclofenac with [small beta]-Cyclodextrin and Spectrofluorimetric Determination. Analyst 1999,124 (12),1833-1838.
    234. Tang, B., Ma, L., Ma, C., Talanta 2002,58,841-848.
    235. Zhou, Y.; Chen, J.; Dong, L.; Lu, L.; Chen, F.; Hu, D.; Wang, X., A study of Fluorescence Properties of Citrinin in β-Cyclodextrin Aqueous Solution And Different Solvents. Journal of Luminescence 2012,132 (6),1437-1445.
    236. Kompany-Zareh, M.; Mokhtari, Z.; Abdollahi, H., Spectrophotometric Thermodynamic Study of Orientational Isomers Formed by Inclusion of Methyl Orange into β-Cyclodextrin Nanocavity. Chemometrics and Intelligent Laboratory Systems 2012, in press.
    237. Wang, Y.; Zhou, A., Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems. Journal of Photochemistry and Photobiology A:Chemistry 2007,190(1),121-127.
    238. Liu, M.; Zhang, Y.; Wang, M.; Deng, C.; Xie, Q.; Yao, S., Adsorption of Bovine Serum Albumin And Fibrinogen on Hydrophilicity-Controllable Surfaces of Polypyrrole Doped with Dodecyl Benzene Sulfonate-Combined Piezoelectric Quartz Crystal Impedance And Electrochemical Impedance Study. Polymer 2006,47 (10),3372-3381.
    239. Misiuk, W.; Zalewska, M., Spectroscopic Investigations on The Inclusion Interaction Between Hydroxypropyl-p-Cyclodextrin And Bupropion. Journal of Molecular Liquids 2011,159,220-225.
    240. Kanagaraj, K.; Affrose, A.; Sivakolunthu, S.; Pitchumani, K., Highly Selective Fluorescent Sensing of Fenitrothion Using Per-6-Amino-β-Cyclodextrin:Eu (Ⅲ) Complex Biosensors and Bioelectronics 2012,35,452-455.
    241. Jeong, S.; Kang; W.Y.; Song, C.K.; Park, J.S., Supramolecular Cyclodextrin-Dye Complex Exhibiting Selective And Efficient Quenching by Lead Ions, Dyes and Pigments 2012,93,1544-1548.
    242. Shriner, R.L., Shriner, R.H., Organic Syntheses 1943,2,347.
    243. Loura, L.M.S.; Fedorov, A.; Prieto, M., Membrane Probe Distribution Heterogeneity. A Resonance Energy Transfer Study. The Journal of Physical Chemistry B 2000,104 (29),6920-6931.
    244. Misiuk, W.; Spectroscopic Investigations on The Inclusion Interaction Between Hydroxypropyl-β-cyclodextrin and Bupropion. Journal of Molecular Liquids 2011,159,220-225.
    245.Puglisi, G.; Santagati, N. A.; Pignatello, R.; Ventura, C.; Bottino, F. A.; Mangiafico, S.; Mazzone, G., Inclusion Complexation of 4-Biphenylacetic Acid with β-Cyclodextrin. Drug Development and Industrial Pharmacy 1990,16 (3),395-413.
    246. Tang, B.; Wang, X.; Liang, H.; Jia, B.; Chen, Z., Study on the Supramolecular Interaction of Thiabendazole and β-Cyclodextrin by Spectrophotometry and Its Analytical Application. Journal of Agricultural and Food Chemistry 2005,53 (22),8452-8459.
    247. Orstan, A.; Ross, J.B.A., Investigation of the beta-cyclodextrin-indole Inclusion Complex by Absorption and Fluorescence Spectroscopies. The Journal of Physical Chemistry 1987,91 (11), 2739-2745.
    248. Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L.; Shen, B.; Jin, D., Thermodynamics of Molecular Recognition by Cyclodextrins.1. Calorimetric Titration of Inclusion Complexation of Naphthalene sulfonates with.Alpha.-,.Beta.-, and.Gamma.-Cyclodextrins:Enthalpy-Entropy Compensation. Journal of the American Chemical Society 1993,115 (2),475-481.
    249. Inoue, Y.; Liu, Y.; Tong, L.H.; Shen, B.J.; Jin, D.S., Calorimetric titration of inclusion Complexation with Modified Beta-Cyclodextrins. Enthalpy-Entropy Compensation in Host-Guest Complexation:from Ionophore to Cyclodextrin and Cyclophane. Journal of the American Chemical Society 1993,115 (23),10637-10644.
    250. Bright, F.; Keimig, T.L; McGown, L.B., Thermodynamic Binding Parameters Evaluated by Using Phase-Resolved Fluorescence Spectrometry, Analytica Chimica Acta 1985,175,189-201.
    251. Catena, G.C.; Bright, F.V., Thermodynamic Study on the Effects of beta-Cyclodextrin Inclusion with Anilinonaphthalene sulfonates. Analytical Chemistry 1989,61 (8),905-909.
    252. Janes, D.; Kreft, S., Salicylaldehyde is a Characteristic Aroma Component of Buckwheat Groats. Food Chemistry 2008,109 (2),293-298.
    253. Ding, N.; Yan, N.; Ren, C.; Chen, X., Colorimetric Determination of Melamine in Dairy Products by Fe3O4 Magnetic Nanoparticles-H2O2-ABTS Detection System. Analytical Chemistry 2010,82(13),5897-5899.
    254. Venkatasami, G.; Sowa Jr, J.R., A Rapid, Acetonitrile-Free, HPLC Method for Determination of Melamine in Infant Formula. Analytica Chimica Acta 2010,665 (2),227-230.
    255. Zhang, M.F.; Fu, L.; Wang, J.; Xu, Z.Q.; Jiang, F.L.; Liu, Y., Spectroscopic and Electrochemical Studies on The Interaction of An Inclusion Complex of β-cyclodextrin/fullerene with Bovine Serum Albumin in Aqueous Solution. Journal of Photochemistry and Photobiology A:Chemistry 2012,228 (1),28-37.
    256. Hon, P.Y.T.; Chu, P.W.S.; Cheng, C.; Lee, T.C.L.; Chan, P.; Cheung, S.T.C.; Wong, Y., Development of Melamine Certified Reference Material In Milk Using Two Different Isotope Dilution Mass Spectrometry Techniques. Journal of Chromatography A 2011,1218 (39),6907-6913.
    257. Zhu, X.; Wang, S.; Liu, Q.; Xu, Q.; Xu, S.; Chen, H., Determination of Residues of Cyromazine and Its Metabolite, Melamine, in Animal-Derived Food by Gas Chromatography-Mass Spectrometry with Derivatization. Journal of Agricultural and Food Chemistry 2009,57 (23),11075-11080.
    258. Miao, H.; Fan, S.; Wu, Y.N.; Zhang, L.; Zhou, P.P.; Chen, H.J.; Zhao, Y.F.; Li, J.G., Simultaneous Determination of Melamine, Ammelide, Ammeline, and Cyanuric Acid in Milk and Milk Products by Gas Chromatography-tandem Mass Spectrometry. Biomedical and Environmental Sciences 2009,22 (2),87-94.
    259. Panuwet, P.; Nguyen, J.V.; Wade, E.L.; D'Souza, P.E.; Ryan, P.B.; Barr, D.B., Quantification of Melamine in Human Urine Using Cation-Exchange Based High Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Chromatography B 2012,887-888 (0),48-54.
    260. Bachran, D.; Schneider, S.; Bachran, C.; Weng, A.; Melzig, M. F.; Fuchs, H., The Endocytic Uptake Pathways of Targeted Toxins Are Influenced by Synergistically Acting Gypsophila Saponins. Molecular Pharmaceutics 2011,8 (6),2262-2272.
    261. Panuwet, P.; Nguyen, J.V.; Wade, E.L.; D'Souza, P.E.; Ryan, P.B.; Barr, D.B., Quantification of Melamine in Human Urine Using Cation-Exchange Based High Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Chromatography B 2010,887-888 (0),48-54.
    262. Xia, J.; Zhou, N.; Liu, Y.; Chen, B.; Wu, Y.; Yao, S., Simultaneous Determination of Melamine And Related Compounds by Capillary Zone Electrophoresis. Food Control 2010,21 (6),912-918.
    263. Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.Z., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. Journal of Physical Chemistry C 2009,113 (20), 8853-8857.
    264. Hirt, R.C.; King, F.T.; Schmitt, R.G., Detection and Estimation of Melamine in Wet-Strength Paper by Ultraviolet Spectrophotometry. Analytical Chemistry 2002,26 (8),1273-1274.
    265. Greenwood, J.; Fruchtl, H.A.; Baddeley, C.J., Ordered Growth of Upright Melamine Species on Ni (111):A Study with Scanning Tunnelling Microscopy and Reflection Absorption Infrared Spectroscopy. The Journal of Physical Chemistry C 2012,116(11),6685-6690.
    266. Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Deering, A.; Davis, R., Correction to Melamine Detection in Infant Formula Powder Using Near- and Mid-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry 2009,57 (17),8062-8062.
    267. Chen, L.M.; Liu, Y.N., Surface-Enhanced Raman Detection of Melamine on Silver-Nanoparticle-Decorated Silver/Carbon Nanospheres:Effect of Metal Ions. ACS Applied Materials & Interfaces 2011,3 (8),3091-3096.
    268. Gao, F.; Ye, Q.; Cui, P.; Zhang, L., Efficient Fluorescence Energy Transfer System between CdTe-Doped Silica Nanoparticles and Gold Nanoparticles for Turn-on Fluorescence Detection of Melamine. Journal of Agricultural and Food Chemistry 2012,60 (18),4550-4558.
    269. Zhu, Z.; Sun, X.; Zhuang, X.; Zeng, Y.; Sun, W.; Huang, X., Single-Walled Carbon Nanotubes Modified Carbon Ionic Liquid Electrode for Sensitive Electrochemical Detection of Rutin. Thin Solid Films 2010,519 (2),928-933.
    270. Tang, X.S.; Shi, X.Y.; Tang, Y.H.; Yue, Z.J.; He, Q.Q., Chemiluminescence Determination of Melamine with Luminol-K.3Fe(CN)6 System. Journal of Pharmaceutical Analysis 2011,1 (2), 104-107.
    271. Qiu, J. W., R.; Liang, R.; Xia X., Electrochemically Deposited Nanocomposite Film of CS-Fc/Au NPs/GOx forGlucose Biosensor Application. Biosensors and Bioelectronics 2009,24 (9), 2920-2925.
    272. Liao, C.W.; Chen, Y.R.; Chang, J.L.; Zen, J.M., Single-Run Electrochemical Determination of Melamine in Dairy Products and Pet Foods. Journal of Agricultural and Food Chemistry 2011,59 (18),9782-9787.
    273. Li, L.; Li, B.; Cheng, D.; Mao, L., Visual Detection of Melamine in Raw Milk Using Gold Nanoparticles as Colorimetric Probe. Food Chemistry 2010,122 (3),895-900.
    274. Ping, H.; Zhang, M.; Li, H.; Li, S.; Chen, Q.; Sun, C.; Zhang, T., Visual Detection of Melamine in Raw Milk by Label-Free Silver Nanoparticles. Food Control 2012,23 (1),191-197.
    275.张银堂,张彦峥,张丽娟,张富强,陈芳,徐茂田,三聚氰胺Cu2+-ANS三元络合物荧光光谱法检测超痕量三聚氰胺.分析化学2010,38(8),1105-1109.
    276. Wang, Y.; Wang, L.; Shi, L.L.; Shang, Z.B.; Zhang, Z.; Jin, W.J., Colorimetric and Fluorescence Sensing of Cu2+ in Water Using 1,8-Dihydroxyanthraquinone-β-Cyclodextrin Complex with the Assistance of Ammonia. Talanta 2012,94 (0),172-177.
    277. Pihel, K.; Walker, Q.D.; Wightman, R.M., Overoxidized Polypyrrole-Coated Carbon Fiber Microelectrodes for Dopamine Measurements with Fast-Scan Cyclic Voltammetry. Analytical Chemistry 1996,68 (13),2084-2089.
    278. Cha, C.S.; Chen, J.; Liu, P.F., Improvement of the Output Characteristics of Amperometric Enzyme Electrode by Using the Powder Microelectrode Technique. Biosensors and Bioelectronics 1998,13(1),87-94.
    279. Kehr, J.; Hu, X.J.; Yoshitake, T.; Scheller, D., Determination of the Dopamine Agonist Rotigotine in Microdialysates from The Rat Brain by Microbore Column Liquid Chromatography with Electrochemical Detection. Journal of Chromatography B 2007,845 (1),109-113.
    280. Thorre, K.; Pravda, M.; Sarre, S.; Ebinger, G.; Michotte, Y., New Antioxidant Mixture for Long Term Stability of Serotonin, Dopamine and Their Metabolites in Automated Microbore Liquid Chromatography with Dual Electrochemical Detection. Journal of Chromatography B:Biomedical Sciences and Applications 1997,694 (2),297-303.
    281. Zhang, L.; Teshima, N.; Hasebe, T.; Kurihara, M.; Kawashima, T., Flow-Injection Determination of Trace Amounts of Dopamine by Chemiluminescence Detection. Talanta 1999,50 (3),677-683.
    282. Wang, Y.; Chen, H., Integrated Capillary Electrophoresis Amperometric Detection Microchip with Replaceable Microdisk Working Electrode:Ⅱ. Influence of Channel Cross-Sectional Area on the Separation and Detection of Dopamine and Catechol. Journal of Chromatography A 2005,1080 (2), 192-198.
    283. Shou, M.; Ferrario, C.R.; Schultz, K.N.; Robinson, T E.; Kennedy, R.T., Monitoring Dopamine in Vivo by Microdialysis Sampling and On-Line CE-Laser-Induced Fluorescence. Analytical Chemistry 2006,78 (19),6717-6725.
    284. Baron, R.; Zayats, M.; Willner, I., Dopamine-,1-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles:Assays for the Detection of Neurotransmitters and of Tyrosinase Activity. Analytical Chemistry 2005,77 (6),1566-1571.
    285. Fabregat, G.; Cordova-Mateo, E.; Armelin, E.; Bertran, O.; Aleman, C., Ultrathin Films of Polypyrrole Derivatives for Dopamine Detection. Journal of Physical Chemistry C 2011,115 (30), 14933-14941.
    286. Lakshmi, D.; Bossi, A.; Whitcombe, M.J.; Chianella, I.; Fowler, S.A.; Subrahmanyam, S.; Piletska, E.V.; Piletsky, S.A., Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element. Analytical Chemistry 2009,81 (9),3576-3584.
    287. Selvaraju, T.; Ramaraj, R., Simultaneous Determination of Ascorbic Acid, Dopamine And Serotonin at Poly(Phenosafranine) Modified Electrode. Electrochemistry Communications 2003,5 (8), 667-672.
    288. Mao, H.; Pickup, P.G., Electronically Conductive Anion Exchange Polymers Based on Polypyrrole:Preparation, Characterization, Electrostatic Binding of Ferrocyanide and Electrocatalysis of Ascorbic Acid Oxidation. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989,265(1-2),127-142.
    289. Wring, S.A.; Hart, J.P.; Birch, B.J., Voltammetric Behaviour of Ascorbic Acid at A Graphite-Epoxy Composite Electrode Chemically Modified with Cobalt Phthalocyanine and Its Amperometric Determination in Multivitamin Preparations. Analytica Chimica Acta 1990,229 (0), 63-70.
    290. Leal, J.M.; Domingo, P.L.; Garcia, B.; Ibeas, S., Alkali-Metal Ion Catalysis of the Oxidation of L-Ascorbic Acid by Hexacyanoferrate(III) in Strongly Acidic Media. Journal of the Chemical Society, Faraday Transactions 1993,89 (19),3571-3577.
    291. Lyons, M.E.G.; Breen, W.; Cassidy, J., Ascorbic Acid Oxidation at Polypyrrole-Coated Electrodes. Journal of the Chemical Society, Faraday Transactions 1991,87 (1),115-123.
    292. Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C., Direct electrochemistry of Glucose Oxidase Assembled on Graphene And Application to Glucose Detection. Electrochimica Acta 2010, 55(28),8606-8614.
    293. Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y., Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry And Glucose Sensing. Biosensors and Bioelectronics 2009,25 (4),901-905.
    294. Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L., Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-1-lysine. Langmuir 2009,25 (20),12030-12033.
    295. Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Analytical Chemistry 2009,81 (6), 2378-2382.
    296. Fu, C.; Kang, Y.; Huang, Z.; Wang, X.; Du, N.; Chen, J.; Zhou H., Electrochemical Co-Reduction Synthesis of Graphene/Au Nanocomposites in Ionic Liquid And Their Electrochemical Activity. Chemical Physics Letters 2010,499 (4-6),250-253.
    297. Li, F.; Yang, H.; Han, D.; Niu L., Synthesis of Pt/Ionic Liquid/Graphene Nanocomposite And Its Simultaneous Determination of Ascorbic Acid And Dopamine. Talanta 2010,81 (3),1063-1068.
    298. Marianne, P., Electrocatalytic Oxidation of Ascorbic Acid and Voltammetric Determination with A Ferrocene-Modified Platinum Electrode. Analytica Chimica Acta 1986,187 (0),333-338.
    299. Kulys, J.; D'Costa, E. J., Printed Electrochemical Sensor for Ascorbic Acid Determination. Analytica Chimica Acta 1991,243 (0),173-178.
    300. Escorcia, A.; Dhirani, A.A., Electrochemical Properties of Ferrocenylalkane Dithiol-Gold Nanoparticle Films Prepared by Layer-By-Layer Self-Assembly. Journal of Electroanalytical Chemistry 2007,601 (1-2),260-268.
    301. Qiu, J.D.; Guo, J.; Liang, R.P.; Xiong, M., A Nanocomposite Chitosan Based on Ferrocene-Modified Silica Nanoparticles and Carbon Nanotubes for Biosensor Application. Electroanalysis 2007,19 (22),2335-2341.
    302. Hien Pham, T.T.; Cao, C.; Sim, S. J., Application of Citrate-Stabilized Gold-Coated Ferric Oxide Composite Nanoparticles for Biological Separations. Journal of Magnetism and Magnetic Materials 2008,320(15),2049-2055.
    303. Fernandez, L.; Carrero, H., Electrochemical Evaluation of Ferrocene Carboxylic Acids Confined on Surfactant-Clay Modified Glassy Carbon Electrodes:Oxidation of Ascorbic Acid and Uric Acid. Electrochimica Acta 2005,50 (5),1233-1240.
    304. Rampi, M.A.; Schueller, O.J.A.; Whitesides, G.M., Alkanethiol Self-Assembled Monolayers as the Dielectric of Capacitors with Nanoscale Thickness. Applied Physics Letter 1998,72,1781-1783.
    305. Wold, D.J.; Haag, R.; Rampi, M.A.; Frisbie, C.D., Distance Dependence of Electron Tunneling through Self-Assembled Monolayers Measured by Conducting Probe Atomic Force Microscopy: Unsaturated versus Saturated Molecular Junctions. Journal of Physical Chemistry B 2002,106 (11), 2813-2816.
    306.Callegari, A.; Marcaccio, M.; Paolucci, D.; Paolucci, F.; Tagmatarchis, N.; Tasis, D.; Vazquez, E.; Prato, M., Anion Recognition by Functionalized Single Wall Carbon Nanotubes. Chemical Communications 2003, (20),2576-2577.
    307. Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S. I.; Lee, Y.C., Thiolation of Chitosan. Attachment of Proteins via Thioether Formation. Biomacromolecules 2005,6 (2),880-884.
    308. Okawa, Y.; Nagano, M.; Hirota, S.; Kobayashi, H.; Ohno, T.; Watanabe, M., Tethered Mediator Biosensor. Mediated Electron Transfer Between Redox Enzyme and Electrode via Ferrocene Anchored to Electrode Surface with Long Poly(Oxyethylene) Chain. Biosensors and Bioelectronics 1999,14 (2),229-235.
    309. Chen, J.; Tang, J.; Yan, F.; Ju, H., A Gold Nanoparticles/Sol-Gel Composite Architecture for Encapsulation of Immunoconjugate for Reagentless Electrochemical Immunoassay. Biomaterials 2006,27(10),2313-2321.
    310. Qiu, J.; Liang, R.; Xia X., Electrochemically Deposited Nanocomposite Film of CS-Fc/Au NPs/GOx for Glucose Biosensor Application. Biosensors and Bioelectronics 2009,24 (9),2920-2925.
    311. Goff, A.L.; Moggia, F.; Debou, N.; Jegou, P.; Artero, V.; Fontecave, M.; Jousselme, B.; Palacin, S., Facile and Tunable Functionalization of Carbon Nanotube Electrodes with Ferrocene by Covalent Coupling and π-Stacking Interactions And Their Relevance to Glucose Bio-Sensing. Journal of Electroanalytical Chemistry 2010,641 (1-2),57-63.
    312. Callegari, A.; Cosnier, S.; Marcaccio, M.; Paolucci, D.; Paolucci, F.; Georgakilas, V.; Tagmatarchis, N.; Vazquez, E.; Prato, M., Functionalised Single Wall Carbon Nanotubes/Polypyrrole Composites for the Preparation of Amperometric Glucose Biosensors. Journal of Materials Chemistry 2004,14(5),807-810.
    313. Hummers, W.S.; Offeman, R.E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80(6),1339-1339.
    314. Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.R.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D., Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials 1999,11 (3),771-778.
    315. Kim, M.; Safron, N.S.; Han, E.; Arnold, M.S.; Gopalan, P., Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials. Nano Letters 2010,10 (4), 1125-1131.
    316. Morikita, T.; Yamamoto, T., Electrochemical Determination of Diffusion Coefficient of π-conjugated Polymers Containing Ferrocene Unit. Journal of Organometallic Chemistry 2001, 637-639(0),809-812.
    317. Yin, H.; Ma, Q.; Zhou, Y.; Ai, S.; Zhu, L., Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochimica Acta 2010,55 (23),7102-7108.
    318. Robinson, D.L.; Hermans, A.; Seipel, A.T.; Wightman, R.M., Monitoring Rapid Chemical Communication in the Brain. Chemical Reviews 2008,108 (7),2554-2584.
    319. Hortholary, C.; Coudret, C., An Approach to Long and Unsubstituted Molecular Wires: Synthesis of Redox-Active, Cationic Phenylethynyl Oligomers Designed for Self-Assembled Monolayers. Journal of Organic Chemistry 2003,68 (6),2167-2174.
    320. Li, Y.; Liu, M.; Xiang, C.; Xie, Q.; Yao, S., Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films 2006,497 (1-2),270-278.
    321. Bertoncello, P.; Ciani, I.; Li, F.; Unwin, P.R., Measurement of Apparent Diffusion Coefficients within Ultrathin Nafion Langmuir chaefer Films:Comparison of a Novel Scanning Electrochemical Microscopy Approach with Cyclic Voltammetry? Langmuir 2006,22 (25),10380-10388.
    322. Bertoncello, P.; Ciani, I.; Marenduzzo, D.; Unwin, P. R., Kinetics of Solute Partitioning into Ultrathin Nafion Films on Electrode Surfaces:Theory and Experimental Measurement. The Journal of Physical Chemistry C 2006,111(1),294-302.
    323.Chen, S.M.; Chen, J.Y.; Thangamuthu, R., Electrochemical Preparation of Poly(Malachite Green) Film Modified Nafion-Coated Glassy Carbon Electrode And Its Electrocatalytic Behavior towards NADH, Dopamine and Ascorbic Acid. Electroanalysis 2007,19 (14),1531-1538.
    324. Bard, A.J. Electrochemical Methods. John Wiley& Sons, Inc. New York:New York,1980.
    325. Tembe, S.K.; Karve, M.;'Souza, S.F., Glutaraldehyde Activated Eggshell Membrane for Immobilization of Tyrosinase from Amorphophallus Companulatus:Application in Construction of Electrochemical Biosensor for Dopamine. Analytica Chimica Acta 2008,612 (2),212-217.
    326. Cammack, R., Joannou, C.L., Cui, X., Martinez, C., Maraj, S.R., Hughes, M.N., Nitrite and Nitrosyl Compounds in Food Preservation. Biochimica et Biophysica Acta 1999,1411,475-488.
    327. Ximenes, M.I.N.; Reyes, F.G.R., Polarographic Determination of Nitrate in Vegetables. Talanta 2000,51,49-56.
    328. Caro, C.A.; Bedioui, F.; Zagal, J.H., Electrocatalytic Oxidation of Nitrite on a Vitreous Carbon Electrode Modified with Cobalt Phthalocyanine. Electrochimica Acta 2002,47 (9),1489-1494.
    329. Ha, S.Y.; Kim, S., Preparation And Characterization of Sol-Gel Derived Carbon Composite Ceramic Electrodes:Electrochemical And XANES Study of Nitrite Reduction. Journal of Electroanalytical Chemistry 1999,468 (2),131-138.
    330. Wen, Z.H.; Kang, T.F., Determination of Nitrite Using Sensors Based on Nickel Phthalocyanine Polymer Modified Electrodes. Talanta 2004,62 (2),351-355.
    331. Lin, C.Y.; Vasantha, V.S.; Ho, K.C., Detection of Nitrite Using Poly (3,4-Ethylenedioxythiophene) Modified SPCEs. Sensors and Actuators B:Chemical 2009,140 (1), 51-57.
    332. Hage, D.S.; Chattopadhyay, A.; Wolfe, C.A.C.; Grundman, J.; Kelter, P., Determination of Nitrate And Nitrite in Water by Capillary Electrophoresis:An Undergraduate Laboratory Experiment. Journal of Chemical Education 1998,75 (12),1588.
    333. Dunham, A.J.; Barkley, R.M.; Sievers, R.E., Aqueous Nitrite Ion Determination by Selective Reduction And Gas Phase Nitric Oxide Chemiluminescence. Analytical Chemistry 1995,67 (1), 220-224.
    334. Xiao, N.; Yu, C., Rapid-Response and Highly Sensitive Noncross-Linking Colorimetric Nitrite Sensor Using 4-Aminothiophenol Modified Gold Nanorods. Analytical Chemistry 2011,82 (9), 3659-3663.
    335. Kodamatani, H.; Yamazaki, S.; Saito, K.; Tomiyasu, T.; Komatsu, Y., Selective Determination Method for Measurement of Nitrite And Nitrate in Water Samples Using High-Performance Liquid Chromatography with Post-Column Photochemical Reaction And Chemiluminescence Detection. Journal of Chromatography A 2009,1216 (15),3163-3167.
    336. Mehmet Akyuz, S.A., Determination of Low Level Nitrite And Nitrate In Biological, Food And Environmental Samples by Gas Chromatography-Mass Spectrometry And Liquid Chromatography With Fluorescence Detection. Talanta 2009,79 (3),900-904.
    337. Zhang, T.; Fan, H.; Jin, Q., Sensitive and Selective Detection of Nitrite Ion Based on Fluorescence Superquenching of Conjugated Polyelectrolyte. Talanta 2010,81 (1-2),95-99.
    338. Sun, W.; Zhang, S.; Liu, H.; Jin, L.; Kong, J., Electrocatalytic Reduction of Nitrite at A Glassy Carbon Electrode Surface Modified with Palladium(Ⅱ)-Substituted Keggin Type Heteropolytungstate. Analytica Chimica Acta 1999,388 (1-2),103-110.
    339. Moorcroft, M.J.; Davis, J.; Compton, R.G., Detection And Determination of Nitrate And Nitrite: A Review. Talanta 2001,54 (5),785-803.
    340. Younathan, J.N.; Wood, K.S.; Meyer, T.J., Electrocatalytic Reduction of Nitrite And Nitrosyl by Iron (III) Protoporphyrin IX Dimethyl Ester Immobilized in An Electropolymerized Film. Inorganic Chemistry 1992,31 (15),3280-3285.
    341. Kudrik, E.V.; Makarov, S.V.; Zahl, A.; van Eldik, R., Kinetics And Mechanism of The Iron Phthalocyanine Catalyzed Reduction of Nitrite by Dithionite And Sulfoxylate in Aqueous Solution. Inorganic Chemistry 2005,44 (18),6470-6475.
    342. Thamae, M.; Nyokong, T., Cobalt (Ⅱ) Porphyrazine Catalysed Reduction of Nitrite. Journal of Electroanalytical Chemistry 1999,470 (2),126-135.
    343. Fung, C.S.; Wong, K.Y., Electrocatalytic Reduction of Nitrite by Copper Complexes of 1,10-Phenanthroline and 2,2':6',2"-Terpyridine. Journal of Electroanalytical Chemistry 1996,401 (1-2),263-268.
    344. Pournaghi-Azar, M.H.; Dastangoo, H., Electrocatalytic Oxidation of Nitrite at an Aluminum Electrode Modified by A Chemically Deposited Palladium Pentacyanonitrosylferrate Film. Journal of Electroanalytical Chemistry 2004,567 (2),211-218.
    345. Toth, J.E.; Anson, F.C., Electrocatalytic Reduction of Nitrite and Nitric Oxide to Ammonia with Iron-Substituted Polyoxotungstates. Journal of the American Chemical Society 1989,111 (7), 2444-2451.
    346.Ruhlmann, L.; Genet, G., Wells-Dawson-Derived Tetrameric Complexes{K28H8[P2W15Ti3O60.5]4} Electrochemical Behaviour And Electrocatalytic Reduction of Nitrite And of Nitric Oxide. Journal of Electroanalytical Chemistry 2004,568 (0),315-321.
    347. Immoos, C.E.; Chou, J.; Bayachou, M.; Blair, E.; Greaves, J.; Farmer, P.J., Electrocatalytic Reductions of Nitrite, Nitric Oxide, And Nitrous Oxide by Thermophilic Cytochrome P450 CYP119 in Film-Modified Electrodes And An Analytical Comparison of Its Catalytic Activities with Myoglobin. Journal of the American Chemical Society 2004,126 (15),4934-4942.
    348. Wu, Q.; Storrier, G.D.; Pariente, F.; Wang, Y.; Shapleigh, J.P.; Abruna, H.D., A Nitrite Biosensor Based on A Maltose Binding Protein Nitrite Reductase Fusion Immobilized on An Electropolymerized Film of A Pyrrole-Derived Bipyridinium. Analytical Chemistry 1997,69 (23), 4856-4863.
    349. Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P.M.H.; Neese, F., Mechanism of The Six-Electron Reduction of Nitrite to Ammonia by Cytochrome c Nitrite Reductase. Journal of the American Chemical Society 2002,124 (39),11737-11745.
    350. Salimi, A.; Hallaj, R.; Mamkhezri, H.; Hosaini, S.M.T., Electrochemical Properties and Electrocatalytic Activity of FAD Immobilized onto Cobalt Oxide Nanoparticles:Application to Nitrite Detection. Journal of Electroanalytical Chemistry 2008,619-620 (0),31-38.
    351. Dreyse, P.; Isaacs, M.; Calfuman, K.; Caceres, C.; Aliaga, A.; Aguirre, M. J.; Villagra, D., Electrochemical Reduction of Nitrite at Poly-[Ru(5-NO2-phen)2Cl] Tetrapyridylporphyrin Glassy Carbon Modified Electrode. Electrochimica Acta 2011,56 (14),5230-5237.
    352. Badea, M.; Amine, A.; Palleschi, G.; Moscone, D.; Volpe, G.; Curulli, A., New Electrochemical Sensors for Detection of Nitrites and Nitrates. Journal of Electroanalytical Chemistry 2001,509 (1), 66-72.
    353. Adekunle, A.S.; Pillay, J.; Ozoemena, K.I., Probing The Electrochemical Behaviour of SWCNT-Cobalt Nanoparticles And Their Electrocatalytic Activities towards The Detection Of Nitrite at Acidic And Physiological Ph Conditions. Electrochimica Acta 2010,55 (14),4319-4327.
    354. Lin, C.Y.; Balamurugan, A.; Lai, Y.H.; Ho, K.C., A Novel Poly (3,4-Ethylenedioxythiophene)/Iron Phthalocyanine/Multi-Wall Carbon Nanotubes Nanocomposite with High Electrocatalytic Activity for Nitrite Oxidation. Talanta 2010,82 (5),1905-1911.
    355. Lin, A.J.; Wen, Y.; Zhang, L.J.; Lu, B.; Li, Y.; Jiao, Y.Z.; Yang, H.F., Layer-by-Layer Construction of Multi-Walled Carbon Nanotubes, Zinc Oxide, And Gold Nanoparticles Integrated Composite Electrode for Nitrite Detection. Electrochimica Acta 2011,56 (3),1030-1036.
    356. Zheng, D.; Hu, C.; Peng, Y.; Hu, S., A Carbon Nanotube/Polyvanillin Composite Film as An Electrocatalyst for The Electrochemical Oxidation of Nitrite And Its Application as A Nitrite Sensor. Electrochimica Acta 2009,54 (21),4910-4915.
    357. Huang, X.; Li, Y.; Chen, Y.; Wang, L., Electrochemical Determination of Nitrite And Iodate by Use of Gold Nanoparticles/Poly(3-Methylthiophene) Composites Coated Glassy Carbon Electrode. Sensors and Actuators B:Chemical 2008,134 (2),780-786.
    358. Pietrzak, M.; Meyerhoff, M.E., Polymeric Membrane Electrodes with High Nitrite Selectivity Based on Rhodium (Ⅲ) Porphyrins And Salophens as Ionophores. Analytical Chemistry 2009,81 (9), 3637-3644.
    359. Chen, Q.; S.A., Zhu, X.; Yin, H.; Ma, Q.; Qiu, Y., A Nitrite Biosensor Based on The Immobilization of Cytochrome c on Multi-Walled Carbon Nanotubes-PAMAM-Chitosan Nanocomposite Modified Glass Carbon Electrode. Biosensors and Bioelectronics 2009,24 2991-2996.
    360. Geim, A.K., The Rise of Graphene. Nature Material 2007,6,183-191.
    361. Ding, S.; Wei, W.; Zhao, G., Direct Electrochemical Response of Cytochrome c on A Room Temperature Ionic Liquid, N-Butylpyridinium Tetrafluoroborate, Modified Electrode, Electrochemistry Communications 2007,9,2202-2206.
    362. Shie, J., Yogeswaran, U., Chen, S., Electroanalytical Properties of Cytochrome c by Direct Electrochemistry on Multi-Walled Carbon Nanotubes Incorporated with DNA Biocomposite Film, Talanta 2008,74,1659-1669.
    363. Eguilaz, M.; Yanez-Sedeno, P.; Pingarron, J.M., A Biosensor Based on Cytochrome c Immobilization on A Poly-3-Methylthiophene/Multi-Walled Carbon Nanotubes Hybrid-Modified Electrode. Application to the Electrochemical Determination of Nitrite. Journal of Electroanalytical Chemistry 2010,644 (1),30-35.
    364. Da Silva, S.; Cosnier, S.; Gabriela Almeida, M.; Moura, J.J.G., An Efficient Poly (Pyrrole-Viologen)-Nitrite Reductase Biosensor for The Mediated Detection of Nitrite. Electrochemistry Communications 2004,6 (4),404-408.
    365. Koh, W.C.A.;, Rahman, M.A.; Choe, E.S.; Lee, D.K; Shim, Y.B., A Cytochrome c Modified-Conducting Polymer Microelectrode for Monitoring in Vivo Changes in Nitric Oxide, Biosensors and Bioelectronics 2008,23,1374-1381.
    366. Welch, C.M.H.; Banks, C.E.; Compton, R.G, The Detection of Nitrate Using In-Situ Copper Nanoparticle Deposition at A Boron Doped Diamond Electrode. Analytical Science 2005,21, 1421-1430.
    367. Yu, C.P.; Wu, P.P.; Hou, Y.C.; Lin, S.P.; Tsai, S.Y.; Chen, C.T.; Chao, P.D.L., Quercetin And Rutin Reduced The Bioavailability of Cyclosporine from Neoral, An Immunosuppressant, Through Activating P-Glycoprotein And CYP 3A4. Journal of Agricultural and Food Chemistry 2011,59 (9), 4644-4648.
    368. Formica, J.V.; Regelson, W., Review of the Biology of Quercetin And Related Bioflavonoids. Food and Chemical Toxicology 1995,33 (12),1061-1080.
    369. Xie, Z.; Liu, W.; Huang, H.; Slavin, M.; Zhao, Y.; Whent, M.; Blackford, J.; Lutterodt, H.; Zhou, H.; Chen, P.; Wang, T.T..; Wang, S.; Yu, L., Chemical Composition of Five Commercial Gynostemma pentaphyllum Samples And Their Radical Scavenging, Antiproliferative, And Anti-Inflammatory Properties. Journal ofAgricultural and Food Chemistry 2010,58 (21),11243-11249.
    370. Wang, S.; Wang, Y.J.; Su, Y.; Zhou, W.; Yang, S.; Zhang, R.; Zhao, M.; Li, Y.; Zhang, Z.; Zhan, D.; Liu, R., Rutin Inhibits β-Amyloid Aggregation And Cytotoxicity, Attenuates Oxidative Stress, And Decreases The Production of Nitric Oxide And Proinflammatory Cytokines. NeuroToxicology 2012,33 (3),482-490.
    371. Metodiewa, D.J., Cenas, N.; Dickancaite, E.; Segura-Aguilar, J., Quercetin May Act as A Cytotoxic Prooxidant after Its Metabolic Activation to Semiquinone And Quinoidal Product, Free Radical Biology and Medicine 1999,26,107-116.
    372. Zu, Y.; Li, C.; Fu, Y.; Zhao, C., Simultaneous Determination of Catechin, Rutin, Quercetin Kaempferol and Isorhamnetin in The Extract of Sea Buckthorn (Hippophae Rhamnoides L.) Leaves by RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis 2006,41 (3),714-719.
    373. Wang, Q.; Ding, F.; Li, H.; He, P.; Fang, Y, Determination of Hydrochlorothiazide And Rutin in Chinese Herb Medicines And Human Urine by Capillary Zone Electrophoresis with Amperometric Detection. Journal of Pharmaceutical and Biomedical Analysis 2003,30 (5),1507-1514.
    374. Danila, A.M.; Kotani, A.; Hakamata, H.; Kusu, F., Determination of Rutin, Catechin, Epicatechin, And Epicatechin Gallate in Buckwheat Fagopyrum Esculentum Moench by Micro-High-Performance Liquid Chromatography with Electrochemical Detection. Journal of Agricultural and Food Chemistry 2007,55(4),1139-1143.
    375. Song, Z.; Hou, S., Sensitive Determination of Sub-Nanogram Amounts of Rutin by Its Inhibition on Chemiluminescence with Immobilized Reagents. Talanta 2002,57 (1),59-67.
    376. Gomes, S.A.S.S.; Nogueira, J.M.F.; Rebelo, M.J.F., An Amperometric Biosensor for Polyphenolic Compounds in Red Wine. Biosensors and Bioelectronics 2004,20 (6),1211-1216.
    377. Ignatov, S.; Shishniashvili, D.; Ge, B.; Scheller, F.W.; Lisdat, F., Amperometric Biosensor Based on A Functionalized Gold Electrode for The Detection of Antioxidants. Biosensors and Bioelectronics 2002,17(3),191-199.
    378. Venkata K.K, Functionalized Gold Nanoparticle Supported Sensory Mechanisms Applied in Detection of Chemical And Biological Threat Agents:A Review. Analytica Chimica Acta 2012,715 (0),1-18.
    379. Wang, Y.; He, X.; Wang, K.; Ni, X.; Su, J.; Chen, Z., Ferrocene-Functionalized SWCNT for Electrochemical Detection of T4 Polynucleotide Kinase Activity. Biosensors and Bioelectronics 2012, 32(1),213-218.
    380. Wu, H.; Chen, M.; Fan, Y.; Elsebaei, F.; Zhu, Y., Determination of Rutin and Quercetin in Chinese Herbal Medicine by Ionic Liquid-Based Pressurized Liquid Extraction-Liquid Chromatography-Chemiluminescence Detection. Talanta 2012,88 (0),222-229.
    381. Wu, L.; Feng, L.; Ren, J.; Qu, X., Electrochemical Detection of Dopamine Using Porphyrin-Functionalized Graphene. Biosensors and Bioelectronics 2012,34 (1),57-62.
    382. Yang, S.; Qu, L.; Li, G.; Yang, R.; Liu, C., Gold Nanoparticles/Ethylenediamine/Carbon Nanotube Modified Glassy Carbon Electrode as The Voltammetric Sensor for Selective Determination of Rutin in The Presence of Ascorbic Acid. Journal of Electro analytical Chemistry 2011,645(2),115-122.
    383. Wu, H.; Wang, J.; Kang, X.; Wang, C.; Wang, D.; Liu, J.; Aksay,I. A.; Lin, Y., Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film. Talanta 2009,80 (1),403-406.
    384. Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y, Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry And Glucose Sensing. Biosensors and Bioelectronics 2009,25(4),901-905.
    385. Zeng, Q.; Cheng, J.S.; Liu, X.F.; Bai, H.T.; Jiang, J.H., Palladium Nanoparticle/Chitosan-Grafted Graphene Nanocomposites for Construction of A Glucose Biosensor. Biosensors and Bioelectronics 2011,26(8),3456-3463.
    386. Yang, J.H.; Myoung, N.; Hong, H.G., Facile And Controllable Synthesis of Prussian Blue on Chitosan-Functionalized Graphene Nanosheets for The Electrochemical Detection of Hydrogen Peroxide. Electrochimica Acta 2012, (doi:10.1016/j.electacta.2012.07.038).
    387. Liu, B.; Lian, H.T.; Yin, J.F.; Sun, X.Y., Dopamine Molecularly Imprinted Electrochemical Sensor Based on Graphene-Chitosan Composite. Electrochimica Acta 2012,75 (0),108-114.
    388. Wen, W.; Chen, W.; Ren, Q.Q.; Hu, X.Y.; Xiong, H.Y.; Zhang, X.H.; Wang, S.F.; Zhao, Y.D., Highly Sensitive Nitric Oxide Biosensor Basedon Hemoglobin-Chitosan/Graphene-Exadecyltrimethylammonium Bromide Nanomatrix. Sensors and Actuators B:Chemical 2012, 166-167,444-450.
    389. Yang, S.; Luo, S.; Liu, C.; Wei, W., Direct Synthesis of Graphene-Chitosan Composite and Its Application as an Enzymeless Methyl Parathion Sensor. Colloids and Surfaces B:Biointerfaces 2012, 96,75-79.
    390. Liu, K.; Wei, J.; Wang, C., Sensitive Detection of Rutin Based on β-Cyclodextrin@Chemically Reduced Graphene/Nafion Composite Film. Electrochimica Acta 2011,56 (14),5189-5194.
    391. Liu,J.; Tian, S.; Tiefenauer, L.; Nielsen, P.E.; Knoll, W., Simultaneously Amplified Electrochemical And Surface Plasmon Optical Detection of DNA Hybridization Based on Ferrocene-Treptavidin Conjugates. Analytical Chemistry 2005,77 (9),2756-2761.
    392. Zhu, L.; Luo, L.; Wang, Z., DNA Electrochemical Biosensor Based on Thionine-Graphene Nanocomposite. Biosensors and Bioelectronics 2012,35 (1),507-511.
    393. Flechsig, G.U.; Peter, J.; Hartwich, G.; Wang, J.; Grundler, P., DNA Hybridization Detection at Heated Electrodes. Langmuir 2005,21 (17),7848-7853.
    394. He, P.; Dai, L., Aligned Carbon Nanotube-DNA Electrochemical Sensors. Chemical Communications 2004, (3),348-349.
    395. Qiu, J.D.; Xiong, M.; Liang, R.P.; Peng, H.P.; Liu, F., Synthesis And Characterization of Ferrocene Modified Fe3O4@Au Magnetic Nanoparticles And Its Application. Biosensors and Bioelectronics 2009,24 (8),2649-2653.
    396. Huang, X.J.; Im, H.S.; Lee, D.H.; Kim, H.S.; Choi, Y.K., Ferrocene Functionalized Single-Walled Carbon Nanotube Bundles. Hybrid Interdigitated Construction Film for L-Glutamate Detection. The Journal of Physical Chemistry C2006,111 (3),1200-1206.
    397. Sato, Y.; Kato, D.; Niwa, O.; Mizutani, F., Simultaneous Determination of Glucose And Ascorbic Acid by Using Gold Electrode Modified with Ferrocenylundecanethiol Monolayer. Sensors and Actuators B:Chemical 2005,108 (1-2),617-621.
    398.Zhao Y.; Deng, J.; Liu M.; Li H.; Zhang Y.,二茂铁乙炔苯疏基化合物的合成及电化学性质,应用化学2011,28,1161-1166.
    399. Liu, Z.B.; Xu, Y.F.; Zhang, X.Y.; Zhang, X.L.; Chen, Y.S.; Tian, J.G., Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties. The Journal of Physical Chemistry B 2009,113 (29),9681-9686.
    400. Liu, K.; Zhang, J.; Yang, G.; Wang, C.; Zhu, J.-J., Direct Electrochemistry And Electrocatalysis of Hemoglobin Based on Poly(Diallyldimethylammonium Chloride) Functionalized Graphene Sheets/Room Temperature Ionic Liquid Composite Film. Electrochemistry Communications 2010,12 (3),402-405.
    401. Cao, X.; Ye, Y.; Liu, S., Gold Nanoparticle-Based Signal Amplification for Biosensing. Analytical Biochemistry 2011,417 (1),1-16.
    402. Guo, S.; Dong, S., Graphene Nanosheet:Synthesis, Molecular Engineering, Thin Film, Hybrids, and Energy And Analytical Applications. Chemical Society Reviews 2011,40 (5),2644-2672.
    403. Pingarren, J.M.; Yanez-Sedeno, P.; Gonzalez-Cortes, A., Gold Nanoparticle-Based Electrochemical Biosensors. Electrochimica Acta 2008,53 (19),5848-5866.
    404. Liu, M.; Wang, L.; Deng, J.; Chen, Q.; Li, Y.; Zhang, Y.; Li, H.; Yao, S., Highly Sensitive And Selective Dopamine Biosensor Based on A Phenylethynyl Ferrocene/Graphene Nanocomposite Modified Electrode. Analyst 2012,137 (19),4577-4583.
    405. Yang, S.; Qu, L.; Li, G.; Yang, R.; Liu, C., Gold Nanoparticles/Ethylenediamine/Carbon Nanotube Modified Glassy Carbon Electrode as The Voltammetric Sensor for Selective Determination of Rutin in The Presence of Ascorbic Acid. Journal of Electro analytical Chemistry 2010,645(2),115-122.
    406. He, J.L.; Yang, Y.; Yang, X.; Liu, Y.L.; Liu, Z.H.; Shen, G.L.; Yu, R.Q., β-Cyclodextrin Incorporated Carbon Nanotube-Modified Electrode as An Electrochemical Sensor for Rutin. Sensors and Actuators B:Chemical 2006,114 (1),94-100.
    407. Franzoi, A.C.; Spinelli, A.; Vieira, I.C., Rutin Determination in Pharmaceutical Formulations Using A Carbon Paste Electrode Modified with Poly(Vinylpyrrolidone). Journal of Pharmaceutical and Biomedical Analysis 2008,47,973-977.
    408. Sun, W.; Yang, M.; Li, Y.; Jiang, Q.; Liu, S.; Jiao, K., Electrochemical Behavior and Determination of Rutin on Apyridinium-Based Ionic Liquid Modified Carbon Paste Electrode. Journal of Pharmaceutical and Biomedical Analysis 2008,48 (5),1326-1331.
    409. Zhang, Y.; Zheng, J., Sensitive Voltammetric Determination of Rutin at an Ionic Liquid Modified Carbon Paste Electrode. Talanta 2008,77 (1),325-330.
    410. Tyszczuk, K., Sensitive Voltammetric Determination of Rutin at An in Situ Plated Lead Film Electrode. Journal of Pharmaceutical and Biomedical Analysis 2009,49 (2),558-561.
    411. Wu, S.H.; Sun, J.J.; Zhang, D.F.; Lin, Z.B.; Nie, F.H.; Qiu, H.Y.; Chen, G.N., Nanomolar Detection of Rutin Based on Adsorptive Stripping Analysis at Single-Sided Heated Graphite Cylindrical Electrodes with Direct Current Heating. Electrochimica Acta 2008,53 (22),6596-6601.
    412. Gao, F.; Qi, X.; Cai, X.; Wang, Q.; Gao, F.; Sun, W., Electrochemically Reduced Graphene Modified Carbon Ionic Liquid Electrode for The Sensitive Sensing of Rutin. Thin Solid Films 2012, 520(15),5064-5069.
    413. Zeng, B.; Wei, S.; Xiao, F.; Zhao, F., Voltammetric Behavior and Determination of Rutin at A Single-Walled Carbon Nanotubes Modified Gold Electrode. Sensors and Actuators B:Chemical 2006, 115(1),240-246.
    414. Liu, X.; Li, L.; Zhao, X.; Lu, X., Electrochemical Behavior of Rutin on A Multi-Walled Carbon Nanotube and Ionic Liquid Composite Film Modified Electrode. Colloids and Surfaces B: Biointerfaces 2010,81 (1),344-349.
    415. Zhan, T.; Sun, X.; Wang, X.; Sun, W.; Hou, W., Application of Ionic Liquid Modified Carbon Ceramic Electrode for The Sensitive Voltammetric Detection of Rutin. Talanta 2010,82 (5), 1853-1857.
    416. Kenneth, E.; Gonsalves, C.R.H.; Cato, T.; Laurencin, Lakshmi S., Nair7David W.G Morrison, Mehmet R. Dokmeci, Utkan Demirci, Ali Khademhosseini.
    417. Yi, S.Y.; Chang, H.Y.; Cho, H.; Park, Y.C.; Lee, S.H.; Bae, Z.U., Resolution of Dopamine And Ascorbic Acid Using Nickel (Ⅱ) Complex Polymer-Modified Electrodes. Journal of Electroanalytical Chemistry 2007,602 (2),217-225.
    418. Jiao, S.; Li, M.; Wang, C.; Chen, D.; Fang, B., Fabrication of Fc-SWNTs Modified Glassy Carbon Electrode for Selective And Sensitive Determination of Dopamine in The Presence of AA And UA. Electrochimica Acta 2007,52 (19),5939-5944.
    419. Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H., Simultaneous Determination of Acetaminophen and Dopamine Using SWCNT Modified Carbon-Ceramic Electrode by Differential Pulse Voltammetry. Electrochimica Acta 2011,56 (7),2888-2894.
    420. Locke, C.J.; Fox, S.A.; Caldwell, G.A.; Caldwell, K.A., Acetaminophen Attenuates Dopamine Neuron Degeneration in Animal Models of Parkinson's Disease. Neuroscience Letters 2008,439 (2), 129-133.
    421. Kang, X.; Wang, J.; Wu, H.; Aksay, I.A.; Liu, J.; Lin, Y., Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing, Biosens.Bioelectron.2009,25, 901-905.
    422. Michotte, Y.; Moors, M.; Deleu, D.; Herregodts, P.; Ebinger, G., Simultaneous Determination of Levodopa, Carbidopa,3-o-Methyldopa and Dopamine in Plasma Using High-Performance Liquid Chromatography with Electrochemical Detection.Journal of Pharmaceutical and Biomedical Analysis 1987,5 (7),659-664.
    423. Moghadam, M.R.; Dadfarnia, S.; Shabani, A.M.H.; Shahbazikhah, P., Chemometric-Assisted Kinetic-Spectrophotometric Method for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine. Analytical Biochemistry 2011,410 (2),289-295.
    424. Lin, Y.; Chen, C.; Wang, C.; Pu, F.; Ren, J.; Qu, X., Silver Nanoprobe for Sensitive and Selective Colorimetric Detection of Dopamine via Robust Ag-Catechol Interaction. Chemical Communications 2011,47(4),1181-1183.
    425. Kong, B.S.; Geng, J.; Jung, H.T., Layer-by-Layer Assembly of Graphene and Gold Nanoparticles by Vacuum Filtration and Spontaneous Reduction of Gold Ions. Chemical Communications 2009, (16),2174-2176.
    426. Nair, S.S.; John, S.A.; Sagara, T., Simultaneous Determination of Paracetamol And Ascorbic Acid Using Tetraoctylammonium Bromide Capped Gold Nanoparticles Immobilized on 1,6-Hexanedithiol Modified Au Electrode. Electrochimica Acta 2009,54 (27),6837-6843.
    427. Sardesai, N.P.; Barron, J.C.; Rusling, J.F., Carbon Nanotube Microwell Array for Sensitive Electrochemiluminescent Detection of Cancer Biomarker Proteins. Analytical Chemistry 2011,83 (17),6698-6703.
    428. Lourencao, B.C.; Medeiros, R.A.; Rocha-Filho, R.C.; Mazo, L.H.; Fatibello-Filho, O., Simultaneous Voltammetric Determination of Paracetamol And Caffeine in Pharmaceutical Formulations Using A Boron-Coped Diamond Electrode. Talanta 2009,78 (3),748-752.
    429. Alothman, Z.A.; Bukhari, N.; Wabaidur, S.M.; Haider, S., Simultaneous Electrochemical Determination of Dopamine And Acetaminophen Using Multiwall Carbon Nanotubes Modified Glassy Carbon Electrode. Sensors and Actuators B:Chemical 2011,146 (1),314-320.
    430. Qiu, J.D., Guo, J., Liang, R.P., Xiong, M.A., Nanocomposite Chitosan Based on Ferrocene-Modified Silica Nanoparticles, Electro analysis 2007,19,2335-2341.
    431. Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H., Differential Pulse Voltammetric Simultaneous Determination of Acetaminophen And Ascorbic Acid Using Single-Walled Carbon Nanotube-Modified Carbon-Ceramic Electrode. Analytical Biochemistry 2011,411 (2),167-175.
    432. Thomas, T.; Mascarenhas, R.J.; Nethravathi, C.; Rajamathi, M.; Kumara Swamy, B.E., Graphite Oxide Bulk Modified Carbon Paste Electrode for The Selective Detection of Dopamine:A Voltammetric Study. Journal of Electroanalytical Chemistry 2011,659 (1),113-119.
    433. Atta, N.F.; El-Kady, M.F.; Galal, A., Palladium Nanoclusters-Coated Polyfuran as A Novel Sensor for Catecholamine Neurotransmitters and Paracetamol. Sensors and Actuators B:Chemical 2009,141 (2),566-574.
    434. Kalimuthu, P.; John, S.A., Electropolymerized Film of Functionalized Thiadiazole on Glassy Carbon Electrode for The Simultaneous Determination of Ascorbic Acid, Dopamine And Uric Acid. Bioelectrochemistry 2009,77 (1),13-18.
    435. Noroozifar, M.; Khorasani-Motlagh, M.; Akbari, R.; Bemanadi Parizi, M., Simultaneous And Sensitive Determination of A Quaternary Mixture of AA, DA, UA And Trp Using A Modified GCE by Iron Ion-Doped Natrolite Zeolite-Multiwall Carbon Nanotube. Biosensors and Bioelectronics 2011, 28(1),56-63.
    436. Sun, X.; Du, Y.; Zhang, L.; Dong, S.; Wang, E., Pt Nanoparticles:Heat Treatment-Based Preparation And Ru(bpy)32+-Mediated Formation of Aggregates That Can Form Stable Films on Bare Solid Electrode Surfaces for Solid-State Electrochemiluminescence Detection. Analytical Chemistry 2006,78(18),6674-6677.
    437. Qu, X.; Peng, Z.; Jiang, X.; Dong, S., Surface Charge Influence on the Surface Plasmon Absorbance of Electroactive Thiol-Protected Gold Nanoparticles. Langmuir 2004,20 (7),2519-2522.
    438. Du, Y.; Chen, C.; Yin, J.; Li, B.; Zhou, M.; Dong, S.; Wang, E., Solid-State Probe Based Electrochemical Aptasensor for Cocaine:A Potentially Convenient, Sensitive, Repeatable, And Integrated Sensing Platform for Drugs. Analytical Chemistry 2011,82 (4),1556-1563.
    439. Wang, J.; Zhu, X.; Tu, Q.; Guo, Q.; Zarui, C.S.; Momand, J.; Sun, X.Z.; Zhou, F., Capture of P53 by Electrodes Modified with Consensus DNA Duplexes And Amplified Voltammetric Detection Using Ferrocene-Capped Gold Nanoparticle/Streptavidin Conjugates. Analytical Chemistry 2008,80 (3),769-774.
    440. Shaporenko, A.; Russler, K.; Lang, H.; Zharnikov, M., Self-Assembled Monolayers of Ferrocene-Substituted Biphenyl Ethynyl Thiols on Gold. The Journal of Physical Chemistry B 2006, 110(48),24621-24628.
    441. Wei, Z.; Li, Z.; Sun, X.; Fang, Y.; Liu, J., Synergistic Contributions of Fullerene, Ferrocene, Chitosan and Ionic Liquid towards Improved Performance for A Glucose Sensor. Biosensors and Bioelectronics 2010,25 (6),1434-1438.
    442. Jasuja, K.; Berry, V., Implantation and Growth of Dendritic Gold Nanostructures on Graphene Derivatives:Electrical Property Tailoring and Raman Enhancement. ACS Nano 2009,3 (8), 2358-2366.
    443. Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L.V.; Zhang, J.; Aksay, I.A.; Liu, J., Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano 2009,3 (4),907-914.
    444. Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G., Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents And Their Application in Biosensors. The Journal of Physical Chemistry C 2011,114 (4),1822-1826.
    445. Qiu, J.D.; Wang, G.C.; Liang, R.P.; Xia, X.H.; Yu, H.W., Controllable Deposition of Platinum Nanoparticles on Graphene As An Electrocatalyst for Direct Methanol Fuel Cells. The Journal of Physical Chemistry C2011,115 (31),15639-15645.
    446. Zhao, J.; Zhang, Y.; Li, H.; Wen, Y.; Fan, X.; Lin, F.; Tan, L.; Yao, S., Ultrasensitive Electrochemical Aptasensor for Thrombin Based on The Amplification of Aptamer-AuNPs-HRP Conjugates. Biosensors and Bioelectronics 2011,26 (5),2297-2303.
    447. Wu, Y.; Zhang, T.; Zheng, Z.; Ding, X.; Peng, Y., A Facile Approach to Fe3O4@Au Nanoparticles with Magnetic Recyclable Catalytic Properties. Materials Research Bulletin 2010,45 (4),513-517.
    448. Liu, H.L.; Sonn, C.H.; Wu, J.H.; Lee, K.M.; Kim, Y.K., Synthesis of Streptavidin-FITC-Conjugated Core-Shell Fe3O4-Au Nanocrystals And Their Application for The Purification of CD4+ Lymphocytes. Biomaterials 2008,29 (29),4003-4011.
    449. Li, X.L.; Wang, X.R.; Zhang, L.; Lee, S.W.; Dai, H.J., Fabrication of Polymer-Supported Nanosized Hydrous Manganese Dioxide (HMO) for Enhanced Lead Removal from Waters. Science 2008,319,1229-1232.
    450. Khan, M.M.T.; Martell, A.E., Metal Ion and Metal Chelate Catalyzed Oxidation of Ascorbic Acid by Molecular Oxygen. I. Cupric and Ferric Ion Catalyzed Oxidation. Journal of the American Chemical Society 1967,89 (16),4176-4185.
    451. Moawad, M.M., Complexation and Thermal Studies of Uric Acid with Some Divalent and Trivalent Metal Ions of Biological Interest in the Solid State. Journal of Coordination Chemistry 2002, 55(1),61-78.
    452. Wang, J.; Wang, Y.; Lv, H.; Hui, F.; Ma, Y.; Lu, S.; Sha, Q.; Wang, E., Studies of Interaction Between Iron (Ⅲ) And Intermediates of Synthetic Neuromelanin by Means of Cyclic Voltammetry of And Dopamine. Journal of Electroanalytical Chemistry 2006,594 (1),59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700