大气压电离质谱中含氮有机化合物质子化离子的产生及裂解反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压电离质谱是对有机化合物进行分析和结构鉴定的重要工具之一。有机分子的质子化离子是大气压电离质谱中最常见的准分子离子,是提供分子量和结构信息的重要依据,因此准确掌握质子加合物的产生机理和裂解反应规律是有机质谱学的核心内容。本论文以含氮有机化合物为研究对象,选取一些典型的模型分子,从其质子加合物在离子源中的产生机理和在串联质谱中的裂解规律两个方面开展研究,具体内容包括以下四部分:
     1.以对二甲氨基查尔酮为模型分子,首次报道了大气压化学电离源中动力学控制的质子化反应。对二甲氨基查尔酮在溶液中碱性最强的位点是氮,而在气相中最稳定的质子化位点是羰基氧,根据常规的理解该化合物在大气压化学电离质谱中主要产生O-质子化离子。但是当使用乙腈/水为溶剂并且进样流速较大的时候,优先产生的是N-质子化离子,可能的原因是该条件下离子化过程中产生了更接近于液相环境中的高度溶剂化的N-质子化离子。这一发现有助于我们更好地理解大气压化学电离源的离子化机理。
     2.以1,4-二苯基-3-苯甲酰基-1,4-二氢吡啶为模型分子,报道了电喷雾离子源中正离子模式下罕见的脱氢反应。当使用质子性溶剂时,该类化合物离子化产生的主要是[M+H]+离子;当使用非质子性溶剂时,该类化合物离子化产生的主要是[M-H]+离子。通过多种实验方法证明了脱氢反应是在喷雾针高电压作用下发生的电化学氧化反应,即1,4-二氢吡啶环被氧化芳构化成吡啶环,该反应可以被认为是一种特殊的离子抑制形式。
     3.以N-苄基丁内酰胺为模型分子,研究了其质子加合物裂解反应中的质子迁移反应。该化合物裂解反应的发生需要质子从热力学最稳定的羰基氧迁移到内酰胺氮或者苯环本位碳上。实验和理论研究发现质子从羰基氧迁移到苯环本位碳是通过直接1,5-氢迁移完成的。但是质子从羰基氧迁移到内酰胺氮并不是通过经典的1,3-氢迁移完成的,而是先从氧上迁移到苯环的邻位碳,再迁移到内酰胺氮上,在该过程中苯环起到了类似于催化剂的作用(分子内质子转移催化)。进一步的研究发现这一裂解反应模型适用于其它N-苄基酰胺化合物和具有这种骨架结构的药物分子的质谱裂解反应。
     4.以N-苄基哌啶和N-苄基哌嗪为模型分子,系统地研究了含N-苄基结构化合物的质子加合物的裂解反应规律,总结了离子/中性复合物介导的苄基阳离子参与的五种反应类型,包括氢负离子迁移、亲电取代、电子迁移、质子迁移和芳香族亲核取代,使我们对苄基阳离子这一重要的有机活性物种的反应性有了更全面的认识。这些反应规律已经在国内外其它质谱学家的研究中得到了很好的应用,并且可以被用来合理地解释相关药物分子裂解反应中一些特殊碎片离子的产生。
     此外,本论文还简要总结了大气压电离源的离子化机理,并综述了大气压电离质谱中质子化离子裂解反应中的重要重排反应。
Atmospheric pressure ionization mass spectrometry (API-MS) is one of the important tools for analysis and structure elucidation of organic compounds. The protonated ion of organic compounds is the most common quasi-molecular ion in API-MS, which provides molecular weight and structural information. Therefore, understanding the formation and fragmentation mechanism of protonated ions is the core issue of organic mass spectrometry. In this dissertation, using typical N-containing compounds as models, two aspects including the generation mechanism of protonated ions in the ion source and the fragmentation rules of protonated ions in tandem mass spectrometry were studied, which specifically includes the following four parts:
     1. Using p-(dimethylamino)chalcone as a model compound, the kinetically controlled protonation reaction in atmospheric pressure chemical ionization (APCI) was reported for the first time. The most basic site ofp-(dimethylamino)chalcone in solution is the N, while the most stable protonation site of it in the gas phase is the carbonyl O. Thus according to the conventional understanding, the O-protonated ion should be dominantly formed in APCI. However, when acetonitrile/water is used as the solvent and the infusion rate is relatively high, the N-protonated ion is preferentially produced. The proposed explanation is that under the present ionization conditions highly solvated N-protonated ions are formed, which is close to the situation in liquid phase. This finding will help us better understand the mechanism of APCI.
     2. Using1,4-diphenyl-3-benzoyl-1,4-dihydropyridines as model compounds, a rare dehydrogenation reaction in electrospray ion source was reported. When a protic solvent is used, the [M+H]+ion is mainly formed; when an aprotic solvent is used, the generation of [M-H]+ion is dominant. With the aid of a variety of experimental methods, it is proved that the dehydrogenation reaction is an electrochemical oxidation reaction induced by the high voltage in the spray needle, in which the1,4-dihydropyridine ring is oxidized to a pyridine ring. This is a special case of ion suppression.
     3. Using N-benzyl lactams as model compounds, the proton transfers in the fragmentation of their proton adducts were studied. The fragmentation of protonated N-benzyl lactams requires the ionizing proton migrating from the thermodynamically stable carbonyl oxygen to the lactam nitrogen or the ipso position of the phenyl ring. Experimental and theoretical studies indicate that a direct1,5-H shift is responsible for the proton transfer from the carbonyl oxygen to the ipso position of the phenyl ring. However, the proton transfer from the carbonyl oxygen to the lactam nitrogen is not achieved via a classical1,3-H shift. In fact, the proton first migrates from the carbonyl oxygen to the ortho position of the phenyl ring and then to the lactam nitrogen, in which the phenyl ring acts as a catalyst (intramolecular proton-transport catalysis). Further studies found that the present fragmentation reaction model is applicable to other N-benzyl amides and drugs containing such a skeleton structure.
     4. Using N-benzyl piperidine and N-benzyl piperazine as model compounds, the fragmentation rules of protonated N-benzyl structure-containing compounds were systematically studied and five kinds of ion/neutral complex-mediated benzyl cation-involved reactions were concluded including hydride ion transfer, electrophilic substitution, electron transfer, proton transfer, and nucleophilic aromatic substitution. This study prompts us to obtain comprehensive understanding on the reactivity of the benzyl cations. The fragmentation rules summarized in this study have been well applied by other domestic and foreign mass spectrometrists in their researches. These fragmentation rules also can be used to rationalize the generation of special fragment ions in the fragmentation of related drugs.
     In addition, the ionization mechanism of atmospheric pressure ionization source was briefly summarized and the important rearrangements of protonated ions generated by API-MS in collision-induced dissociation were reviewed.
引文
[1]McLafferty F W. A century of progress in molecular mass spectrometry. Annu. Rev. Anal. Chem.2011,4:1-22.
    [2]Holcapek M, Jirasko R, Lisa M. Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. J. Chromatogr. A 2010,1217: 3908-3921.
    [3]Rosenberg E. The potential of organic (electrospray-and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis. J. Chromatogr. A 2003,1000:841-889.
    [4]Fenn J B, Mann M, Meng C K, Wong S F. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989,246:64-71.
    [5]Fenn J B, Mann M, Meng C K, Wong S F. Electrospray ionization-principles and practice. Mass Spectrom. Rev.1990,9:37-70.
    [6]Cech N B, Enke C G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev.2001,20:362-387.
    [7]Gaskell S J. Electrospray:Principles and Practice. J. Mass Spectrom.1997,32: 677-688.
    [8]Kebarle P, Verkerk U H. Electrospray:from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev.2009,28:898-917.
    [9]Tian Z X, Kass S R. Gas-phase versus liquid-phase structures by electrospray ionization mass spectrometry. Angew. Chem. Int. Ed.2009,48:1321-1323.
    [10]Schmidt J, Meyer M M, Spector I, Kass S R. Infrared multiphoton dissociation spectroscopy study of protonated p-aminobenzoic acid:does electrospray ionization afford the amino-or carboxy-protonated ion? J. Phys. Chem. A 2011, 115:7625-7632.
    [11]Tian Z X, Pawlow A, Poutsma J C, Kass S R. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidity, H/D exchange experiments, and computations on cysteine and its conjugate base. J. Am. Chem. Soc.2007,129: 5403-5407.
    [12]Tian Z X, Kass S R. Does electrospray ionization produce gas-phase or liquid-phase structures? J. Am. Chem. Soc.2008,130:10842-10843.
    [13]Tian Z X, Wang X B, Wang L S, Kass S R. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine,p-hydroxybenzoic acid, and their conjugate bases. J. Am. Chem. Soc. 2009,131:1174-1181.
    [14]Steill J D, Oomens J. Gas-phase deprotonation of p-hydroxybenzoic acid investigated by IR spectroscopy:solution-phase structure is retained upon ESI. J. Am. Chem. Soc.2009,131:13570-13571.
    [15]Schroder D, Budesinsky M, Roithova J. Deprotonation of p-hydroxybenzoic acid: does electrospray ionization sample solution or gas-phase structures? J. Am. Chem. Soc.2012,134:15897-15905.
    [16]Horning E C, Horning M G, Carroll D I, Dzidic I, Stillwell R N. New pictogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem.1973,45:936-943.
    [17]Carroll D I, Dzidic I, Stillwell R N, Horning M G, Horning E C. Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry. Anal. Chem.1974,46:706-710.
    [18]Byrdwell W C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 2001,36:327-346.
    [19]Terrier P, Desmazieres B, Tortajada J, Buchmann W. APCI/APPI for synthetic polymer analysis. Mass Spectrom. Rev.2011,30:854-874.
    [20]Kostiainen R, Kotiaho T, Kuuranne T, Aurila S. Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. J. Mass Spectrom.2003,38:357-372.
    [21]Prakash C, Shaffer C L, Nedderman A. Analytical strategies for identifying drug metabolites. Mass Spectrom. Rev.2007,26:340-369.
    [22]Botitsi H V, Garbis S D, Economou A, Tsipi D F. Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom. Rev.2011,30:907-939.
    [23]Niessen, W M A. Fragmentation of toxicologically relevant drugs in positive-ion liquid chromatography-tandem mass spectrometry. Mass Spectrom. Rev.2011,30: 626-663.
    [24]Wesdemiotis C, Solak N, Polce M J, Dabney D E, Chaicharoen K, Katzenmeyer B C. Fragmentation pathways of polymer ions. Mass Spectrom. Rev.2011,30: 523-559.
    [25]Wu J, McLuckey S A. Gas-phase fragmentation of oligonucleotide ions. Int. J. Mass Spectrom.2004,237:197-241.
    [26]Banoub J H, Newton R P, Esmans E, Ewing D F, Mackenzie G Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem. Rev.2005,105: 1869-1915.
    [27]Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom. Rev.2005,24:508-548.
    [28]Herrero M, Simo C, Garcia-Canas V, Ibanez E, Cifuentes A. Foodomics:MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev.2012,31: 49-69.
    [29]Feng X D, Siegel M M. FTICR-MS applications for the structure determination of natural products. Anal. Bioanal. Chem.2007,389:1341-1363.
    [30]Petrovic M, Barcelo D. Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. J. Mass Spectrom.2006,41:1259-1267.
    [31]Mayer P M, Poon C. The mechanisms of collisional activation of ions in mass spectrometry. Mass Spectrom. Rev.2009,28:608-639.
    [32]Jennings K R. Collision-induced decompositions of aromatic molecular ions. Int. J. Mass Spectrom. IonPhys.1968,1:227-235.
    [33]Haddon W K, McLafferty F W. Metastable ion characteristics. VII. Collision-induced metastables. J. Am. Chem. Soc.1968,90:4745-4746.
    [34]McLafferty F W, Bente P F, III, Kornfeld FC, Tsai S C, Howe I. Collisional activation spectra of organic ions. J. Am. Chem. Soc.1973,95:2120-2129.
    [35]Hunter E P L, Lias S G. Evaluated gas phase basicities and proton affinities of molecules:an update. J. Phys. Chem. Ref. Data 1998,27:413-656.
    [36]Uggerud E. Properties and reactions of protonated molecules in the gas phase. Experiment and theory. Mass Spectrom. Rev.1992,11:389-430.
    [37]Abboud J L M, Notario R, Ballesteros E, Herreros M, Mo O, Yanez M, Elguero J, Boyer G, Claramunt R. Dissociative attachment of protons to 1-fluoro-and 1-chloroadamantane in the gas phase. J. Am. Chem. Soc.1994,116:2486-2492.
    [38]Mo O, Yanez M, Gal J F, Maria P C, Guillemin J C. Vinyl-and ethynylsilanes,-germanes and-stannanes. A new case of dissociative proton attachment. J. Phys. Org. Chem.2002,15:509-513.
    [39]Tu Y P. Dissociative protonation sites:reactive centers in protonated molecules leading to fragmentation in mass spectrometry. J. Org. Chem.2006,71:5482-5488.
    [40]Hu N, Tu Y P, Liu Y Q, Jiang K Z, Pan Y J. Dissociative protonation and proton transfers:fragmentation of α,β-unsaturated aromatic ketones in mass spectrometry. J. Org. Chem.2008,73:3369-3376.
    [41]Jiang K Z, Bian G F, Hu N, Pan Y J, Lai G Q. Coordinated dissociative proton transfers of external proton and thiocarbamide hydrogen:MS experimental and theoretical studies on the fragmentation of protonated S-methyl benzenylmethylenehydrazine dithiocarboxylate in gas phase. Int. J. Mass Spectrom. 2010,291:17-23.
    [42]Guo C, Wan J P, Hu N, Jiang K Z, Pan Y J. An experimental and computational investigation on the fragmentation behavior of enaminones in electrospray ionization mass spectrometry. J. Mass Spectrom.2010,45:1291-1298.
    [43]Spacil Z, Hui R J, Gelb M H, Turecek F. Protonation sites and dissociation mechanisms of t-butylcarbamates in tandem mass spectrometric assays for newborn screening. J. Mass Spectrom.2011,46:1089-1098.
    [44]Amundson L M, Owen B C, Gallardo V A, Habicht S C, Fu M K, Shea R C, Mossman A B, Kenttamaa H I. Differentiation of regioisomeric aromatic ketocarboxylic acids by positive mode atmospheric pressure chemical ionization collision-activated dissociation tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom.2011,22:670-682.
    [45]George M, Sebastian V S, Reddy P N, Srinivas R, Giblin D, Gross M L. Gas-phase Nazarov cyclization of protonated 2-methoxy and 2-hydroxychalcone:an example of intramolecular proton-transport catalysis. J. Am. Soc. Mass Spectrom.2009,20: 805-818.
    [46]Zhang J, Chai Y F, Jiang K Z, Yang H M, Pan Y J, Sun C R. Gas phase retro-Michael reaction resulting from dissociative protonation:fragmentation of protonated warfarin in mass spectrometry. J. Mass Spectrom.2012,47:1059-1064.
    [47]Tu Y P. Dissociative protonation and fragmentation:Retro-Friedel-Crafts reactions of heterocyclic drug and metabolite molecules in mass spectrometry. Int. J. Mass Spectrom.2012,316:40-46.
    [48]Van Stipdonk M J, Kerstetter D R, Leavitt C M, Groenewold G S, Steill J, Oomens J. Spectroscopic investigation of H atom transfer in a gas-phase dissociation reaction:McLafferty rearrangement of model gas-phase peptide ions. Phys. Chem. Chem. Phys.2008,10:3209-3221.
    [49]Yang S Z, Liu X Y, Mu B Z. The McLafferty rearrangement in the Glu residue in a cyclic lipopeptide determined by Q-TOF MS/MS. J. Mass Spectrom.2008,43: 1673-1678.
    [50]Ramesh V, Srinivas R, Kumaraswamy G, Markondaiah B. Diastereoselectivity in the McLafferty-type rearrangement of protonated precursors of belactosin derivatives using electrospray ionization (ESI) and atmospheric pressure photo ionization (APPI) tandem mass spectrometry. J. Mass Spectrom.2009,44: 285-287.
    [51]Fredenhagen A, Derrien C, Gassmann E. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M+H]+and [M+Na]+ ions. J. Nat. Prod.2005,68:385-391.
    [52]Adams J. Charge-remote fragmentations:analytical applications and fundamental studies. Mass Spectrom. Rev.1990,9:141-186.
    [53]Cheng C F, Gross M L. Applications and mechanisms of charge-remote fragmentation. Mass Spectrom. Rev.2000,19:398-420.
    [54]Morton T H. Gas phase analogues of solvolysis reactions. Tetrahedron 1982,38: 3195-3243.
    [55]McAdoo D J. Ion-neutral complexes in unimolecular decompositions. Mass Spectrom. Rev.1988,7:363-393.
    [56]Bowen R D. Ion-neutral complexes. Ace. Chem. Res.1991,24:364-371.
    [57]Morton T H. The reorientation criterion and positive ion-neutral complexes. Org. Mass Spectrom.1992,27:353-368.
    [58]Longevialle P. Ion-neutral complexes in the unimolecular reactivity of organic cations in the gas phase. Mass Spectrom. Rev.1992,11:157-192.
    [59]McAdoo D J, Morton T H. Gas-phase analogues of cage effects. Ace. Chem. Res. 1993,26:295-302.
    [60]Rylander P N, Meyerson S. Organic ions in the gas phase. I. The cationated cyclopropane ring. J. Am. Chem. Soc.1956,78:5799-5802.
    [61]Tu Y P. Fragmentation of conjugated amides at the C-C(O) bond in electrospray mass spectrometry:a proton-bound dimeric intermediate identified by the kinetic method. Rapid Commun. Mass Spectrom.2004,18:1345-1351.
    [62]Guo C, Jiang K Z, Yue L, Xia Z M, Wang X X, Pan Y J. Intriguing roles of reactive intermediates in dissociation chemistry of N-phenylcinnamides. Org. Biomol. Chem.2012,10:7070-7077.
    [63]Julian R R, Ly T, Finaldi, A M, Morton T H. Dissociation of a protonated secondary amine in the gas phase via an ion-neutral complex. Int. J. Mass Spectrom.2007, 265:302-307.
    [64]Kuck D, Matthias C. Formation of gaseous π and ion-neutral complexes as probed by interannular tert-butyl cation transfer in protonated tert-butyl-substituted diphenylalkanes. J. Am. Chem. Soc.1992,114:1901-1903.
    [65]Matthias C, Anlauf S, Weniger K, Kuck D. Gaseous [t-C4H9+ a,co-diphenylalkane] complexes:methyl substituent effects on the intracomplex proton transfer and regioselective hydride abstraction. Int. J. Mass Spectrom.2000,199:155-187.
    [66]Matthias C, Bredenkotter B, Kuck D. Proton-induced intra-complex hydride transfer involving bicyclo[2.2.2]octane units as a rigid spacer and as a carbocation precursor. Int. J. Mass Spectrom.2003,228:321-339.
    [67]Matthias C, Cartoni A, Kuck D. Ion/neutral complexes generated during unimolecular fragmentation:Intra-complex hydride abstraction by tert-butyl cations from electron-rich and electron-poor 1,3-diphenylpropanes. Int. J. Mass Spectfrom.2006,255:195-212.
    [68]Kuck D, Matthias C, Barth D, Letzel M C. Isomerization of the constituents of ion/neutral complexes during the fragmentation of protonated dialkyl-substituted 1,3-diphenylpropanes. Int. J. Mass Spectrom.2011,306:167-174.
    [69]Audier H E, Dahhani F, Milliet A, Kuck D. Hydride and proton transfer reactions in gaseous ion-molecular complexes [PhCH2+HOCH2CH2OH]. Chem. Commun. 1997,429-430.
    [70]Bialecki J, Ruzicka J, Attygalle A B. An unprecedented rearrangement in collision-induced mass spectrometric fragmentation of protonated benzylamines. J. Mass Spectrom.2006,41:1195-1204.
    [71]Karni M, Mandelbaum A. The even-electron rule. Org. Mass Spectrom.1980,15: 53-64.
    [72]Bowen R D, Harrison A G. Loss of methyl radical from some small immonium ions: unusual violation of the even-electron rule. Org. Mass Spectrom.1981,16: 180-182.
    [73]Ohashi M, Barron R P, Benson W R. Electron-impact-induced fragmentation of quaternary ammonium cations. J. Am. Chem. Soc.1981,103:3943-3945.
    [74]Ceraulo L, Agozzino P, Ferrugia M, Lamartina L, Natoli M C. Studies in organic mass spectrometry, Part 9-mass spectra of 9,10-disubstituted 2,3,6,7-tetraalkoxy-9,10-dihydroanthracenes:a remarkable loss of radicals from even-electron ions. Org. Mass Spectrom.1991,26:279-286.
    [75]Schroder D, Roithova J, Gruene P, Schwarz H, Mayr H, Koszinowski K. Unexpected gas-phase reactivity of the CH3OH adduct of Michler's hydrol blue: proton-shuttle catalysis and stepwise radical expulsions. J. Phys. Chem. A 2007, 111:8925-8933.
    [76]Thurman E M, Ferrer I, Pozo O J, Sancho J V, Hernandez F. The even-electron rule in electrospray mass spectra of pesticides. Rapid Commun. Mass Spectrom.2007, 21:3855-3868.
    [77]Williams J P, Nibbering N M M, Green B N, Patel V J, Scrivens J H. Collision-induced fragmentation pathways including odd-electron ion formation from desorption electrospray ionization generated protonated and deprotonated drugs derived from tandem accurate mass spectrometry. J. Mass Spectrom.2006, 41:1277-1286.
    [78]Levsen K, Schiebel H M, Terlouw J K, Jobst K J, Elend M, Preiβ A, Thiele H, Ingendoh A. Even-electron ions:a systematic study of the neutral species lost in the dissociation of quasi-molecular ions. J. Mass Spectrom.2007,42:1024-1044.
    [79]Chen K, Rannulu N S, Cai Y, Lane P, Liebl A L, Rees B B, Corre C, Challis G L, Cole R B. Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electronspray tandem mass spectrometry. J. Am. Soc. Mass Spectrom.2008,19:1856-1866.
    [80]Xu G F, Huang T, Zhang J, Huang, J K, Carlson T, Miao S C. Investigation of collision-induced dissociations involving odd-electron ion formation under positive electrospray ionization conditions using accurate mass. Rapid Commun. Mass Spectrom.2010,24:321-327.
    [81]Hu N, Tu Y P, Jiang K Z, Pan Y J. Intramolecular charge transfer in the gas phase: fragmentation of protonated sulfonamides in mass spectrometry. J. Org. Chem. 2010,75:4244-4250.
    [82]Cao X J, Jiang N, Ye X M, Zheng L B, Zhang F F, Shen L X, Chen J Y, Mo W M. Single electron redox via an ion-neutral complex in the fragmentation of protonated benzoylferrocenes. Rapid Commun. Mass Spectrom.2013,27:859-864.
    [83]柴云峰,甘世凤,潘远江.电喷雾串联质谱中苯乙酰苯胺衍生物去质子化离子裂解产生阴离子自由基的机理研究.化学学报,2012,70:1805-1811.
    [84]Zhang X, Yao S J, Guo Y L. Intramolecular methyl migration in the protonated N.N'-dimethylpropane-1,3-diamine and N,N'-dimethylethane-1,2-diamine. Int. J. Mass Spectrom.2008,270:31-38.
    [85]Reepmeyer J C. Direct intramolecular gas-phase transfer reactions during fragmentation of sildenafil and thiosildenafil analogs in electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.2009,23:927-936.
    [86]Xiong L, Ping L Y, Yuan B F, Wang Y S. Methyl group migration during the fragmentation of singly charged ions of trimethylly sine-containing peptides: precaution of using MS/MS of singly charged ions for interrogating peptide methylation. J. Am. Soc. Mass Spectrom.2009,20:1172-1181.
    [87]Edelson-Averbukh M, Mandelbaum A. Intramolecular electrophilic aromatic substitution in gas-phase-protonated difunctional compounds containing one or two arylmethyl groups. J. Mass Spectrom.2003,38:1169-1177.
    [88]Edelson-Averbukh M, Mandelbaum A. Chemistry and stereochemistry of benzyl-benzyl interactions in MH+ ions of dibenzyl esters upon chemical ionization and collision-induced dissociation conditions. J. Mass Spectrom.1997,32: 515-524.
    [89]Edelson-Averbukh M, Etinger A, Mandelbaum A. Intramolecular benzyl-benzyl interactions in protonated benzyl diethers in the gas phase. Effects of internal hydrogen bonding. J. Chem. Soc., Perkin Trans.2 1999,1095-1105.
    [90]Edelson-Averbukh M, Mandelbaum A. Gas-phase intramolecular benzyl-benzyl interactions in protonated dibenzyl derivatives containing benzyl-oxygen,-sulfur and-nitrogen bonds. J. Chem. Soc., Perkin Trans.2 2000,989-996.
    [91]Chen J, Jiang Y, Fu H, Chen Y, Cheng C M, Zhao Y F. Rearrangement with formamide extrusion in the electrospray mass spectra of aminoacylbenzylamines. Rapid Commun. Mass Spectrom.2001,15:1489-1493.
    [92]Yan Z Y, Tounge B, Caldwell G W. An unusual intramolecular transfer of the fluorobenzyl cation between two remote amidic nitrogen atoms induced by collision in the gas phase. Rapid Commun. Mass Spectrom.2012,26:49-60.
    [93]Chen Y, Droumaguet C L, Li K, Cotham W E, Lee N, Walla M, Wang Q. A novel rearrangement of fluorescent human thymidylate synthase inhibitor analogues in ESI tandem mass spectrometry. J. Am. Soc. Mass Spectrom.2010,21:403-410.
    [94]Cartoni A, Altamura M, Animati F, Balacco G, Cosi R, Ettorre A, Madami A, Triolo A. An unusual rearrangement of Zofenopril, a new ACE inhibitor drug:mass spectrometric and conformational studies. J. Mass Spectrom.2002,37:1258-1265.
    [95]Tu Y P, Huang Y Y, Atsriku C, You Y, Cunniff J. Intramolecular transacylation: fragmentation of protonated molecules via ion-neutral complexes in mass spectrometry. Rapid Commun. Mass Spectrom.2009,23:1970-1976.
    [96]Palumbo A M, Reid G E. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal. Chem.2008,80:9735-9747.
    [97]Mischerikow N, Altelaar A F M, Navarro J D, Mohammed S, Heck A J R. Comparative assessment of site assignments in CID and electron transfer dissociation spectra of phosphopeptides discloses limited relocation of phosphate groups. Mol. Cell. Proteomics 2010,9:2140-2148.
    [98]Aguiar M, Haas W, Beausoleil S A, Rush J, Gygi S P. Gas-phase rearrangements do not affect site localization reliability in phosphoproteomics data sets. J. Proteome Res.2010,9:3103-3107.
    [99]Rozman M. Modelling of the gas-phase phosphate group loss and rearrangement in phosphorylated peptides. J. Mass Spectrom.2011,46:949-955.
    [100]Boersema P J, Mohammed S, Heck A J R. Phosphopeptide fragmentation and analysis by mass spectrometry. J. Mass Spectrom.2009,44:861-878.
    [101]Palumbo A M, Smith S A, Kalcic C L, Dantus M, Stemmer P M, Reid G E. Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrom. Rev. 2011,30:600-625.
    [102]Moulton B E, Duhme-Klair A K, Fairlamb I J S, Lynam J M, Whitwood A C. A rationale for the linear correlation of aryl substituent effects in iron(0) tricarbonyl complexes containing a,p-unsaturated enone (chalcone) ligands. Organometallics 2007,26:6354-6365.
    [103]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Gaussian, Inc., Pittsburgh, PA,2003.
    [104]Bortolini O, Fantin G, Ferretti V, Fogagnolo M, Giovannini P P, Medici A. Relative acidity scale of bile acids through ESI-MS measurements. Org. Biomol. Chem. 2010,8,3674-3677.
    [105]Tai Y P, Pei S F, Wan J P, Cao X J, Pan Y J:Fragmentation study of protonated chalcones by atmospheric pressure chemical ionization and tandem mass spectrometry. Rapid Commun. Mass Spectrom.2006,20:994-1000.
    [106]Olah G A, White A M. Stable carbonium ions. LVIII. Carbon-13 resonance investigation of protonated carboxylic acids (carboxonium ions) and oxocarbonium ions (acyl cations). J. Am. Chem. Soc.1967,89:7072-7075.
    [107]Laufer D A, Gelb R I, Schwartz L M.13C NMR determination of acid-base tautomerization equilibria. J. Org. Chem.1984,49:691-696.
    [108]Zhang X X, Oscarson J L, Izatt R M, Schuck P C, Li D. Thermodynamics of macroscopic and microscopic proton ionization from protonated 4-aminobenzoic acid in aqueous solution from 298.15 to 393.15 K. J. Phys. Chem. B 2000,104: 8598-8605.
    [109]Zhang X, Wang H Y, Liao Y X, Ji H W, Guo Y L. Study of methylation of nitrogen-containing compounds in the gas phase. J. Mass Spectrom.2007,42: 218-224.
    [110]Wood K V, Burinsky D J, Cameron D, Cooks R G. Site of gas-phase cation attachment. Protonation, methylation, and ethylation of aniline, phenol, and thiophenol. J. Org. Chem.1983,48:5236-5242.
    [111]Nacson S, Harrison A G, Davidson W R. Effect of method of ion preparation on low-energy collision-induced dissociation mass spectra. Org. Mass Spectrom.1986, 21:317-319.
    [112]Mason R, Milton D, Harris F. Proton transfer to the fluorine atom in fluorobenzene: a dramatic temperature dependence in the gas phase. J. Chem. Soc. Chem. Commun.1987,1453-1455.
    [113]Weisz A, Cojocaru M, Mandelbaum A. Site specific gas-phase protonation of 2-t-butylmaleates and 2-t-butylsuccinates upon chemical ionization:stereochemical effects and kinetic control. J. Chem. Soc. Chem. Commun.1989,331-332.
    [114]Nakata H, Suzuki Y, Shibata M, Takahashi K, Konishi H, Takeda N, Tatematsu A. Chemical ionization mass spectrometry of bifunctional compounds. The behaviour of bifunctional compounds on protonation. Org. Mass Spectrom.1990,25: 649-654.
    [115]Vais V, Etinger A, Mandelbaum A. Intramolecular proton transfers in stereoisomeric gas-phase ions and the kinetic nature of the protonation process upon chemical ionization. J. Mass Spectrom.1999,34:755-760.
    [116]Denekamp C, Mandelbaum A. Proton transfer via strained transition states in the elimination of alcohols from MH+ ions of stereoisomeric diethers and hydroxy esters upon chemical ionization and collision-induced dissociation. J. Mass Spectrom.2001,36:422-429.
    [117]Joyce J R, Richards D S. Kinetic Control of protonation in electrospray ionization. J. Am. Soc. Mass Spectrom.2011,22:360-368.
    [118]Andrade F J, Shelley J T, Wetzel W C, Webb M R, Gamez G, Ray S J, Hieftje G.M. Atmospheric pressure chemical ionization source.1. Ionization of compounds in the gas phase. Anal. Chem.2008,80:2646-2653.
    [119]Van Berkel G J, Kertesz V. Using the electrochemistry of the electrospray ion source. Anal. Chem.2007,79:5510-5520.
    [120]de la Mora J F, Van Berkel G J, Enke C G, Cole R B, Martinez-Sanchez M, Fenn, J B. Electrochemical processes in electrospray ionization mass spectrometry. J. Mass Spectrom.2000,35:939-952.
    [121]Van Berkel G J, Giles G E, Bullock IV J S, Gray L J. Computational simulation of redox reactions within a metal electrospray emitter. Anal. Chem.1999,71: 5288-5296.
    [122]Van Berkel G J, Kertesz V. Redox buffering in an electrospray ion source using a copper capillary emitter. J. Mass Spectrom.2001,36:1125-1132.
    [123]Maire F, Lange C M. Formation of unexpected ions from a first-generation polyamidoamine dendrimer by use of methanol:an artefact due to electrospray emitter corrosion? Rapid Commun. Mass Spectrom.2010,24:995-1000.
    [124]Chiavarino B, Crestoni M E, Fornarini S, Lanucara F, Lemaire J, Maitre P. Meisenheimer complexes positively characterized as stable intermediates in the gas phase. Angew. Chem. Int. Ed.2007,46:1995-1998.
    [125]Wang L, Chai Y F, Tu P J, Sun C R, Pan Y J. Formation of [M+15]+ ions from aromatic aldehydes by use of methanol:in-source aldolization reaction in electrospray ionization mass spectrometry. J. Mass Spectrom.2011,46,1203-1210.
    [126]Na N, Xia Y, Zhu Z L, Zhang X R, Cooks R G. Birch reduction of benzene in a low-temperature plasma. Angew. Chem. Int. Ed.2009,48:2017-2019.
    [127]Benassi M, Wu C P, Nefliu M, Ifa D R, Volny M, Cooks R G. Redox transformations in desorption electrospray ionization. Int. J. Mass Spectrom.2009, 280:235-240.
    [128]Wu C P, Qian K N, Nefliu M, Cooks R G. Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J. Am. Soc. Mass Spectrom.2010,21:261-267.
    [129]Pasilis S P, Kertesz V, Van Berkel G J. Unexpected analyte oxidation during desorption electrospray ionization-mass spectrometry. Anal. Chem.2008,80: 1208-1214.
    [130]Kertesz V, Van Berkel G J. Surface-assisted reduction of aniline oligomers, N-phenyl-1,4-phenylenediimine and thionin in atmospheric pressure chemical ionization and atmospheric pressure photoionization. J. Am. Soc. Mass Spectrom. 2002,13:109-117。
    [131]Karancsi T, Slegel P. Reliable molecular mass determination of aromatic nitro compounds:elimination of gas-phase reduction occurring during atmospheric pressure chemical ionization. J. Mass Spectrom.1999:34975-977.
    [132]Van Berkel G J, Quirke J M E, Tigani R A, Dilley A S, Covey T R. Derivatization for electrospray ionization mass spectrometry.3. Electrochemically ionizable derivatives. Anal. Chem.1998,70:1544-1554.
    [133]Kertesz V, Van Berkel G J. Study and application of a controlled-potential electrochemistry-electrospray emitter for electrospray mass spectrometry. Anal. Chem.2005,77:4366-4373.
    [134]Van Berkel G J, Kertesz V. Electrochemically initiated tagging of thiols using an electrospray ionization based liquid microjunction surface sampling probe two-electrode cell. Rapid Commun. Mass Spectrom.2009,23:1380-1386.
    [135]Kertesz V, Van Berkel G J. Expanded use of a battery-powered two-electrode emitter cell for electrospray mass spectrometry. J. Am. Soc. Mass Spectrom.2006, 17:953-961.
    [136]Lloyd J R, Hess S. A Corona discharge initiated electrochemical electrospray ionization technique. J. Am. Soc. Mass Spectrom.2009,20:1988-1996.
    [137]Mautjana N A, Estes J, Eyler J R, Brajter-Toth A. Antioxidant pathways and one-electron oxidation of dopamine and cysteine in electrospray and on-line electrochemistry electrospray ionization mass spectrometry. Electroanalysis 2008, 20:1959-1967.
    [138]Kertesz V, Van Berkel G J. Monitoring ionic adducts to elucidate reaction mechanisms:reduction of tetracyanoquinodimethane and oxidation of triphenylamine investigated using on-line electrochemistry/electrospray mass spectrometry. J. Solid State Electrochem.2005,9:390-397.
    [139]Kertesz V, Deng H, Asano K G, Hettich R L, Van Berkel G J. N-Phenyl-1,4-phenylenediamine and benzidine oxidation products identified using on-line electrochemistry/electrospray Fourier transform mass spectrometry. Electroanalysis 2002,14:1027-1030.
    [140]Peintler-Krivan E, Van Berkel G J, Kertesz V. Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode. Rapid Commun. Mass Spectrom.2010,24:1327-1334.
    [141]Peintler-Krivan E, Van Berkel G J, Kertesz V. Poly(3,4-ethylenedioxypyrrole)-modified emitter electrode for substitution of homogeneous redox buffer agent hydroquinone in electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.2010,24:3368-3371.
    [142]Wan J P, Gan S F, Sun G L, Pan Y J. Novel regioselectivity:three-component cascade synthesis of unsymmetrical 1,4-and 1,2-dihydropyridines. J. Org. Chem. 2009,74:2862-2865.
    [143]Nunez-Vergara L J, Salazar R, Camargo C, Carbajo J, Conde B, Navarrete-Encina P A, Squella J A. Oxidation of C4-hydroxyphenyl 1,4-dihydropyridines in dimethylsulfoxide and its reactivity towards alkylperoxyl radicals in aqueous medium. Bioorg. Med. Chem.2007,15:4318-4326.
    [144]Stout D M, Meyers A I. Recent advances in the chemistry of dihydropyridines. Chem. Rev.1982,82:223-243.
    [145]Edraki N, Mehdipour A R, Khoshneviszadeh M, Miri R. Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov. Today 2009,14:1058-1066.
    [146]Wang X D, Li J L, Lu Y, Chen X, Huang M, Chowbay B, Zhou S F. Rapid and simultaneous determination of nifedipine and dehydronifedipine in human plasma by liquid chromatography-tandem mass spectrometry:Application to a clinical herb-drug interaction study. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci. 2007,852:534-544.
    [147]Qiu F, Chen X Y, Li X Y, Zhong D F. Determination of nimodipine in human plasma by a sensitive and selective liquid chromatography-tandem mass spectrometry method. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci.2004, 802:291-297.
    [148]Biemann K, Papayannopoulos I A. Amino-acid sequencing of proteins. Acc. Chem. Res.1994,27:370-378.
    [149]Harrison A G, Yalcin T. Proton mobility in protonated amino acids and peptides. Int. J. Mass Spectrom. Ion Processes 1997,165/166:339-347.
    [150]Buijs J, Hagman C, Hakansson K, Richter J H, Hakansson P, Oscarsson S. Inter-and intra-molecular migration of peptide amide hydrogens during electrospray ionization. J. Am. Soc. Mass Spectrom.2001,12:410-419.
    [151]Turecek F, Syrstad E A. Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. J. Am. Chem. Soc.2003, 125:3353-3369.
    [152]J(?)rgensen T J D, Gardsvoll H, Ploug M, Roepstorff P. Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc.2005,127:2785-2793.
    [153]Molesworth S, Leavitt C M, Groenewold G S, Oomens J, Steill J D, van Stipdonk M. Spectroscopic evidence for mobilization of amide position protons during CID of model peptide ions. J. Am. Soc. Mass Spectrom.2009,20:1841-1845.
    [154]Mueller D R, Eckersley M, Richter W J. Hydrogen transfer-reactions in the formation of Y+2 sequence ions from protonated peptides. Org. Mass Spectrom. 1988,23:217-222.
    [155]Dongre A R, Jones J L, Somogyi A, Wysocki V H. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency:Evidence for the mobile proton model. J. Am. Chem. Soc.1996,118: 8365-8374.
    [156]Wysocki V H, Tsaprailis G, Smith L L, Breci LA. Mobile and localized protons:A framework for understanding peptide dissociation. J. Mass Spectrom.2000,35: 1399-1406.
    [157]Morrison C A, Siddick M M, Camp P J, Wilson C C. Toward understanding mobile proton behavior from first principles calculation:The short hydrogen bond in crystalline urea-phosphoric acid. J. Am. Chem. Soc.2005,127:4042-4048.
    [158]Polfer N C, Oomens J, Suhai S, Paizs B. Infrared spectroscopy and theoretical studies on gas-phase protonated Leu-enkephalin and its fragments:Direct experimental evidence for the mobile proton. J. Am. Chem. Soc.2007,129: 5887-5897.
    [159]Bythell B J, Suhai S, Somogyi A, Paizs B. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. J. Am. Chem. Soc. 2009,131:14057-14065.
    [160]Boyd R, Somogyi A. The mobile proton hypothesis in fragmentation of protonated peptides:A perspective. J. Am. Soc. Mass Spectrom.2010,21:1275-1278.
    [161]Brown R S, Bennet A J, Slebocka-Tilk H. Recent perspectives concerning the mechanism of H3O+-and OH--promoted amide hydrolysis. Acc. Chem. Res.1992, 25:481-488.
    [162]Zahn D. Theoretical study of the mechanism of acid-catalyzed amide hydrolysis in aqueous solution. J. Phys. Chem. B 2003,107:12303-12306.
    [163]Tsang W Y, Ahmed N, Page M I. The aminolysis of N-aroyl β-lactams occurs by a concerted mechanism. Org. Biomol. Chem.2007,5:485-493.
    [164]Perrin C L. Proton exchange in amides:Surprises from simple systems. AcC. Chem. Res.1989,22:268-275.
    [165]Lin H Y, Ridge D P, Uggerud E, Vulpius T. Unimolecular chemistry of protonated formamide. Mass spectrometry and ab Initio quantum chemical calculations. J. Am. Chem. Soc.1994,116:2996-3004.
    [166]Daeseleire E, De Ruyck H, Van Renterghem R. Confirmatory assay for the simultaneous detection of penicillins and cephalosporins in milk using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.2000, 14:1404-1409.
    [167]Fagerquist C K, Lightfield A R, Lehotay S J. Confirmatory and quantitative analysis of P-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Chem. 2005,77:1473-1482.
    [168]Mun J, Smith M B. N-benzyl-5-hydroxy-3-pyrrolidin-2-one by hydrogen peroxide oxidation of N-benzyl-3-phenylseleno-2-pyrrolidinone. Synth. Commun.2007,37: 813-819.
    [169]Bohme D K. Proton transport in the catalyzed gas-phase isomerization of protonated molecules. Int. J. Mass Spectrom. Ion. Processes 1992,115:95-110.
    [170]Chalk A J, Radom L. Proton-transport catalysis:A systematic study of the rearrangement of the isoformyl cation to the formyl cation. J. Am. Chem. Soc. 1997,119:7573-7578.
    [171]Gauld J W, Radom L. Effects of neutral bases on the isomerization of conventional radical cations CH3X'+to their distonic isomers'CH2X+H (X= F, OH, NH2): Proton-transport catalysis and other mechanisms. J. Am. Chem. Soc.1997,119: 9831-9839.
    [172]Ruttink P J A, Burgers P C, Fell L M, Terlouw J K. Dissociation of ionized 1,2-ethanediol and 1,2-propanediol:Proton-transport catalysis with electron transfer. J. Phys. Chem. A 1998,102:2976-2980.
    [173]Trikoupis M A, Terlouw J K, Burgers P C. Enolization of gaseous acetone radical cations:Catalysis by a single base molecule. J. Am. Chem. Soc.1998,120: 12131-12132.
    [174]Kuck D. Mass spectrometry of alkylbenzenes and related compounds. Part II. Gas phase ion chemistry of protonated alkylbenzenes (alkylbenzenium Ions). Mass Spectrom. Rev.1990,9:583-630.
    [175]Kuck D. Half a century of scrambling in organic ions:Complete, incomplete, progressive and composite atom interchange. Int. J. Mass Spectrom.2002,213: 101-144.
    [176]Kuck D. In The Encyclopedia of Mass Spectrometry, vol.4, (Ed.:Nibbering N M M), Elsevier:Amsterdam,2005,229-242/270-286.
    [177]Tanida H. Solvolysis reactions of 7-norbornenyl and related systems. Substituent effects as a diagnostic probe for participation. Ace. Chem. Res.1968,1:239-245.
    [178]Krygowski T M, Stepien B T. Sigma-and pi-electron delocalization:Focus on substituent effects. Chem. Rev.2005,105:3482-3512.
    [179]Hansch C, Leo A, Taft R W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev.1991,91:165-195.
    [180]Olah G A, Prakash G K S. Carbocation Chemistry, Wiley & Sons:New York,2004.
    [181]Olah G A. Stable carbonium ions. VI. Nuclear magnetic resonance investigation of the diphenylcarbonium, diphenylmethylcarbonium, and phenyldimethylcarbonium ions. J. Am. Chem. Soc.1964,86:932-934.
    [182]Bollinger J M, Comisarow M B, Cupas C A, Olah G A. Stable carbonium ions. XLV. Benzyl cations. J. Am. Chem. Soc.1967,89:5687-5691.
    [183]Vigalok A, Shimon L J W, Milstein D. Methylene arenium cations via quinone methides and xylylenes stabilized by metal complexation. J. Am. Chem. Soc.1998, 120:477-483.
    [184]Poverenov E, Leitus G, Milstein D. Synthesis and reactivity of the methylene arenium form of a benzyl cation, stabilized by complexation. J. Am. Chem. Soc. 2006,128:16450-16451.
    [185]Lifshitz C. Tropylium ion formation from toluene:solution of an old problem in organic mass spectrometry. Acc. Chem. Res.1994,27:138-144.
    [186]Kuck D. in The Encyclopedia of Mass Spectrometry, vol.4, (Ed.:Nibbering N M M), Elsevier, Amsterdam,2005, pp.199-214.
    [187]Ignatyev I S, Sundius T. Competitive ring hydride shifts and tolyl-benzyl rearrangements in tolyl and silatolyl cations. Chem. Phys. Lett.2000,326: 101-108.
    [188]Fridgen T D, Troe J, Viggiano A A, Midey A J, Williams S, McMahon T B. Experimental and theoretical studies of the benzylium+/tropylium+ratios after charge transfer to ethylbenzene. J. Phys. Chem. A 2004,108:5600-5609.
    [189]Shin C H, Kim S J. Theoretical study for the molecular structures and spectroscopic properties of various C7H7+ isomers and transition states between them. J. Korean Chem. Soc.2005,49:247-254.
    [190]Ausloos P. Structure and isomerization of C7H7+ ions formed in the charge-transfer-induced fragmentation of ethylbenzene, toluene, and norbornadiene. J. Am. Chem. Soc.1982,104:5259-5265.
    [191]Zins E L, Pepe C, Schroder D. Methylene-transfer reactions of benzylium/tropylium ions with neutral toluene studied by means of ion-trap mass spectrometry. Faraday Discuss.2010,145:157-169.
    [192]Zins E L, Pepe C, Rondeau D, Rochut S, Galland N, Tabet J C. Theoretical and experimental study of tropylium formation from substituted benzylpyridinium species. J. Mass Spectrom.2009,44:12-17.
    [193]Zins E L, Rondeau D, Karoyan P, Fosse C, Rochut S, Pepe C. Investigations of the fragmentation pathways of benzylpyridinium ions undrer ESI/MS conditions. J. Mass Spectrom.2009,44:1668-1675.
    [194]Dewar M J S. Multibond reactions cannot normally be synchronous. J. Am. Chem. Soc.1984,106:209-219.
    [195]Hudson C E, McAdoo D J.1,2-Eliminations from (CH3)2NH+CH2CH3 and (CH3)2NH2+:Guided Dissociations. J. Am. Soc. Mass Spectrom.2008,19: 1491-1499.
    [196]Aschi M, Attina M, Cacace F. Lifetimes of gaseous ion-neutral complexes:the role of isotopic scrambling within ethyl ions as an internal clock. Chem. Eur. J.1998,4: 1535-1541.
    [197]Aschi M, Attina M, Cacace F. Evaluation of the lifetime of gaseous ion-neutral complexes.1. A chemical activation study. J. Am. Chem. Soc.1998,120: 3982-3987.
    [198]Aschi M, Attina M, D'Arcangelo G. The role of the lifetimes of ion-neutral complexes in gas-phase electrophilic aromatic substitution. Chem. Phys. Lett.1998, 283:307-312.
    [199]Karr P A, Zandler M E, Beck M, Jaeger J D, McCarty A L, Smith P M, D'Souza F. Predicting the site of electron transfer using DFT frontier orbitals:studies on porphyrin attached either to quinone or hydroquinone, and quinhydrone self-assembled supramolecular complexes. J. Mol. Struc.-Theochem 2006,765: 91-103.
    [200]Chakraborty A, Kar S, Guchhait N. Secondary amino group as charge donor for the excited state intramolecular charge transfer reaction in trans-3-(4-monomethylamino-phenyl)-acrylic acid:spectroscopic measurement and theoretical calculations. J. Photochem. Photobiol. A:Chem.2006,181:246-256.
    [201]Jia C Y, Liu S X, Tanner C, Leiggener C, Neels A, Sanguinet L, Levillain E, Leutwyler S, Hauser A, Decurtins S. An experimental and computational study on intramolecular charge transfer:a tetrathiafulvalene-fused dipyridophenazine molecule. Chem. Eur. J.2007,13:3804-3812.
    [202]Rosokha S V, Kochi J K. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Acc. Chem. Res.2008, 41:641-653.
    [203]Brouwer AM, Langkilde F W, Bajdor K, Wilbrandt R. Through-bond interaction in the radical cation of N.N-dimethylpiperazine. Resonance Raman spectroscopy and quantum chemical calculations. Chem. Phys. Lett.1994,225:386-390.
    [204]Brouwer A M. Ab initio study of the structures and vibrational spectra of some diamine radical cations. J. Phys.Chem. A1997,101:3626-3633.
    [205]Terrier F. Rate and equilibrium studies in Jackson-Meisenheimer complexes. Chem. Rev.1982,82:78-152.
    [206]Artamkina G A, Egorov M P, Beletskaya I P. Some aspects of anionic a complexes. Chem. Rev.1982,82:427-459
    [207]Buncel E, Dust J M, Terrier F. Rationalizing the regioselectivity in polynitroarene anionic a-adduct formation. Relevance to nucleophilic aromatic substitution. Chem. Rev.1995,95:2261-2280.
    [208]Briscese S M J, Riveros J M. Gas phase nucleophilic reactions of aromatic systems. J. Am. Chem. Soc.1975,97:230-231.
    [209]Ingemann S, Nibbering N M M, Sullivan S A, DePuy C H. Nucleophilic aromatic substitution in the gas phase:the importance of F- ion-molecule complexes formed in gas-phase reactions between nucleophiles and some alkyl pentafluorophenyl ethers. J. Am. Chem. Soc.1982,104:6520-6527.
    [210]Giroldo T, Xavier L A, Riveros J M. An unusually fast nucleophilic aromatic displacement reaction:the gas-phase reaction of fluoride ions with nitrobenzene. Angew. Chem. Int. Ed.2004,43:3588-3590.
    [211]Danikiewicz W, Bienkowski T, Kozlowska D, Zimnicka M. Aromatic nucleophilic substitution (SNAr) reactions of 1,2-and 1,4-halonitrobenzenes and 1,4-dinitrobenzene with carbanions in the gas phase. J. Am. Soc. Mass Spectrom. 2007,18:1351-1363
    [212]Fernandez I, Frenking G, Uggerud E. Rate-determining factors in nucleophilic aromatic substitution reactions. J. Org. Chem.2010,75:2971-2980.
    [213]Chen H, Chen H W, Cooks R G. Meisenheimer complexes bonded at carbon and at oxygen. J. Am. Soc. Mass Spectrom.2004,15:998-1004.
    [214]Danikiewicz W, Bienkowski T, Poddebniak D. Generation and reactions of anionic σ-adducts of 1,3-dinitrobenzene and 1,3,5-trinitrobenzene with carbanions in a gas phase, using an electrospray ion source as the chemical reactor. J. Am. Soc. Mass Spectrom.2004,15:927-933.
    [215]Chiavarino B, Crestoni M E, Fornarini S, Lanucara F, Lemaire J, Maitre P, Scuderi D. Molecular complexes of simple anions with electron-deficient arenes: spectroscopic evidence for two types of structural motifs for anion-arene interactions. Chem. Eur. J.2009,15:8185-8195.
    [216]Solca N, Dopfer O. Protonated benzene:IR spectrum and structure of C6H7+. Angew. Chem. Int. Ed.2002,41:3628-3631.
    [217]Solca N, Dopfer O. Protonation of gas-phase aromatic molecules:IR spectrum of the fluoronium isomer of protonated fluorobenzene. J. Am. Chem. Soc.2003,125: 1421-1430.
    [218]Jones W, Boissel P, Chiavarino B, Crestoni M E, Fornarini S, Lemaire J, Maitre P. Infrared fingerprint of protonated benzene in the gas phase. Angew. Chem. Int. Ed. 2003,42:2057-2059.
    [219]Mizuse K, Fujii A, Mikami N. Infrared and electronic spectroscopy of a model system for the nucleophilic substitution intermediate in the gas phase:the C-N valence bond formation in the benzene-ammonia cluster cation. J. Phys. Chem. A 2006,110:6387-6390.
    [220]Maeyama T, Mikami N. Nucleophilic substitution within the photoionized van der Waals complex:generation of C6H5NH3+from C6H5Cl-NH3. J. Am. Chem. Soc. 1988,110:7238-7239
    [221]Tholmann D, Grutzmacher H F. Reactions of dihalobenzene radical cations with ammonia in the gas phase. Reactivity pattern for nucleophilic aromatic substitution. J. Am. Chem. Soc.1991,113:3281-3287.
    [222]Hasegawa H, Mizuse K, Hachiya M, Matsuda Y, Mikami N, Fujii A. Observation of an isolated intermediate of the nucleophilic aromatic substition reaction by infrared spectroscopy. Angew. Chem. Int. Ed.2008,47:6008-6010.
    [223]Bouchoux G, Winter J D, Flammang R, Gerbaux P. Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide. J. Phys. Chem. A 2010,114:7408-7416.
    [224]Baytekin B, Baytekin H T, Hahn U, Reckien W, Kirchner B, Schalley C A. Dendrimer disassembly in the gas phase:a cascade fragmentation reaction of Frechet dendrons. Chem. Eur. J.2009,15:7139-7149.
    [225]Sun H Z, Chai Y F, Pan Y J. Dissociative benzyl cation transfer versus proton transfer:loss of benzene from protonated N-benzylaniline. J. Org. Chem.2012,77: 7098-7102.
    [226]Sun H Z, Chai Y F, Xu X, Pan Y J. Intramolecular benzyl cation transfer in the fragmentation of Cinchona alkaloid-based quaternary ammonium cations. Int. J. Mass Spectrom.2013,335:16-21.
    [227]Guo C, Yue L, Guo M Z, Jiang K Z, Pan Y J. Elimination of benzene from N-benzylindolines:benzyl cation/proton transfer or direct proton transfer? J. Am. Soc. Mass Spectrom.2013,24:381-387.
    [228]You Z S, Guo C, Pan Y J. An experimental and theoretical study on fragmentation of protonated N-(2-pyridinylmethyl)indole in electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.2012,26:2509-2516.
    [229]Ramesh M, Raju B, George M, Srinivas K, Rao V J, Bhanuprakash K, Srinivas R. The ESI CAD fragmentations of protonated 2,4,6-tris(benzylamino)-and tris(benzyloxy)-1,3,5-triazines involve benzyl-benzyl interactions:a DFT study. J. Mass Spectrom.2012,47:860-868.
    [230]Kuck D, Grutzmacher H F, Barth D, Heitkamp S, Letzel M C. The role of ion/neutral complexes in the fragmentation of N-benzyl-(alkylpyridinium) ions. Int. J. Mass Spectrom.2011,306:159-166.
    [231]Li F, Zhang X P, Zhang H R, Jiang K Z. Gas-phase fragmentation of the protonated benzyl ester of proline:intramolecular electrophilic substitution versus hydride transfer. J. Mass Spectrom.2012,48:423-429.
    [232]Matsui K, Oda Y, Nakata H, Yoshimura T. Simultaneous determination of donepezil (aricept) enantiomers in human plasma by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B 1999, 729:147-155.
    [233]Park E J, Lee H W, Ji H Y, Kim H Y, Lee M H, Park E S, Lee K C, Lee H S. Hydrophilic interaction chromatography-tandem mass spectrometry of donepezil in human plasma:application to a pharmacokinetic study of donepezil in volunteers. Arch. Pharm. Res.2008,31:1205-1211.
    [234]Ryu J H, Choi S J, Lee H W, Choi S K, Lee K T. Quantification of roxatidine in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry:application to a bioequivalence study. J. Chromatogr. B 2008,876: 143-147.
    [235]Rochat B, Fayet A, Widmer N, Lahrichi S L, Pesse B, Decosterd L A, Biollaz J. Imatinib metabolite profiling in parallel to imatinib quantification in plasma of treated patients using liquid chromatography-mass spectrometry. J. Mass Spectrom. 2008,43:736-752.
    [236]Chen X Y, Zhong D F, Liu D, Wang Y W, Han Y, Gu J K. Determination of ketotifen and its conjugated metabolite in human plasma by liquid chromatography/tandem mass spectrometry:application to a pharmacokinetic study. Rapid Commun. Mass Spectrom.2003,17:2459-2463.
    [237]Mendes G D, Arruda A, Chen L S, Magalhaes J C de A, Alkharfy K M, Nucci, G D. Quantification of cyproheptadine in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry in a bioequivalence study. Biomed. Chromatogr.2012,26:129-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700