过渡金属催化的C-H官能化及C-B键氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化的C-H官能化已经成为有机化学研究的一个热点,其中,钯和铑催化的C-H官能化已经有了大量的研究,并在合成复杂芳香性碳环和杂环方面显示了巨大的潜力。本论文主要研究了金属钌复合物催化的包含有C-H官能化步骤的串联反应,并研究了其合成应用。
     首先,我们发展了单一钌卡宾催化剂催化的烯烃交叉复分解/分子内氢芳香化串联环化反应,实现了吲哚C-3位sp2C-H官能化,高效构建了结构多样的C-4位取代的四氢咔唑衍生物(收率高达98%)。此外,考虑到多环吲哚骨架中N-1位上的取代基对其本身的生物活性以及药理活性的重要影响,我们将N-苯基保护的吲哚基烯烃应用到这一策略中,合成了一系列的N-苯基保护的四氢咔唑化合物(收率:81-88%)。
     其次,我们利用光氧化还原催化剂与过渡金属协同催化的策略,实现了三级胺氮原子的a-sp3C-H键的氧化-不对称炔基化串联反应,立体选择性地构建了一系列多取代的四氢异喹啉衍生物。这类化合物经过简单的合成转化就可以得到具有重要生物活性化合物的重要合成中间体。这一工作为可见光催化的不对称合成提供了一个新的思路。
     最后,我们利用可见光催化的空气参与的烯基硼酸的C-B键氧化断裂,成功实现了多取代醛、酮等羰基化合物的制备。该反应适用于芳基烯基硼酸、烷基烯基硼酸、直链的烯基硼酸以及环状的烯基硼酸,为羰基化合物的合成提供了一条新的途径。此外,有机染料也可以成功催化这一C-B键氧化反应,可以高收率的得到相应的羰基化合物(收率高达86%)。
Transition metals catalysis is one of the most important strategies in current organic chemistry. In particular, transition metal-catalyzed C-H functionalization provides an elegant method for the rapid construction of complex molecules. This dissertation is mainly focused on the studies of ruthenium catalyzed cascade reaction involving C-H functionalizations.
     1. We have developed a single ruthenium-catalyzed cross-metathesis/intramolecular-hydroarylation cascade, which offeres a practical and efficient synthesis of structurally diverse and complex tetrahydrocarbazoles in good to excellent yields (up to98%) via a sp2C-H functionalization at C-3position of indole. It was documented that the substituents on the N-1position of polycyclic indoles had great effects on their biological activities. As a result, N-phenyl indolyl alkene was applied to this strategy, which could provide various N-phenyl substituted tetrahydrocarbazoles in good yields (81-88%).
     2. An asymmetric functionalization of sp3C-H bonds adjacent to a nitrogen atom in tetrahydroisoquinolines, by the combination of the photocatalytic aerobic oxidation and the metal-catalyzed alkynylation reaction, have been described. Biologically important chiral tetrahydroisoquinoline alkaloids could be obtained by the use of this novel dual catalysis procedure.
     3. An efficient approach to carbonyl compounds has been disclosed through an aerobic oxidative cleavage of C-B bond using visible-light photoredox. This procedure has a wide broad substrates scopes and high functional group tolerance. More importantly, some organic dyes can be employed as photocatalysts in the oxidative cleavage reaction under irradiation by visible light, affording the corresponding carbonyl compounds in high yields (up to86%).
引文
[1]For reviews on catalytic C-H bond activation with Pd catalysts, see:(a) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q. N.; Lazareva, A. Regioselective Functionalization of Unreactive Carbon-Hydrogen Bonds. Synlett 2006,3382-3388. (b) Campeau, L. C.; Fagnou, K. Palladium-Catalyzed Direct Arylation of Simple Arenes in Synthesis of Biaryl Molecules. Chem. Commun.2006,1253-1264. (c) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Recent Advances in Direct Arylation via Palladium-Catalyzed Aromatic C-H Activation. Synlett 2008,949-957. (d) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(Ⅱ)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions:Versatility and Practicality. Angew. Chem. Int. Ed. 2009,48,5094-5115. (e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Pd-Catalyzed Oxidative Coupling with Organometallic Ragents via C-H Activation. Chem. Commun.2010,46,677-685. (f) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Emergence of Palladium(Ⅳ) Chemistry in Synthesis and Catalysis. Chem. Rev.2010,110, 824-889. (g) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem. Rev.2010,110,1147-1169. (h) Beck, E. M.; Gaunt, M. J. Pd-Catalyzed C-H Bond Functionalization on the Indole and Pyrrole Nucleus. Top. Curr. Chem. 2010,292,85-121.
    [2]For reviews on catalytic C-H bond activation with Rh catalysts, see:(a) Fagnou, K.; Lautens, M. Rhodium-Catalyzed Carbon-Carbon Bond Forming Reactions of Organometallic Compounds. Chem. Rev.2003,103,169-196. (b) Davies, H. M. L.; Beckwith, R. E. J. Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid-Induced C-H Insertion. Chem. Rev.2003,103,2861-2904. (c) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation. Acc. Chem. Res.2008,41,1013-1025. (d) Bouffard, J.; Itami, K. Rhodium-Catalyzed C-H Bond Arylation of Arenes. Top. Curr. Chem.2010,292,231-280. (e) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation. Chem. Rev.2010,110,624-655. (f) Song, G.-Y.; Wang, F.; Li, X.-W. C-C, C-O and C-N Bond Formation via Rhodium(ⅲ)-Catalyzed Oxidative C-H Activation. Chem. Soc. Rev.2012,41,3651-3678.
    [3]For general reviews on catalytic C-H bond functionalization, see:(a) Sen, A. Catalytic Functionalization of Carbon-Hydrogen and Carbon-Carbon Bonds in Protic Media. Acc. Chem. Res.1998,31,550-557. (b) Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic Functionalization of Arenes and Alkanes via C-H Bond Activation. Acc. Chem. Res.2001,34,633-639. (c) Labinger, J. A.; Bercaw, J. E. Understanding and exploiting C-H bond activation. Nature 2002,417, 507-514. (d) Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates:Reactions and Mechanistic Aspects. Chem. Rev.2002,102,1731-1770. (e) Dick, A. R.; Sanford, M. S. Transition Metal Catalyzed Oxidative Functionalization of Carbon-Hydrogen Bonds. Tetrahedron 2006,62, 2439-2463. (f) Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. Science 2006,312,67-72. (g) Seregin, I. V.; Gevorgyan, V. Direct Transition Metal-Catalyzed Functionalization of Heteroaromatic Compounds. Chem. Soc. Rev.2007,36, 1173-1193. (h) Alberico, D.; Scott, M. E.; Lautens, M. Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev.2007,107,174-238. (i) Bergman, R. G. C-H Activation. Nature 2007,446,391-393. (j) Kulkarni, A. A.; Daugulis, O. Direct Conversion of Carbon-Hydrogen into Carbon-Carbon Bonds by First-Row Transition-Metal Catalysis. Synthesis 2009,4087-4109. (k) McGlacken, G. P.; Bateman, L. M. Recent Advances in Aryl-Aryl Bond Formation by Direct Arylation. Chem. Soc. Rev.2009,38,2447-2464. (Ⅰ) Gunay, A.; Theopold, K. H. C-H Bond Activations by Metal Oxo Compounds. Chem. Rev.2010,110, 1060-1081. (m) Messaoudi, S.; Brion, J. D.; Alami, M. Transition-Metal-Catalyzed Direct C-H Alkenylation, Alkynylation, Benzylation, and Alkylation of (Hetero)arenes. Eur. J. Org. Chem. 2010,6495-6516. (n) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C-H Activation for the Construction of C-B Bonds. Chem. Rev.2010,110,890-931. (o)Nakao, Y. Transition-Metal-Catalyzed C-H Functionalization for the Synthesis of Substituted Pyridines. Synthesis 2011,3209-3219. (p) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Direct C-H Transformation via Iron Catalysis. Chem. Rev.2011,111,1293-1314. (q) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidative C-H Functionalizations:Trends and Mechanistic Insights. Angew. Chem. Int. Ed 2011,50,11062-11087.
    [4]For C-H bond functionalization with Ru(0) catalyst, see:(a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Catalytic C-H/Olefin Coupling. Pure Appl. Chem.1994,66,1527-1534. (b) Kakiuchi, F.; Tanaka, Y; Sato, T.; Chatani, N.; Murai, S. Catalytic Addition of Olefinic C-H Bonds to Olefins. Chem. Lett.1995,679-680. (c) Kakiuchi, F.; Uetsuhara, T.; Tanaka, Y.; Chatani, N.; Murai, S. Ruthenium-Catalyzed Addition of Olefinic C-H Bonds in Conjugate Enones to Acetylenes to Give Conjugate Dienones. J. Mol. Catal. A:Chem. 2002,182,511-514. (d) Kakiuchi, F.; Murai, S. Catalytic C-H/Olefin Coupling. Acc. Chem. Res. 2002,35,826-834. (e) Kakiuchi, F.; Chatani, N. Catalytic Methods for C-H Bond Functionalization:Application in Organic Synthesis. Adv. Synth. Catal.2003,345,1077-1101. (0 Kakiuchi, F.; Chatani, N. In Ruthenium Catalysts and Fine Chemistry; Bruneau, C.; Dixneuf, P., Eds.; Springer:Heidelberg, Germany,2004; Vol.11, p45. (g) Kakiuchi, F.; Chatani, N. In Ruthenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley:Weinheim, Germany,2005, p219. (h) Kakiuchi, F.; Kochi, T. Transition-Metal-Catalyzed Carbon-Carbon Bond Formation via Carbon-Hydrogen Bond Cleavage. Synthesis 2008,3013-3039.
    [5]For reviews on C-H bond activation with Ru(II) catalysts, see:(a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C-H Bond Cleavage. Angew. Chem. Int. Ed.2009,48,9792-9826. (b) Ackermann, L.; Vicente, R. Ruthenium-Catalyzed Direct Arylations through C-H Bond Cleavages. Top. Curr. Chem.2010, 292,211-229. (c) Ackermann, L. Metal-Catalyzed Direct Alkylations of (Hetero)Arenes via C-H Bond Cleavages with Unactivated Alkyl Halides. Chem. Commun.2010,46,4866-4877. (d) Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C-H Bond Functionalizations: Mechanism and Scope. Chem. Rev.2011,111,1315-1345.
    [6]For reviews on metal C-H bond activation, see:(a) Crabtree, R. H. The Organometallic Chemistry of Alkanes. Chem. Rev.1985,85,245-269. (b)Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Acc. Chem. Res.1995,28,154-162. (c) Shilov, A. E.; Shul'pin, G. B. Activation of C-H Bonds by Metal Complexes. Chem. Rev.1997, 97,2879-2932. (d) Dyker, G. Transition Metal Catalyzed Coupling Reactions under C-H Activation. Angew. Chem. Int. Ed.1999,38,1699-1712. (e) Crabtree, R. H. J. Alkane C-H Activation and Functionalization with Homogeneous Transition Metal Catalysts:a Century of Progress-a New Millennium in Prospect. Chem. Soc., Dalton Trans.2001,2437-2450. (f) Yu, J.-Q.; Giri, R.; Chen, X.σ-Chelation-Directed C-H Functionalizations Using Pd(II) and Cu(II) Catalysts:Regioselectivity, Stereoselectivity and Catalytic Turnover. Org. Biomol. Chem.2006,4, 4041-4047. (g) Kalyani, D.; Sanford, M. In Top. Organomet. Chem.:Directed Metallation; Chatani, N., Ed.; Springer:Heidelberg/New York,2007; Vol.24, p85. (h) Hartwig, J. F. Carbon-Heteroatom Bond Formation Catalysed by Organometallic Complexes. Nature 2008,455, 314-322.
    [7]C-H bond activation and cyclometalation:(a) Valeria, V. D.; Zalevskaya, O. A.; Potapov, V. M. General Principles and Characteristics of Cyclopalladation Reactions. Russ. Chem. Rev.1988,57, 250-269. (b) Ryabov, A. D. Mechanisms of Intramolecular Activation of Carbon-Hydrogen Bonds in Transition-Metal Complexes. Chem. Rev.1990,90,403-424. (c) Fernandez, S.; Pfeffer, M.; Ritleng, V.; Sirlin, C. An Effective Route to Cycloruthenated N-Ligands under Mild Conditions. Organometallics 1999,18,2390-2394. (d) Davies, D. L.; Al-Duaij, O.; Fawcett, J.; Giardiello, M.; Hilton, S. T.; Russell, D. R. Room-temperature Cyclometallation of Amines, Imines and Oxazolines with [MCl2Cp*]2 (M= Rh, Ir) and [RuCl2(p-cymene)]2. Dalton Trans. 2003,4132-4138. (e) Dupont, J.; Consorti, C. S.; Spencer, J. The Potential of Palladacycles: More Than Just Precatalysts. Chem. Rev.2005,105,2527-2572. (f) Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K. Mechanistic Study of Acetate-Assisted C-H Activation of 2-Substituted Pyridines with [MCl2Cp*]2(M= Rh, Ir) and [RuCl2(p-cymene)]2. Organometallics 2009,28,433-440. (g) Djukic, J. P.; Sortais, J. B.; Barloy, L.; Pfeffer, M. Cycloruthenated Compounds-Synthesis and Applications. Eur. J. Inorg. Chem.2009,817-853.
    [8]For reviews on sp3C-H bond activation:(a) Komiya, S.; Hirano, M. Bond Activation by Low Valent Ruthenium Complexes. Dalton Trans.2003,1439-1453. (b) Campos, K. R. Direct sp3 C-H Bond Activation Adjacent to Nitrogen in Heterocycles. Chem. Soc. Rev.2007,36, 1069-1084. (c) Yoo, W. J.; Li, C.-J. C-H Activation 2010,292, p281. (d) Kefalidis, C. E.; Baudoin, O.; Clot, E. DFT Study of the Mechanism of Benzocyclobutene Formation by Palladium-Catalysed C(sp3)-H Activation:Role of the Nature of the Base and the Phosphine. Dalton Trans.2010,39,10528-10535. (e) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of Organic Molecules by Transition-Metal-Catalyzed C(sp3)-H Activation. Chem. Eur. J.2010,16,2654-2672. (f) Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chem. Rev.2010,110,681-703. (g) Bellina, F.; Rossi, R. Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chem. Rev.2010,110,1082-1146. (h) Li, H.; Li, B.-J.; Shi, Z.-J. Challenge and Progress:Palladium-Catalyzed sp3 C-H Activation. Catal. Sci. Technol.2011,1,191-206. (i) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Direct Sp3 a-C-H Activation and Functionalization of Alcohol and Ather. Chem. Soc. Rev.2011,40,1937-1949. (j) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev.2011,111,1761-1779. (k) Baudoin, O. Transition Metal-Catalyzed Arylation of Unactivated C(sp3)-H Bonds. Chem. Soc. Rev.2011,40, 4902-4911.
    [9](a) Hirano, M.; Kurata, N.; Marumo, T.; Komiya, S. Successive O-C/O-H and sp3 C-H Bond Activation of ortho Substituents in Allyl Phenyl Ethers and Phenols by a Ruthenium(O) Complex. Organometallics 1998,17,501-503. (b) Gottker-Schnetmann, I.; White, P.; Brookhart, M. Iridium Bis(phosphinite) p-XPCP Pincer Complexes:Highly Active Catalysts for the Transfer Dehydrogenation of Alkanes. J. Am. Chem. Soc.2004,126,1804-1811. (c) Hirano, M.; Sakaguchi, Y; Yajima, T.; Kurata, N.; Komine, N.; Komiya, S. Stoichiometric and Catalytic sp3 C-H/D2 Exchange Reactions of ortho-Substituted Benzenethiol and Phenols by a Ruthenium(II) Complex. Effect of a Chalcogen Anchor on the Bond Cleavage Reaction. Organometallics 2005, 24,4799-4809. (d) Bolig, A. D.; Brookhart, M. Activation of sp3 C-H Bonds with Cobalt(I): Catalytic Synthesis of Enamines. J. Am. Chem. Soc.2007,129,14544-14545. (e) Hirano, M.; Izhab, I. B.; Kurata, N.; Koizumi, K.; Komine, N.; Komiya, S. Reaction of an Oxaruthenacycle with DMAD. Stoichiometric Transformations of 2,6-Xylenol to Allylic Phenols and Benzopyrans via sp3 C-H bond Cleavage Reaction. Dalton Trans.2009,3270-3279. (f) Choi, J.; Choliy, Y.; Zhang, X. W.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Cleavage of sp3 C-O Bonds via Oxidative Addition of C-H Bonds. J. Am. Chem. Soc.2009,131,15627-15629. (g) Hirano, M.; Togashi, S.; Ito, M.; Sakaguchi, Y; Komine, N.; Komiya, S. Carbon-Hydrogen Bond Cleavage Reaction in 5-Coordinate Bis(2,6-dimethylbenzenethiolato)ruthenium(II) Complexes. Organometallics 2010,29,3146-3159.
    [10]Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y; Kamatani, A.; Sonoda, M.; Chatani, N. Efficient Catalytic Addition of Aromatic Carbon-Hydrogen Bonds to Olefins. Nature 1993,366,529-531.
    [11](a) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Ruthenium Complex-Catalyzed Direct Ortho Arylation and Alkenylation of 2-Arylpyridines with Organic Halides. Org. Lett.2001,3,2579-2581. (b) Oi, S.; Ogino, Y; Fukita, S.; Inoue, Y. Ruthenium Complex Catalyzed Direct Ortho Arylation and Alkenylation of Aromatic Imines with Organic Halides. Org. Lett.2002,4,1783-1785.
    [12](a) Ackermann, L. Phosphine Oxides as Preligands in Ruthenium-Catalyzed Arylations via C-H Bond Functionalization Using Aryl Chlorides. Org. Lett.2005,7,3123-3125. (b) Ackermann, L.; Althammer, A.; Bom, R. Catalytic Arylation Reactions by C-H Bond Activation with Aryl Tosylates. Angew. Chem. Int. Ed.2006,45,2619-2622.
    [13]Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras F.; Bruneau, C.; Dixneuf, P. H. Direct Arylation of Arene C-H Bonds by Cooperative Action of NHCarbene-Ruthenium(Ⅱ) Catalyst and Carbonate via Proton Abstraction Mechanism. J. Am. Chem. Soc.2008,130, 1156-1157.
    [14](a) Lane, B. S.; Brown, M. A.; Sames, D. Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles:A Mechanistic Rationale for Regioselectivity. J. Am. Chem. Soc.2005,127,8050-8057. (b) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. Proton Abstraction Mechanism for the Palladium-Catalyzed Intramolecular Arylation. J. Am. Chem. Soc.2006,128, 1066-1067. (c) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic Intermolecular Direct Arylation of Perfluorobenzenes. J. Am. Chem. Soc.2006,128,8754-8756. (d) Lafrance, M.; Fagnou, K. Palladium-Catalyzed Benzene Arylation:Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalyst Design. J. Am. Chem. Soc.2006,128, 16496-16497. (e) Garcia-Cuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. Proton-Abstraction Mechanism in the Palladium-Catalyzed Intramolecular Arylation: Substituent Effects. J. Am. Chem. Soc.2007,129,6880-6886. (f) Racowski, J. M.; Dick, A. R.; Sanford, M. S. Detailed Study of C-O and C-C Bond-Forming Reductive Elimination from Stable C2N2O2-Ligated Palladium(IV) Complexes. J. Am. Chem. Soc.2009,131,10974-10983. (g) Ke, Z. F.; Cundari, T. R. Palladium-Catalyzed C-H Activation/C-N Bond Formation Reactions:DFT Study of Reaction Mechanisms and Reactive Intermediates Organometallics 2010,29,821-834. (h) Lapointe, D.; Fagnou, K. Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway. Chem. Lett.2010,39,1118-1126.
    [15](a) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. Computational Study of the Mechanism of Cyclometalation by Palladium Acetate. J. Am. Chem. Soc.2005,127,13754-13755. (b) Lersch, M.; Tilset, M. Mechanistic Aspects of C-H Activation by Pt Complexes. Chem. Rev.2005,105, 2471-2526. (c) Davies, D. L.; Donald, S. M. A.; Al-Duaij, O.; Macgregor, S. A.; Polleth, M. Electrophilic C-H Activation at{Cp*Ir}:Ancillary-Ligand Control of the Mechanism of C-H Activation. J. Am. Chem. Soc.2006,128,4210-4211. (d) Haller, L. J. L.; Page, M. J.; Macgregor, S. A.; Mahon, M. F.; Whittlesey, M. K. Activation of an Alkyl C-H Bond Geminal to an Agostic Interaction:An Unusual Mode of Base-Induced C-H Activation. J. Am. Chem. Soc.2009,131, 4604-4605. (e) Li, L.; Brennessel, W. W.; Jones, W. D. C-H Activation of Phenyl Imines and 2-Phenylpyridines with [Cp*MCl2]2 (M= Ir, Rh):Regioselectivity, Kinetics, and Mechanism. Organometallics 2009,28,3492-3500. (f) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A.1. Mechanisms of C-H Bond Activation:Rrich synergy Between Computation and Experiment. Dalton Trans.2009,5820-5831. (g) Balcells, D.; Clot, E.; Eisenstein, O. C-H Bond Activation in Transition Metal Species from a Computational Perspective. Chem. Rev.2010,110,749-823. (h) Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Computational Study of Ethene Hydroarylation at [Ir(K2-OAc)(PMe3)Cp]+. Dalton Trans.2010,39,10520-10527.
    [16](a) Poirier, V.; Pozgan, F.; Fischmeister, C.; Dixneuf, P. H.23rd ICOMC Rennes 2008, p200. (b) Pozgan, F.; Dixneuf, P. H. Ruthenium(II) Acetate Catalyst for Direct Functionalisation of sp2C-H Bonds with Aryl Chlorides and Access to Tris-Heterocyclic Molecules. Adv. Synth. Catal.2009, 351,1737-1743.
    [17]Ackermann, L.; Vicente, R.; Althammer, A. Assisted Ruthenium-Catalyzed C-H Bond Activation:Carboxylic Acids as Cocatalysts for Generally Applicable Direct Arylations in Apolar Solvents. Org. Lett.2008,10,2299-2302.
    [18]Ferrer-Flegeau, E.; Bruneau, C.; Dixneuf, P. H.; Jutand, A. Autocatalysis for C-H Bond Activation by Ruthenium(Ⅱ) Complexes in Catalytic Arylation of Functional Arenes. J. Am. Chem. Soc.2011,133,10161-10170.
    [19](a) In Ruthenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley:Weinheim, Germany,2005. (b) In Ruthenium Catalysts and Fine Chemistry; Bruneau, C., Dixneuf, P., Eds.; Springer: Heidelberg, Germany,2004; Vol.11, p45.
    [20]Jaouhari, R.; Guenot, P.; Dixneuf, P. H. Carbon-Carbon Coupling and Alkylation of Furan and Thiophene, involving C-H Bond Activation, with Ruthenium Catalysts in Alcohols. J. Chem. Soc., Chem. Commun.1986,1255-1257.
    [21]Oi, S.; Fukita, S.; Inoue, Y. Rhodium-Catalysed Direct Ortho Arylation of 2-Arylpyridines with Arylstannanes via C-H Activation. Chem. Commun.1998,2439-2440.
    [22](a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Palladium-Catalyzed Regioselective Mono-and Diarylation Reactions of 2-Phenylphenols and Naphthols with Aryl Halides. Angew. Chem. Int. Ed. Engl.1997,36,1740-1742. (b) Satoh, T.; Kametani, Y.; Terao, Y.; Miura, M.; Nomura, M. Palladium-Catalyzed Multiple Arylation of Phenyl Ketones with Aryl Bromides. Tetrahedron Lett.1999,40,5345-5348.
    [23]Oi, S.; Sakai, K.; Inoue, Y. Ruthenium-Catalyzed Arylation of 2-Alkenylpyridines with Aryl Bromides:Alternative E,Z-Selectivity to Mizoroki-Heck Reaction. Org. Lett.2005,7, 4009-4011.
    [24]Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. Ortho-Selective Direct Cross-Coupling Reaction of 2-Aryloxazolines and 2-Arylimidazolines with Aryl and Alkenyl Halides Catalyzed by Ruthenium Complexes. J. Org. Chem.2005,70,3113-3119.
    [25]Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y. Nitrogen-Directed ortho-Arylation and-Heteroarylation of Aromatic Rings Catalyzed by Ruthenium Complexes. Tetrahedron 2008,64, 6051-6059.
    [26]Oi, S.; Sasamoto, H.; Funayama, R.; Inoue, Y. Ortho-Selective Arylation of Arylazoles with Aryl Bromides Catalyzed by Ruthenium Complexes. Chem. Lett.2008,37,994-995.
    [27]Ackermann, L.; Mulzer, M. Dehydrative Direct Arylations of Arenes with Phenols via Ruthenium-Catalyzed C-H and C-OH Bond Functionalizations. Org. Lett.2008,10,5043-5045.
    [28](a) Demerseman, B.; Mbaye, M. D.; Semeril, D.; Toupet, L.; Bruneau, C.; Dixneuf, P. H. Direct Preparation of [Ru(η2-O2CO)(η6-areneXL)] Carbonate Complexes (L=Phosphane, Carbene) and Their Use as Precursors of [RuH2(p-cymene)(PCy3)] and [Ru(η6-arene)(L)(MeCN][BF4]2: X-ray Crystal Structure Determination of [Ru(η2-O2COXp-cymeneXPCy3)]·1/2CH2C12 and [Ru(η2-O2CO)(η6-C6Me)(PMe3)]·H2O. Eur. J. Inorg. Chem.2006,1174-1181. (b) Yasar, S.; Dogan, O.; Ozdemir, I.; Cetinkaya, B. Ruthenium N-Heterocyclic-Carbene Catalyzed Diarylation of Arene C-H bond. Appl. Organomet. Chem.2008,22,314-318. (c) Prades, A.; Poyatos, M.; Peris, E. (η6-Arene)ruthenium(N-Heterocyclic Carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyridines:Catalytic Studies and Mechanistic Insights. Adv. Synth. Catal.2010,352,1155-1162.
    [29]Ackermann, L.; Novak, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. Ruthenium-Catalyzed C-H Bond Functionalizations of 1,2,3-Triazol-4-yl-Substituted Arenes:Dehydrogenative Couplings Versus Direct Arylations. Synthesis 2010,2245-2253.
    [30]Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Mechanistic Insight into Direct Arylations with Ruthenium(II) Carboxylate Catalysts. Org. Lett.2010,12,5032-5035.
    [31]Ackermann, L.; Lygin, A. V. Ruthenium-Catalyzed Direct C-H Bond Arylations of Heteroarenes.Org. Lett.2011,13,3332-3335.
    [32]Ackermann, L.; Diers, E.; Manvar, A. Ruthenium-Catalyzed C-H Bond Arylations of Arenes Bearing Removable Directing Groups via Six-Membered Ruthenacycles. Org. Lett.2012,14, 1154-1157.
    [33]Li, W.-B.; Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. C-H Bond Functionalisation with [RuH(codyl)2]BF4 Catalyst Precursor. Green Chem.2011,13,2315-2319.
    [34]Stefane, B.; Fabris, J.; Pozgan, F. DNA Cleavage by Structurally Characterized Dinuclear Copper(II) Complexes Based on Triazine. Eur. J. Org. Chem.2011,3474-3479.
    [35](a) Arockiam, P.; Poirier, V.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Diethyl Carbonate as a Solvent for Ruthenium Catalysed C-H Bond Functionalisation. Green Chem.2009,11, 1871-1875. (b) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. C-H Bond Functionalization in Water Catalyzed by Carboxylato Ruthenium(II) Systems. Angew. Chem. Int. Ed 2010,49,6629-6632. (c) Li, B.; Bheeter, C. B.; Darcel, C.; Dixneuf, P. H. Sequential Catalysis for the Production of Sterically Hindered Amines:Ru(II)-Catalyzed C-H Bond Activation and Hydrosilylation of Imines. ACS Catal.2011,1,1221-1224. (d) Li, B.; Devaraj, K.; Darcel, C.; Dixneuf, P. H. Catalytic C-H Bond Arylation of Aryl Imines and Oxazolines in Water with Ruthenium(Ⅱ)-Acetate Catalyst. Tetrahedron 2012,68,5179-5184.
    [36]Yu, B.-R.; Yan, X.-Y; Wang, S.; Tang, N.; Xi, C.-J. A Highly Efficient Ruthenium(II) Catalyst with (I,2-Diarylvinyl)phosphine Ligands for Direct Ortho Arylation of 2-Arylpyridine with Aryl Chlorides. Organometallics 2010,29,3222-3226.
    [37]Cao, H.; Zhan, H. Y; Shen, D.-S.; Zhao, H.; Liu, Y. Ruthenium-Catalyzed Coupling Reaction of 2,3,5-Trisubstituted Furans with Aryl Halides through C-H Bond Cleavages. J. Organomet. Chem.2011,696,3086-3090.
    [38](a) Foley, N. A.; Lee, J. P.; Ke, Z.; Gunnoe, T. B.; Cundari, T. R. Ru(II) Catalysts Supported by Hydridotris(pyrazolyl)borate for the Hydroarylation of Olefins:Reaction Scope, Mechanistic Studies, and Guides for the Development of Improved Catalysts. Acc. Chem. Res.2009,42, 585-597. (b) Andreatta, J. R.; McKeown, B. A.; Gunnoe, T. B. Transition Metal Catalyzed Hydroarylation of Olefins Using Unactivated Substrates:Recent Developments and Challenges. J. Organomet. Chem.2011,696,305-315.
    [39](a) Lail, M.; Arrowood, B. N.; Gunnoe, T. B. Addition of Arenes to Ethylene and Propene Catalyzed by Ruthenium. J. Am. Chem. Soc.2003,125,7506-7507. (b) Lail, M.; Bell, C. M.; Conner, D.; Cundari, T. R.; Gunnoe, T. B.; Petersen, J. L. Experimental and Computational Studies of Ruthenium(II)-Catalyzed Addition of Arene C-H Bonds to Olefins. Organometallics 2004,23,5007-5020. (c) Foley, N. A.; Lail, M.; Lee, J. P.; Gunnoe, T. B.; Cundari, T. R.; Petersen, J. L. Comparative Reactivity of TpRu(L)(NCMe)Ph (L= CO or PMe3):Impact of Ancillary Ligand L on Activation of Carbon-Hydrogen Bonds Including Catalytic Hydroarylation and Hydrovinylation/Oligomerization of Ethylene. J. Am. Chem. Soc.2007,129, 6765-6781. (d) Foley, N. A.; Ke, Z.; Gunnoe, T. B.; Cundari, T. R.; Petersen, J. L. Aromatic C-H Activation and Catalytic Hydrophenylation of Ethylene by TpRu{P(OCH2)3CEt}(NCMe)Ph. Organometallics 2008,27,3007-3017.
    [40]Pittard, K. A.; Lee, J. P.; Cundari, T. R.; Gunnoe, T. B.; Petersen, J. L. Reactions of TpRu(CO)(NCMe)(Me) (Tp= Hydridotris(pyrazolyl)borate) with Heteroaromatic Substrates: Stoichiometric and Catalytic C-H Activation. Organometallics 2004,23,5514-5523.
    [41](a) Kozhushkov, S. I.; Yufit, D. S.; Ackermann, L. Ruthenium-Catalyzed Hydroarylations of Methylenecyclopropanes:Mild C-H Bond Functionalizations with Conservation of Cyclo-propane Rings. Org. Lett.2008,10,3409-3412. (b) Ackermann, L.; Kozhushkov, S. I.; Yufit, D. S. Ruthenium-Catalyzed Hydroarylation of Methylenecyclopropanes through C-H Bond Cleavage:Scope and Mechanism. Chem. Eur. J.2012,18,12068-12077.
    [42]Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Ruthenium-Catalyzed Regioselective Direct Alkylation of Arenes with Unactivated Alkyl Halides through C-H Bond Cleavage. Angew. Chem. Int. Ed.2009,48,6045-6048.
    [43]Ackermann, L.; Novak, P. Regioselective Ruthenium-Catalyzed Direct Benzylations of Arenes through C-H Bond Cleavages. Org. Lett.2009,11,4966-4969.
    [44]Ackermann, L.; Hofmann, N.; Vicente, R. Carboxylate-Assisted Ruthenium-Catalyzed Direct Alkylations of Ketimines. Org. Lett.2011,13,1875-1877.
    [45]Lee, D.-H.; Kwon, K..-H.; Yi, C. S. Selective Catalytic C-H Alkylation of Alkenes with Alcohols. Science 2011,333,1613-1616.
    [46]Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Dehydrative C-H Alkylation and Alkenylation of Phenols with Alcohols:Expedient Synthesis for Substituted Phenols and Benzofurans. J. Am. Chem. Soc. 2012,134,7325-7328.
    [47]Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. Ruthenium-Catalyzed Amino-and Alkoxycarbonylations with Carbamoyl Chlorides and Alkyl Chloroformates via Aromatic C-H Bond Cleavage. J. Am. Chem. Soc.2009,131,2792-2793.
    [48]Kochi, T.; Tazawa, A.; Honda, K.; Kakiuchi, F. Ruthenium-Catalyzed Acylation of Aryl Pyridines with Acyl Chlorides via ortho-Selective C-H Bond Cleavage. Chem. Lett.2011,40, 1018-1020.
    [49]Saidi, O.; Marafie, J.; Ledger, A. E. W.; Liu, P. M.; Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. Ruthenium-Catalyzed Meta Sulfonation of 2-Phenylpyridines. J. Am. Chem. Soc.2011,133,19298-19301.
    [50]Na, Y.; Park, S.; Han, S. B.; Han, H.; Ko, S.; Chang, S. Ruthenium-Catalyzed Heck-Type Olefination and Suzuki Coupling Reactions:Studies on the Nature of Catalytic Species. J. Am. Chem. Soc.2004,126,250-258.
    [51](a) Farrington, E. J.; Brown, J. M.; Barnard, C. F. J.; Rowsell, E. Ruthenium-Catalyzed Oxidative Heck Reactions. Angew. Chem. Int. Ed 2002,41,169-171. (b) Farrington, E. J.; Barnard, C. F. J.; Rowsell, E.; Brown, J. M. Ruthenium Complex-Catalysed Heck Reactions of Areneboronic Acids; Mechanism, Synthesis and Halide Tolerance. Adv. Synth. Catal.2005,347, 185-195.
    [52](a) Fujiwara, Y.; Moritani, I.; Matsuda, M. Aromatic Substitution of Olefin-Ⅲ:Reaction of Styrene-Palladium(II) Chloride Complex. Tetrahedron 1968,24,4819-4824. (b) Zhang, H.-M.; Ferreira, E. M.; Stoltz, B. M. Direct Oxidative Heck Cyclizations:Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydro-benzofurans. Angew. Chem. Int. Ed. 2004,43,6144-6148. (c) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C-C, C-O, C-N Bond Formation on sp2 Carbon by Pd(Ⅱ)-Catalyzed Reactions Involving Oxidant Agents. Chem. Rev.2007,107,5318-5365.
    [53](a) Yi, C. S.; Lee, D. W. Regioselective Intermolecular Coupling Reaction of Arylketones and Alkenes Involving C-H Bond Activation Catalyzed by an in situ Formed Cationic Ruthenium Hydride Complex. Organometallics 2009,28,4266-4268. (b) Yi, C. S.; Lee, D. W. Intermolecular Dehydrative Coupling Reaction of Aryl Ketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex:A Novel Ketone Olefination Method via Vinyl C-H Bond Activation. Organometallics 2010,29,1883-1885.
    [54]Kwon, K. H.; Lee, D. W.; Yi, C. S. Chelate-Assisted Oxidative Coupling Reaction of Arylamides and Unactivated Alkenes:Mechanistic Evidence for Vinyl C-H Bond Activation Promoted by an Electrophilic Ruthenium Hydride Catalyst. Organometallics 2010,29, 5748-5750.
    [55]Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Ruthenium-Catalyzed Oxidative Vinylation of Heteroarene Carboxylic Acids with Alkenes via Regioselective C-H Bond Cleavage. Org. Lett.2011,13,706-708.
    [56]Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of α,ω-Diarylbutadienes and-Hexatrienes via Decarboxylative Coupling of Cinnamic Acids with Vinyl Bromides under Palladium Catalysis. Org. Lett.2010,12,592-595.
    [57]Ackermann, L.; Pospech, J. Ruthenium-Catalyzed Oxidative C-H Bond Alkenylations in Water: Expedient Synthesis of Annulated Lactones. Org. Lett.2011,13,4153-4155.
    [58]Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. Ruthenium(Ⅱ)-Catalyzed Regio-and Stereoselective Hydroarylation of Alkynes via Directed C-H Functionalization. Org. Lett. 2012,14,2058-2061.
    [59]Ueura, K.; Satoh, T.; Miura, M. Rhodium- and Indium-Catalyzed Oxidative Coupling of Benzoic Acids with Alkynes via Regioselective C-H Bond Cleavage. J. Org. Chem.2007,72, 5362-5367.
    [60]Padala, K.; Jeganmohan, M. Ruthenium-Catalyzed Ortho-Alkenylation of Aromatic Ketones with Alkenes by C-H Bond Activation. Org. Lett.2011,13,6144-6147.
    [61]Padala, K.; Jeganmohan, M. Highly Regio- and Stereoselective Ruthenium(Ⅱ)-Catalyzed Direct ortho-Alkenylation of Aromatic and Heteroaromatic Aldehydes with Activated Alkenes under Open Atmosphere. Org. Lett.2012,14,1134-1137.
    [62]Li, B.; Ma, J.-F.; Wang, N.-C.; Feng, H.-L.; Xu, S.-S.; Wang, B.-Q. Ruthenium-Catalyzed Oxidative C-H Bond Olefination of N-Methoxybenzamides Using an Oxidizing Directing Group. Org. Lett.2012,14,736-739.
    [63]Hashimoto, Y.; Ortloff, T.; Hirano, K.; Satoh, T.; Bolm, C.; Miura, M. Ru/Ag-Catalyzed Oxidative Alkenylation of Benzamides and Phenylazoles through Regioselective C-H Bond Cleavage. Chem. Lett.2012,41,151-153.
    [64]Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V. Ruthenium-Catalyzed Oxidative C-H Alkenylations of Anilides and Benzamides in Water. Org. Lett.2012,14,728-731.
    [65]Tan, S. T.; Teo, Y. C.; Fan, W. Y. Addition of Pyrroles onto Terminal Alkynes Catalyzed by a Dinuclear Ruthenium (Ⅱ) Complex. J. Organomet. Chem.2012,708-709,58-64.
    [66]Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. Ruthenium(Ⅱ)-Catalyzed Regio-and Stereoselective Hydroarylation of Alkynes via Directed C-H Functionalization. Org. Lett. 2012,14,2058-2061.
    [67]Ackermann, L.; Lygin, A. V.; Hofmann, N. Ruthenium-Catalyzed Oxidative Annulation by Cleavage of C-H/N-H Bonds. Angew. Chem. Int. Ed.2011,50,6379-6382.
    [68]Ackermann, L.; Lygin, A. V.; Hofmann, N. Ruthenium-Catalyzed Oxidative Synthesis of 2-Pyridones through C-H/N-H Bond Functionalizations. Org. Lett.2011,13,3278-3281.
    [69]Ackermann, L.; Wang, L.; Lygin, A. V. Ruthenium-Catalyzed Aerobic Oxidative Coupling of Alkynes with 2-Aryl-Substituted Pyrroles. Chem. Sci.2012,3,177-180.
    [70](a) Li, B.; Feng, H.-L.; Xu, S.-S.; Wang, B.-Q. Ruthenium-Catalyzed Isoquinolone Synthesis through C-H Activation Using an Oxidizing Directing Group. Chem. Eur. J.2011,17, 12573-12577. (b) Li, B.; Feng, H.-L.; Wang, N.-C.; Ma, J.-F.; Song, H.-B.; Xu, S.-S.; Wang, B.-Q. Ruthenium-Catalyzed Oxidative Coupling/Cyclization of Isoquinolones with Alkynes through C-H/N-H Activation:Mechanism Study and Synthesis of Dibenzo[a,g]quinolizin-8-one Derivatives, Chem. Eur. J.2012,18,12873-12879.
    [71]Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Versatile Synthesis of Isocoumarins and a-Pyrones by Ruthenium-Catalyzed Oxidative C-H/O-H Bond Cleavages. Org. Lett.2012,14, 930-933.
    [72](a) Ackermann, L.; Fenner, S. Ruthenium-Catalyzed C-H/N-O Bond Functionalization:Green Isoquinolone Syntheses in Water. Org. Lett.2011,13,6548-6551. (b) Ackermann, L.; Lygin, A. V. Cationic Ruthenium(II) Catalysts for Oxidative C-H/N-H Bond Functionalizations of Anilines with Removable Directing Group:Synthesis of Indoles in Water. Org. Lett.2012,14,764-767. (c) Kornhaaβ, C.; Li, J.; Ackermann, L. Cationic Ruthenium Catalysts for Alkyne Annulations with Oximes by C-H/N-O Functionalizations. J. Org. Chem.2012,77,9190-9198. (d) Ma, W.-B.; Graczyk, K.; Ackermann, L. Ruthenium-Catalyzed Alkyne Annulations with Substituted 1H-Pyrazoles by C-H/N-H Bond Functionalizations, Org. Lett.2012,14,6318-6321. (e) Thirunavukkarasu, V. S.; Donati, M.; Ackermann, L. Hydroxyl-Directed Ruthenium-Catalyzed C-H Bond Functionalization:Versatile Access to Fluorescent Pyrans. Org. Lett.2012,14, 3416-3419.
    [73](a) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Ruthenium-Catalyzed Highly Regio-selective Cyclization of Ketoximes with Alkynes by C-H Bond Activation:A Practical Route to Synthesize Substituted Isoquinolines. Org. Lett.2012,14,3032-3035. (b) Chinnagolla, R. K.; Jeganmohan, M. Ruthenium-Catalyzed Regioselective Cyclization of Aromatic Ketones with Alkynes:An Efficient Route to Indenols and Benzofulvenes. Eur. J. Org. Chem.2012,417-423. (c) Chinnagolla, R. K.; Jeganmohan, M. Regioselective Synthesis of Isocoumarins by Ruthenium-Catalyzed Aerobic Oxidative Cyclization of Aromatic Acids with Aalkynes. Chem. Commun.2012,48,2030-2032.
    [74](a) Ackermann, L.; Althammer, A.; Born, R. [RuCl3(H2O)n]-Catalyzed Direct Arylations with Bromides as Electrophiles. Synlett 2007,2833-2836. (b) Ackermann, L.; Althammer, A.; Born, R. [RuCl3(H2O)n]-Catalyzed Direct Arylations. Tetrahedron 2008,64,6115-6124.
    [75]Cheng, K.; Zhang, Y.-H.; Zhao, J.-L.; Xie, C.-S. Peroxide-Promoted Regioselective Arylation of 2-Phenylpyridines and Related Substrates with Aryl Iodides. Synlett 2008,1325-1330.
    [76]Luo, N.; Yu, Z.-K. RuCl3-xH2O-Catalyzed Direct Arylation of Arenes with Aryl Chlorides in the Presence of Triphenylphosphine. Chem. Eur. J.2010,16,787-791.
    [77]Jaouhari, R.; Dixneuf, P. H. A New Ruthenium Catalysed Reaction:the Benzylation of Aromatic Heterocyclic Compounds. Inorg. Chim. Acta 1988,145,179-180.
    [78]Youn, S. W.; Pastine, S. J.; Sames, D. Ru(III)-Catalyzed Cyclization of Arene-Alkene Substrates via Intramolecular Electrophilic Hydroarylation. Org. Lett.2004,6,581-584.
    [79]Weissman, H.; Song, X. P.; Milstein, D. Ru-Catalyzed Oxidative Coupling of Arenes with Olefins Using O2. J. Am. Chem. Soc.2001,123,337-338.
    [80]Cheng, K.; Yao, B.-B.; Zhao, J.-L.; Zhang, Y.-H. RuCl3-Catalyzed Alkenylation of Aromatic C-H Bonds with Terminal Alkynes. Org. Lett.2008,10,5309-5312.
    [81](a) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani N.; Murai, S. A Ruthenium-Catalyzed Reaction of Aromatic Ketones with Arylboronates:A New Method for the Arylation of Aromatic Compounds via C-H Bond Cleavage. J. Am. Chem. Soc.2003,125,1698-1699. (b) Kakiuchi, F.; Matsuura, Y; Kan S.; Chatani, N. A RuH2(CO)(PPh3)3-Catalyzed Regioselective Arylation of Aromatic Ketones with Arylboronates via Carbon-Hydrogen Bond Cleavage. J. Am. Chem. Soc.2005,127, 5936-5936. (c) Park, Y. J.; Jo E.-A.; Jun, C.-H. Ruthenium-Catalyzed Coupling of Aldimines with Arylboronates:New Synthetic Method for Aromatic Ketones. Chem. Commun.2005, 1185-1187. (d) Pastine, S. J.; Gribkov D. V.; Sames, D. sp3C-H Bond Arylation Directed by Amidine Protecting Group:a-Arylation of Pyrrolidines and Piperidines. J. Am. Chem. Soc.2006, 128,14220-14221.
    [82]Prokopcova, H.; Bergman, S. D.; Aelvoet, K.; Smout, V.; Herrebout, W.; Van der Veken, B.; Meerpoel L.; Maes, B. U. W. C-2 Arylation of Piperidines through Directed Transition-Metal-Catalyzed sp3C-H Activation. Chem. Eur. J.2010,16,13063-13067.
    [83]Han H.; Krische, M. J. Direct Ruthenium-Catalyzed C-C Coupling of Ethanol:Diene Hydro-hydroxyethylation To Form All-Carbon Quaternary Centers. Org. Lett.2010,12, 2844-2846.
    [84]Patman, R. L.; Williams, V. M.; Bower J. F.; Krische, M. J. Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level Employing 1,3-Enynes as Surrogates to Preformed Allenylmetal Reagents:A Ruthenium-Catalyzed C-C Bond-Forming Transfer Hydrogenation. Angew. Chem. Int. Ed 2008,47,5220-5223.
    [85]Cambeiro, F.; L6pez, S.; Varela, J. A.; Saa, C. Cyclization by Catalytic Ruthenium Carbene Insertion into C(sp3)-H Bonds, Angew. Chem. Int. Ed. 2012,51,723,-727.
    [86](a)花文廷,《杂环化学》,北京大学出版社,1991年3月第一版,p263. (b) Cox, E. D.; Cook, J. M. The Pictet-Spengler Condensation:a New Direction for an Old Reaction. Chem. Rev.1995, 95,1797-1842. (c) Sundberg, R. J. Indoles; Academic Press:San Diego,1996. (d) Saxton, J. E. Recent Progress in the Chemistry of the Monoterpenoid Indole Alkaloids. Nat. Prod Rep.1997, 14,559-590. (e) Kleeeman, A.; Engel, J;. Kutscher, B.; Reichert, D. Pharmaceutical Substances, 4th ed., Thieme, New York,2001. (f) Liddell, J. R. Pyrrolizidine Alkaloids. Nat. Prod Rep.2002, 19,773-781. (g) Somei, M.; Yamada, F.-Simple Indole Alkaloids and those with a Nonrearranged Monoterpenoid Unit. Nat. Prod. Rep.2003,20,216-242. (h) Bandini, M.; Emer, E.; Tommasi, S.; Umani-Ronchi, A. Innovative Catalytic Protocols for the Ring-Closing Friedel-Crafts-Type Alkylation and Alkenylation of Arenes. Eur. J. Org. Chem.2006,3527-3544. (i) Barluenga, J.; Rodrguez, R.; Fananas, F. J. Recent Advances in the Synthesis of Indole and Quinoline Derivatives through Cascade Reactions. Chem. Asian J.2009,4,1036-1048.
    [87]杨天明;刘刚,吲哚及其类似物的药理活性和固相合成研究进展,药笋学报,2006,41,694-701.
    [88](a) J. Bosch, J. Bonjoch, M. Amat in The Alkaloids, Vol.48 (Ed.:G. A. Cordell), Academic Press, New York,1996, pp.75-189. (b) Gribble, G. W. Recent Developments in Indole Ring Synthesis-Methodology and Applications. J. Chem. Soc., Perkin Trans.12000,7,1045-1075. (c) KnTlker, H. J.; Reddy, K. R. Isolation and Synthesis of Biologically Active Cabozole Alkaloids. Chem. Rev.2002,102,4303-4427. (d) Stinson, C. S. Chiral Pharmaceuticals. Chem. Eng. News 2001,79,79-97. (e) M. Hesse, Alkaloids, Nature Curse or Blessing, Wiley-VCH, New York,2002. (f) Majima, K.; Takita, R.; Okada, A.; Ohshima, T; Shibasaki, M. Catalytic Asymmetric Michael Reaction of β-Keto Esters:Effects of the Linker Heteroatom in Linked-BINOL. J. Am. Chem. Soc.2003,125,15837-15845. (g) Jiricek, J.; Blechert, S. Enantioselective Synthesis of (-)-Gilbertine via a Cationic Cascade Cyclization. J. Am. Chem. Soc.2004,126,3534-3538. (h) Fabio, R. D.; Giovannini, R.; Bertani, B.; Borriello, M.; Bozzoli, A.; Donati, D.; Falchi, A.; Ghirlanda, D.; Leslie, C. P.; Pecunioso, A.; Rumboldt G.; Spada, S. Synthesis and SAR of Substituted Tetrahydrocarbazole Ferivatives as New NPY-1 Antagonists. Bioorg. Med. Chem. Lett. 2006,16,1749-1752. (i) Nikitenko, A.; Evrard, D.; Sabb, A. L. R.; Vogel, L.; Stack, G.; Young, M.; Lin, M.; Harrison, B. L.; Potoski, J. R. First Scale-Up:Problems and Resolutions on the Synthesis of WAY-253752, a Novel, Dual-Acting SSRI/5HT1A Antagonist. Org. Process Res. Dev. 2008,12,76-80. (j) Paolini, J. F.; Lai, E.; Mitchel, Y. B. (Merck&Co., Inc., USA), WO2008097535,2008. (k) Chen, J.; Lou, J.-S.; Liu, T.; Wu, R.; Dong, X.-W.; He, Q.-J.; Yang, B.; Hu, Y.-Z. Synthesis and in-vitro Antitumor Activities of some Mannich Bases of 9-Alkyl-1,2,3,4-tetrahydrocarbazole-1-ones. Arch. Pharm (Weinheim).2009,342,165-172. (1) Gudmundsson, K. S.; Sebahar, P. R.; Richardson, L. D.; Catalano, J. G; Boggs, S. D.; Spaltenstein, A.; Sethna, P. B.; Brown, K. W.; Harvey R.; Romines, K. R. Substituted Tetrahydrocarbazoles with Potent Activity Against Human Papillomaviruses. Bioorg. Med. Chem. Lett.2009,19,3489-3492. (m) Alves, F. R. D.; Barreiro, E. J.; Fraga, C. A. M. From Nature to Drug Discovery:the Indole Scaffold as a'Privileged Structure'. Mini-Rev. Med Chem.2009,9, 782-793. (n) Li, L.; Beaulieu, C.; Carriere, M.-C.; Denis, D.; Greig, G.; Guay, D.; O'Neill, G.; Zamboni R.; Wang, Z.; Potent and Highly Selective DPi Antagonists with 2,3,4,9-Tetrahydro-1H-carbazole as Pharmacophore. Bioorg. Med. Chem. Lett.2010,20,7462-7465.
    [89](a) Aprison, M. H. In Glycine Neurotransmision; Otterson, O. P., Storm-Mathisen, J. Eds.; Wiley: New York,1990, pp 1-23. (b) Bonjoch, J.; Sole, D. Synthesis of Strychnine. Chem. Rev.2000, 100,3455-3482. (c) Cannon, J. S.; Overman, L. E. Is There No End to the Total Syntheses of Strychnine? Lessons Learned in Strategy and Tactics in Total Synthesis. Angew. Chem. Int. Ed 2012,51,4288-4311.
    [90](a) Abramovitz, M.; Adam, M.; Boie, Y; Carriere, M.-C.; Denis, D.; Godbout, C.; Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N. M.; Belley, M.; Gallant, M.; Dufresne, C.; Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M.; Ouimet, N.; Metters, K. M. The Utilization of Recombinant Prostanoid Receptors to Determine the Affinities and Selectivities of Prostaglandins and Related Analogs. Biochim. Biophys. Acta 2000,1483,285-293. (b) Sturino, C. F.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li, L.-H.; Roy, B.; Scheigetz, J.; Tsou, N.; Brideau, C.; Cauchon, E.; Carriere, M.-C.; Denis, D.; Greig, G.; Kargman, S.; Lamontagne, S.; Mathieu, M.-C.; Sawyer, N.; Slipetz, D.; O'Neill, G.; Wang, Z.-Y.; Zamboni, R.; Metters, K. M.; Young, R. N. Identification of an Indole Series of Prostaglandin D2 Receptor Antagonists. Bioorg. Med Chem. Lett.2006,16, 3043-3048.
    [91]Chang-Fong, J.; Rangisetty, J. B.; Dukat, M.; Setola, V.; Raflay, T.; Rothb, B.; Glennon, R. A. 1,2,3,4-Tetrahydrocarbazoles as 5-HT6 Serotonin Receptor Ligands. Bioorg. Med Chem. Lett. 2004,14,1961-1964.
    [92]For reviews on the Fischer indole reaction, see:(a) Robinson, B. The Fischer Indole Synthesis; Wiley-Interscience:New York,1982. (b) Hughes, D. L. Progress in the Fischer Indole Reaction. Org. Prep. Proc. Int.1993,25,607-632. (c) Pulici, M.; Sello, G. Studies toward a Model for the Prediction of the Regioselectivity in the Fischer Indole Synthesis. Part 2. Derivatives of Cyclic Ketones. THEOCHEM 1993,107,245-254. (d) Gribble, G. W. Recent Developments in Indole Ring Synthesis-Methodology and Applications. Contemp. Org. Synth.1994,1,145-172. (e) Kaim, L. E.; Grimaud, L.; Ronsseray, C. Three-Component Fischer Indole Synthesis. Synlett 2010, 2296-2298. and references cited therein.
    [93]Recent examples for synthesis of tetrahydrocabozoles through Fischer reaction, see:(a) Lim, Y.-K.; Cho, C.-G. Expedient Synthesis of Indoles from N-Boc Arylhydrazines. Tetrahedron Lett. 2004,45,1857-1859. (b) Muller, S.; Webber, M. J.; List, B. The Catalytic Asymmetric Fischer Indolization. J. Am. Chem. Soc.2011,133,18534-18537. (c) Inman, M.; Carbone, A.; Moody, C. J. Two-Step Route to Indoles and Analogues from Haloarenes:A Variation on the Fischer Indole Synthesis. J. Org. Chem.2012,77,1217-1232. (d) Porcheddu, A.; Mura, M. G.; De Luca, L.; Pizzetti, M.; Taddei, M. From Alcohols to Indoles:A Tandem Ru-Catalyzed Hydrogen-Transfer Fischer Indole Synthesis. Org. Lett.2012,14,6112-6115. (e) Gore, S.; Baskaran, S.; Konig, B. Fischer Indole Synthesis in Low Melting Mixtures. Org. Lett.2012,14,4568-4571.
    [94]Chen, C.-Y; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Syntheses of Indoles via a Palladium-Catalyzed Annulation between Iodoanilines and Ketones. J. Org. Chem. 1997,62,2676-2677.
    [95]Iwama, T.; Birman, V. B.; Kozmin, S. A.; Rawal, V. H. Regiocontrolled Synthesis of Carbocycle-fused Indoles via Arylation of Silyl Enol Ethers with o-Nitrophenylphenyliodonium Fluoride. Org. Lett.1999,1,673-676.
    [96]Nazare, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W. A Flexible, Palladium-Catalyzed Indole and Azaindole Synthesis by Direct Annulation of Chloroanilines and Chloroamino-pyridines with Ketones. Angew. Chem. Int. Ed.2004,43,4526-4528.
    [97]For N-arylated indoles, see:(a) Andersen, K.; Liljefors, T.; Hyttel, J.; Perregaard, J. Serotonin 5-HT2 Receptor, Dopamine D2 Receptor, and α1 Adrenoceptor Antagonists. Conformationally Flexible Analogues of the Atypical Antipsychotic Sertindole. J. Med Chem.1996,39,3723-3738. (b) Spadoni, G.; Balsamini, C.; Bedini, A.; Diamantini, G.; Di Giacomo, B.; Tontini, A.; Tarzia, G.; Mor, M.; Plazzi, P. V.; Rivara, S.; Nonno, R.; Pannacci, M.; Lucini, V.; Frachini, F.; Stankov, B. M.2-[N-Acylamino(C1-C3)alkyl] indoles as MT1 Melatonin Receptor Partial Aagonists, Antagonists, and Putative inverse Agonists. J. Med Chem.1998,41,3624-3634. (c) Bandini, M.; Eichholzer A. Catalytic Functionalization of Indoles in a New Dimension. Angew. Chem. Int. Ed 2009,48,9608-9644.
    [98]Willis, M. C.; Brace, G. N.; Holmes, I. P. Palladium-Catalyzed Tandem Alkenyl and Aryl C-N Bond Formation:A Cascade N-Annulation Route to 1-Functionalized Indoles. Angew. Chem. Int. Ed.2005,44,403-406.
    [99](a) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. Platinum-Catalyzed Intramolecular Alkylation of Indoles with Unactivated Olefins. J. Am. Chem. Soc.2004,126,3700-3701. (b) Liu, C.; Widenhoefer, R. A. Palladium-Catalyzed Cyclization/Carboalkoxylation of Alkenyl Indoles. J. Am. Chem. Soc.2004,126,10250-10251. (c) Liu, C.; Widenhoefer, R. A. Scope and Mechanism of the Pd(Ⅱ)-Catalyzed Arylation/Carboalkoxylation of Unactivated Olefins with Indoles. Chem. Eur. J.2006,12,2371-2382. (d) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. Highly Active Au(I) Catalyst for the Intramolecular exo-Hydro-functionalization of Allenes with Carbon, Nitrogen, and Oxygen Nucleophiles. J. Am. Chem. Soc. 2006,128,9066-9073.
    [100]Evans, D. A.; Fandrick, K. R.; Song, H.-J. Enantioselective Friedel-Crafts Alkylations of a,β-Unsaturated 2-Acyl Imidazoles Catalyzed by Bis(oxazolinyl)pyridine-Scandium(Ⅲ) Ttriflate Complexes. J. Am. Chem. Soc.2005,127,8942-8943.
    [101](a) Han, X.; Widenhoefer, R. A. Platinum-Catalyzed Intramolecular Asymmetric Hydroarylation of Unactivated Alkenes with Indoles. Org. Lett.2006,8,3801-3804. (b) Liu, C.; Widenhoefer, R. A. Gold(I)-Catalyzed Intramolecular Enantioselective Hydroarylation of Allenes with Indoles. Org. Lett.2007,9,1935-1938.
    [102]Huang, H.; Peters, R. A highly Strained Planar-Chiral Platinacycle for Catalytic Activation of Internal Olefins in the Friedel-Crafts Alkylation of Indoles. Angew. Chem. Int. Ed 2009,48, 604-606.
    [103](a) Bandini, M.; Eichholzer, A. Enantioselective Gold-Catalyzed Allylic Alkylation of Indoles with Alcohols:An Efficient Route to Functionalized Tetrahydrocarbazoles. Angew. Chem. Int. Ed. 2009,48,9533-9537. (b) Bandini, M.; Bottoni, A.; Chiarucci, M.; Cera, G.; Miscione, G. P. Mechanistic Insights into Enantioselective Gold-Catalyzed Allylation of Indoles with Alcohols: The Counterion Effect. J. Am. Chem. Soc.2012,134,20690-20700.
    [104]Zhou, J.-L.; Ye, M.-C.; Tang, Y. Trisoxazoline/Cu(Ⅱ)-Catalyzed Asymmetric Intramolecular Friedel-Crafts Alkylation reaction of Indoles. Tetrahedron 2009,65,6877-6881.
    [105]Wu, Q.-F.; Zheng, C.; You, S.-L. Enantioselective Synthesis of Spiro Cyclopentane-1,3'-indoles and 2,3,4,9-Tetrahydro-1H-carbazoles by Indium-Catalyzed Allylic Dearomatization and Stereospecific Migration. Angew. Chem. Int. Ed.2012,51,1680-1683.
    [106](a) Abbiati, G.; Canevari, V.; Facoetti, D.; Rossi, E. Diels-Alder Reactions of 2-Vinylindoles with Open-chain C=C Dienophiles. Eur. J. Org. Chem.2007,517-525. (b) Tan, F.; Xiao, C.; Cheng, H.-G.; Wu, W.; Ding, K.-R.; Xiao, W.-J. Enantioselective [4+2] Cycloadditions of 2-Vinyl-1H-indoles with 3-Nitro-2H-chromenes Catalyzed by a Zn(OTf)2/Bis(oxazoline) Complex:An Efficient Approach to Fused Heterocycles with a Quaternary Stereocenter. Chem. Asian J.2012,7,493-497.
    [107](a) Chen, C.-B.; Wang, X.-F.; Cao, Y.-J.; Cheng, H.-G.; Xiao, W.-J. Br(?)nsted Acid Mediated Tandem Diels-Alder/Aromatization Reactions of Vinylindoles, J. Org. Chem.2009,74, 3532-3535. (b) Wang, X.-F.; Chen, J.-R.; Cao, Y.-J.; Cheng, H.-G.; Xiao, W.-J. An Enantio-selective Approach to Highly Substituted Tetrahydrocarbazoles through Hydrogen Bonding-Catalyzed Cascade Reactions. Org. Lett.2010,12,1140-1143. (c) Cao, Y.-J.; Cheng, H.-G; Lu, L.-Q.; Zhang, J.-J.; Cheng, Y; Chen, J.-R.; Xiao, W.-J. Organocatalytic Multiple Cascade Reactions:A New Strategy for the Construction of Enantioenriched Tetrahydrocarbazoles. Adv. Synth. Catal.2011,353,617-623. (d) Tan, F.; Li, F.; Zhang, X.-X.; Wang, X.-F.; Cheng, H.-G.; Chen, J.-R.; Xiao, W.-J. Brensted Acid Catalyzed Diels-Alder Reactions of 2-Vinylindoles and 3-Nitrocoumarins:an Expedient Synthesis of Coumarin-fused Tetrahydrocarbazoles. Tetrahedron 2011,67,446-451.
    [108]Chen, J.-R.; Li, C.-F.; An, X.-L.; Zhang, J.-J.; Zhu, X.-Y; Xiao, W.-J. Ru-Catalyzed Tandem Cross-Metathesis/Intramolecular-Hydroarylation Sequence, Angew. Chem. Int. Ed.2008,47, 2489-2492.
    [109](a) Peng, A.-S.; Wang, L.-B. Synthesis of p-Methoxy-a-Bromoacetophenone by Substituting Cupric Bromide for Liquid Bromine. Liaoning Chemical Industry 2003,32,17-18. (b) Kuroda, H.; Hanaki, E.; Izawa, H.; Kano, M.; Itahashi, H. A Convenient Method for the Preparation of a-Vinylfurans by Phosphine-Initiated Reactions of Various Substituted Enynes bearing a Carbonyl Group with Aldehydes. Tetrahedron 2004,60,1913-1920. (c) Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides. Angew. Chem. Int. Ed.2004,43,4641-4644.
    [110](a) Hartwig, J. F. Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides. Acc. Chem. Res.1998,31,852-860. (b) Littke, A. F.; Fu, G. C. The First General Method for Stille Cross-Couplings of Aryl Chlorides. Angew, Chem. Int. Ed 1999,38,2411-2413. (c) Littke, A. F.; Fu, G. C. Palladium-catalyzed Coupling Reactions of Aryl Chlorides. Angew. Chem. Int. Ed 2002,41,4176-4211. (d) Ma, J.-A.; Cahard, D. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev.2004,104,6119-6146.
    [111]Isao, K.; Satoshi, M.; Hiroaki, H.;Takehiro, M.; Mayako, Y. EP2119704A1,2009.
    [112]Zhang, H.; Cai, Q.; Ma, D.-W. Amino Acid Promoted Cul-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem.2005,70, 5164-5173.
    [113]Handbook of C-H Transformations, Ed. G. Dyker, Wiley-VCH, Weinheim,2005.
    [114](a) Campos, K. R. Direct sp3C-H Bond Activation Adjacent to Nitrogen in Heterocycles. Chem. Soc. Rev.2007,36,1069-1084. (b) Murahashi, S.-I.; Zhang, D. Ruthenium Catalyzed Biomimetic Oxidation in Organic Synthesis Inspired by Cytochrome P-450. Chem. Soc. Rev.2008,37, 1490-1501. (c) Poesky, P. W. Catalytic Hydroaminoalkylation. Angew. Chem. Int. Ed.2009,48, 4892-4894. (d) Li, C.-J. Cross-Dehydrogenative Coupling (CDC):Exploring C-C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res.2009,42,335-344. (e) Scheuermann, C. J. Beyond Traditional Cross Couplings:The Scope of the Cross Dehydro-genative Coupling Reaction. Chem. Asian J.2010,5,436-451. (f) Yeung C. S.; Dong, V. M. Catalytic Dehydrogenative Cross-Coupling:Forming Carbon-Carbon Bonds by Oxidizing Two Carbon-Hydrogen Bonds. Chem. Rev.2011,111,1215-1292. and references cited therein.
    [115](a) Li, Z.; Li, C.-J. A Highly Efficient CuBr-Catalyzed Alkynylation of sp3C-H Bond. J. Am. Chem. Soc.2004,126,11810-11811. (b) Li, C.-J.; Li, Z. Green Chemistry:The Development of Cross-Dehydrogenative Coupling (CDC) for Chemical Synthesis. Pure Appl. Chem.2006,78, 935-945.
    [116]Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. Synthesis of Allenes via Palladium-Catalyzed Hydrogen-Transfer Reactions:Propargylic Amines as an Allenyl Anion Equivalent. J.Am. Chem. Soc.2004,126,5958-5959.
    [117](a) Li, Z.; Li, C.-J. Catalytic Enantioselective Alkynylation of Prochiral sp3C-H Bonds Adjacent to a Nitrogen Atom. Org. Lett.2004,6,4997-4999. (b) Li, Z.; MacLeod, P. D.; Li, C.-J. Studies on Cu-Catalyzed Asymmetric Alkynylation of Tetrahydroisoquinoline Derivatives. Tetrahedron:Asymmetry 2006,17,590-597.
    [118]Zhao, L.; Li, C.-J. New Approaches to Functionalize Glycine Derivatives via Direct C-C Bond Formation. Angew. Chem. Int. Ed.2008,47,7075-7078.
    [119]Li, Z.; Li, C.-J. CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative-Coupling between sp3C-H and sp2C-H Bonds. J. Am. Chem. Soc.2005,127, 6968-6969.
    [120]Li, Z.; Bohle, D. S.; Li, C.-J. Cu-Catalyzed Cross-Dehydrogenative Coupling (CDC) Reactions: A Versatile Strategy for C-C Bond Formation via Oxidative Activation sp3C-H Bonds Adjacent to a Nitrogen Atom. Proc. Natl. Acad Sci. U.S.A.2006,103,8928-8933.
    [121]Basle, O.; Li, C.-J. Copper-Catalyzed Oxidative sp3C-H Bond Arylation with Aryl Boronic Acids. Org. Lett.2008,10,3661-3663.
    [122](a) Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M. Pd(Ⅱ)-Catalyzed Asymmetric Addition of Malonates to Dihydroisoquinolines. J. Am. Chem. Soc.2006,128,14010-14011. (b) Basle, O.; Li, C.-J. Copper-Catalyzed Oxidative Alkylation of sp3C-H Bond Adjacent to a Nitrogen Atom Using Molecular Oxygen in Water. Green Chem.2007,9,1047-1050.
    [123]Zhang, J.-M.; Tiwari, B.; Xing, C.; Chen, X.-K.; Chi, Y.-G. R. Enantioselective Oxidative Cross-Dehydrogenative Coupling of Tertiary Amines to Aldehydes. Angew. Chem. Int. Ed.2012, 51,3649-3652.
    [124]For pioneering works, see:(a) Cano-Yelo, H.; Deronzier, A. Photocatalysis of the Pschorr Reaction by Tris-(2,2'-bipyridyl)ruthenium(Ⅱ) in the Phenanthrene Series J. Chem. Soc. Perkin Trans.21984,1093-1098. (b) Cano-Yelo, H.; Deronzier, A. Photo-oxidation of some Carbinols by the Ru(II) Polypyridyl Complex-Aryl Diazonium Salt System. Tetrahedron Lett.1984,25, 5517-5520. (c) Zen, J.-M.; Liou, S.-L;. Kumar, A. S.; Hsia, M.-S. An Efficient and Selective Photocatalytic System for the Oxidation of Sulfides to Sulfoxides. Angew. Chem. Int. Ed. 2003, 42,577-579. For selected reviews, see:(d) Gust, D.; Moore, T. A. Molecular Mimicry of Photosynthetic Energy and Electron Transfer. Acc. Chem. Res.1993,26,198-205. (e) Zeitler, K. Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed.2009,48,9785-9789. (f) Narayanam, J. M. R.; Stephenson, C. R. J. Visible Light Photoredox Catalysis:Applications in Organic Synthesis. Chem. Soc. Rev.2011,40,102-113.
    [125](a) Whitten, D. G. Photoinduced Electron Transfer Reactions of Metal Complexes in Solution. Acc. Chem. Res.1980,13,83-90. (b) Kalyanasundaram K.; Gratzel, M. Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds (Catalysis by Metal Complexes), Kluwere Academic Publishers, Dordrecht,1993.
    [126]Hedstrand, D. M.; Kruizinga, W. H.; Kellogg, R. M. Light Induced and Dye Accelerated Reductions of Phenacyl Onium Salts by 1,4-Dihydropyridines. Tetrahedron Lett.1978,19,1255-1258.
    [127]Selective recently review:(a) Yoon, T. P.; Ischay M. A.; Du, J. Visible Light Photocatalysis as a Greener Approach to Photochemical Synthesis. Nat. Chem.2010,2,527-532. (b) Inagaki A.; Akita, M. Visible-Light Promoted Bimetallic Catalysis. Coord. Chem. Rev.2010,254,1220-1239. (c) Teply, F. Photoredox Catalysis by [Ru(bpy)3]2+to Trigger Transformation of Organic Molecules. Organic Synthesis Using Visible-Light Photocatalysis and its 20th Century Roots. Collect. Czech. Chem. Commun.2011,76,859-917. (d) Narayanam J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.2011,40,102-113. (e) Tucker J. W.; Stephenson, C. R. J. Shining Light on Photoredox Catalysis:Theory and Synthetic Applications. J. Org. Chem.2012,77,1617-1622. (f) Wallentin, C.-J.; Nguyen J. D.; Stephenson, C. R. J. Radical Carbon-Carbon Bond Formations Enabled by Visible Light Active Photocatalysts. Chimia 2012,66,394-398. (g) Xuan, J.; Xiao, W.-J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed.2012,51,6828-6838.
    [128]Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. Visible-Light Photoredox Catalysis: Aza-Henry Reactions via C-H Functionalization. J. Am. Chem. Soc.2010,132,1464-1465.
    [129]Freeeman, D. B.; Furst, L.; Condie A. G.; Stephenson, C. R. J. Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light. Org. Lett. 2012,14,94-97.
    [130](a) Xie, Z.; Wang, C.; deKrafft K. E.; Lin, W. Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis. J. Am. Chem. Soc.2011,133,2056-2059. (b) Wang, C.; Xie, Z.; deKrafft K. E.; Lin, W. Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. J. Am. Chem. Soc.2011,133,13445-1345. (c) Wang, C.; Xie, Z.; deKrafft K. E.; Lin, W. Light-Harvesting Cross-Linked Polymers for Efficient Heterogeneous Photocatalysis. ACS Appl. Mater. Interfaces 2012,4,2288-2294.
    [131]Mitkina, T.; Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch H.; Konig, B. Visible Light Mediated Homo-and Heterocoupling of Benzyl Alcohols and Benzyl Amines on Polycrystalline Cadmium Sulfide. Org. Biomol. Chem.2012,10,3556-3561.
    [132](a) Pan, Y.; Kee, C. W.; Chen L.; Tan, C.-H. Dehydrogenative Coupling Reactions Catalysed by Rose Bengal Using Visible Light Irradiation. Green Chem.2011,13,2682-2685. (b) Pan, Y.; Wang, S.; Kee, C. W; Dubuisson, E.; Yang, Y; Loh K. P.; Tan, C.-H. Graphene Oxide and Rose Bengal:Oxidative C-H Functionalisation of Tertiary Amines Using Visible Light. Green Chem. 2011,13,3341-3344.
    [133](a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny K.; Fabry, D. C. Dual Catalysis: Combining Photoredox and Lewis Base Catalysis for Direct Mannich Reactions. Chem. Commun. 2011,47,2360-2362. (b) Rueping, M.; Zhu S.; Koenigs, R. M. Visible-light Photoredox Catalyzed Oxidative Strecker Reaction. Chem. Commun.2011,47,12709-12711. (c) Rueping, M.; Zhu S.; Koenigs, R. M. Photoredox Catalyzed C-P Bond Forming Reactions-Visible Light Mediated Oxidative Phosphonylations of Amines. Chem. Commun.2011,47,8679-8681. (d) Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori D.; Vila, C. Dual Catalysis: Combination of Photocatalytic Aerobic Oxidation and Metal Catalyzed Alkynylation Reactions-C-C Bond Formation Using Visible Light. Chem. Eur. J.2012,18,5170-5174.
    [134]Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen C.; Xia, W. Visible Light-induced Oxidative Coupling Reaction:Easy Access to Mannich-type Products. Chem. Commun.2012,48, 2337-2339.
    [135](a) McNally, A.; Prier C. K.; MacMillan, D. W. C. Discovery of an a-Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science 2011,334,1114-1117. (b) Hari D. P.; Konig, B. Eosin Y Catalyzed Visible Light Oxidative C-C and C-P bond Formation. Org. Lett. 2011,13,3852-3855. (c) Miyake, Y; Nakajima K.; Nishibayashi, Y. Visible-Light-Mediated Utilization of a-Aminoalkyl Radicals:Addition to Electron-Deficient Alkenes Using Photoredox Catalysts. J. Am. Chem. Soc.2012,134,3338-3341. (d) Miyake, Y; Ashida, Y; Nakajima k.; Nishibayashi, Y. Visible-light-mediated Addition of a-Aminoalkyl Radicals Generated from a-Silylamines to a,β-Unsaturated Carbonyl Compounds. Chem. Commun.2012,48,6966-6968. (e) Kohls, D.; Jadhav, G. P.; Reiser, O. Visible Light Photoredox Catalysis:Generation and Addition of N-Aryltetrahydroisoquinoline-Derived a-Amino Radicals to Michael Acceptors. Org. Lett.2012,14,672-675. (f) Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung C.-H.; Wu, L.-Z. Reactivity and Mechanistic Insight into Visible-Light-Induced Aerobic Cross-Dehydrogenative Coupling Reaction by Organophotocatalysts. Chem. Eur. J.2012,18,620-627.
    [136]Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen J.-R.; Xiao, W.-J. Visible-Light-Induced Oxidation/[3+2] Cycloaddition/Oxidative Aromatization Sequence:A Photocatalytic Strategy To Construct Pyrrolo[2,1-a]isoquinolines. Angew. Chem. Int. Ed,2011, 50,7171-7175.
    [137]Rueping, M.; Leonori D.; Poisson, T. Visible Light Mediated Azomethine Ylide Formation-Photoredox Catalyzed [3+2] Cycloadditions. Chem. Commun.2011,47,9615-9617.
    [138]Xuan, J.; Feng, Z.-J.; Duan S.-W.; Xiao, W.-J. Room Temperature Synthesis of Isoquino[2,1-a][3,1]oxazine and Isoquino[2,1-a]pyrimidine Derivatives via Visible Light Photoredox Catalysis. RSCAdv.2012,2,4065-4068.
    [139](a) Nicewicz D. A.; MacMillan, D. W. C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science 2008,322,77-80. (b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. Enantioselective a-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc.2009,131,10875-10877. (c) Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. Enantioselective a-Benzylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc.2010,132,13600-13603.
    [140]Xuan, J.; Cheng, Y.; An, J.; Lu, L.-Q.; Zhang X.-X.; Xiao, W.-J. Visible Light-Induced Intramolecular Cyclization Reactions of Diamines:a New Strategy to Construct Tetrahydroimidazoles. Chem. Commun.2011,47,8337-8339.
    [141]DiRocco, D. A.; Rovis, T. Catalytic Asymmetric a-Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode:N-Heterocyclic Carbene and Photoredox Catalysis. J. Am. Chem. Soc.2012, 134,8094-8097.
    [142]Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Copper-Catalyzed Coupling of Alkylamines and Aryl Iodides:An Efficient System Even in an Air Atmosphere. Org. Lett.2002,4,581-584.
    [143]For recent examples about converting arylboronic acids into aromatic alcohols, see:(a) Webb, K. S;. Levy, D. A Facile Oxidation of Boronic Acids and Boronic Esters. Tetrahedron Lett.1995, 36,5117-5118. (b) Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. Regioselective Conversion of Arylboronic Acids to Phenols and Subsequent Coupling to Symmetrical Diaryl Ethers. J. Org. Chem.2001,66,633-634. (c) Benjamin, R.; Travis, B. R.; Ciaramitaro, B. P.; Borhan, B. Preparation of Purified KHSO5-H2O and "Bu4NHSO5 from Oxone by Simple and Efficient Methods. Eur. J. Org. Chem.2002,3429-3434. (d) Maleczka, R. E.; Shi, F.; Holmes, D.; Smith Ⅲ, M. R. C-H Activation/Borylation/Oxidation:A One-Pot Unified Route To Meta-Substituted Phenols Bearing Ortho-/Para-Directing Groups. J. Am. Chem. Soc.2003, 125,7792-7793. (e) Kianmehr, E.; Yahyaee, M.; Tabatabai, K. A Mild Conversion of Arylboronic Acids and Their Pinacolyl Boronate Esters into Phenols Using Hydroxylamine. Tetrahedron Lett. 2007,48,2713-2715. (f) Prakash, G. K. S.; Chacko, S.; Panja, C.; Thomas, T. E.; Gurung, L.; Rasul, G.; Mathew, T.; Olaha, G A. Regioselective Synthesis of Phenols and Halophenols from Arylboronic Acids Using Solid Poly(N-vinylpyrrolidone)/Hydrogen Peroxide and Poly(4-vinyl-pyridine)/Hydrogen Peroxide Complexes. Adv. Synth. Catal.2009,351,1567-1574. (g) Hosoi, K.; Kuriyama, Y.; Inagi, S.; Fuchigami, T. Electrochemical Hydroxylation of Organoboron Compounds. Chem. Commun.2010,46,1284-1286. (h) Xu, J.; Wang, X.; Shao, C.; Su, D.; Cheng, G.; Hu, Y. Highly Efficient Synthesis of Phenols by Copper-Catalyzed Oxidative Hydroxylation of Arylboronic Acids at Room Temperature in Water. Org. Lett.2010,12, 1964-1967. (i) Inamoto, K.; Nozawa, K.; Yonemoto, M.; Kondo, T. Micellar System in Copper-Catalysed Hydroxylation of Arylboronic Acids:Facile Acess to Phenols. Chem. Commun. 2011,47,11775-11777.(j) Zhu, C.; Wang, R.; Falck, J. R. Mild and Rapid Hydroxylation of Aryl/Heteroaryl Boronic Acids and Boronate Esters with N-Oxides. Org. Lett.2012,14, 3494.3497.
    [144](a) Matteson, D. S.; Moody, R. J; Jesthi, P. K. Reaction of Aldehydes and Ketones with a Boron-Substituted Carbanion, Bis(ethylenedioxyboryl)methide. Simple Aldehyde Homologation. J. Am. Chem. Soc.1975,97,5608-5609. (b) Matteson, D.S.; Moody, R. J. Homologation of Carbonyl Compounds to Aldehydes with Lithium Bis(ethylenedioxyboryl)methide. J. Org. Chem. 1980,45,1091-1095. (c) Brown, H. C.; Basavaiah, D.; Kulkarni, S. U. A General and Stereospecific Synthesis of trans-Alkenes and Regiospecific Synthesis of Ketones via Stepwise Hydroboration. J. Org. Chem,1982,47,3808-3810. (d) Brown, H. C.; Basavaiah, D.; Kulkarni, S. U.; Lee, H. D.; Negishi, E.-i.; Katz, J. J. Vinylic Organoboranes. A General Synthesis of (E)-Disubstituted-alkenes or Ketones via the (E)-(1-Substituted-1-alkenyl)boronic Esters. J. Org. Chem,1986,51,5270-5276. (e) Brown, H. C.; Imai, T.; Bhat, N. G. Vinylic Organoboranes. Stereoselective Synthesis of (E)-(1-Substituted-l-alkenyl)boronic Esters by the Nucleophilic Substitution of (Z)-(1-Bromo-1-alkenyl)boronic Esters with Organolithium or Grignard Reagents. Isolation and Oxidation to Ketones. J. Org. Chem,1986,51,5277-5282.
    [145](a) Kabalka, G. W.; Hedgecock, H. C. Jr. Mild and Convenient Oxidation Procedure for the Conversion of Organoboranes to the Corresponding Alcohols. J. Org. Chem.1975,40,1776-1779. (b) Ishida, N.; Miura T.; Murakami, M. Stereoselective Synthesis of Trisubstituted Alkenylboranes by Palladium-Catalysed Reaction of Alkynyltriarylborates with Aryl Halides. Chem. Commun.2007,4381-4383.
    [146](a) Matteson, D. S.; Ray, R. Superoxide-ion Oxidation of Hydrophenazines, Reduced Flavins, Hydroxylamine, and Related Substrates via Hydrogen-atom Transfer. J. Am. Chem. Soc.1980, 102,7591-7593. (b) Fontani, P.; Carboni, B.; Vaultier, M.; Maas, G. Synthesis of Cyclo-propylboronic Acid Esters by Carbene Transfer to 1-Alkenylboronic Acid Esters. Synthesis 1991, 605-609. (c) Hussain, N.; Hussain, M. M.; Ziauddin, M.; Triyawatanyu, P.; Walsh, P. J. Stereoselective Vinylation of Aryl N-(2-Pyridylsulfonyl) Aldimines with 1-Alkenyl-1,1-hetero-bimetallic Reagents. Org. Lett.2011,13,6464-6467.
    [147]For selected reviews on oxidative reactions with molecular oxygen, see:(a) Stahl, S. S. Palladium Oxidase Catalysis:Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angew. Chem. Int. Ed. 2004,43,3400-3420. (b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chem. Rev.2005,105,2329-2364.
    [148]Zen, J.-M.; Liou, S.-L.; Kumar, A. S.; Hsia. M.-S. An Efficient and Selective Photocatalytic System for the Oxidation of Sulfides to Sulfoxides. Angew. Chem. Int. Ed.2003,42,577-579.
    [149]Zhang, P.-F.; Wang, Y.; Li, H.-R.; Antonietti. M. Metal-free Oxidation of Sulfides by Carbon Nitride with Visible Light Illumination at Room Temperature. Green Chem.2012,14,1904-1908.
    [150]Gu, X.-Y.; Li, X.; Chai, Y.-H.; Yang, Q.; Li, P.-X.; Yao, Y.-M. A Simple Metal-free Catalytic Sulfoxidation under Visible Light and Air. Green Chem.2013,15,357-361.
    [151](a) Zhang, M.; Chen, C.-C.; Ma, W.-H.; Zhao, J.-C. Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed.2008,47,9730-9733. (b) Lang, X.-J.; Ji, H.-W.; Chen, C.-C.; Ma, W.-H.; Zhao. J.-C. Selective Formation of Imines by Aerobic Photocatalytic Oxidation of Amines on TiO2. Angew. Chem. Int. Ed.2011,50,3934-3937.
    [152](a) Su, F.-Z.; Mathew, S. C.; Lipner, G.; Fu, X.-Z.; Antonietti, M.; Blechert, S.; Wang, X.-X. mpg-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light. J. Am. Chem. Soc.2010,132,16299-16301. (b) Su, F.-Z.; Mathew, S. C.; Mhlmann, L.; Antonietti, M.; Wang, X.-C. Siegfried Blechert. Aerobic Oxidative Coupling of Amines by Carbon Nitride Photo-catalysis with Visible Light. Angew. Chem. Int. Ed.2011,50,657-660.
    [153]Gazi, S.; Ananthakrishnan. R. Bromodimethylsulfonium Bromide as a Potential Candidate for Photocatalytic Selective Oxidation of Benzylic Alcohols Using Oxygen and Visible Light. RSC Adv.2012,2,7781-7787.
    [154]Rueping, M.; Vila, C.; Szadkowska, A.; Koenigs, R. M.; Fronert. J. Photoredox Catalysis as an Efficient Tool for the Aerobic Oxidation of Amines and Alcohols:Bioinspired Demethylations and Condensations. ACS Catal.2012,2,2810-2815.
    [155]Ohzu, S.; Ishizuka, T.; Hirai, Y.; Fukuzumi, S.; Kojima. T. Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(Ⅱ)-Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity. Chem. Eur. J.2013,19,1563-1567.
    [156]Su, Y.-J.; Zhang, L.-R.; Jiao, N. Utilization of Natural Sunlight and Air in the Aerobic Oxidation of Benzyl Halides. Org. Lett.2011,13,2168-2171.
    [157]Sun, H.-N.; Yang, C.; Gao, F.; Li, Z.; Xia, W.-J. Oxidative C-C Bond Cleavage of Aldehydes via Visible-Light Photoredox Catalysis. Org. Lett.2013,15,624-627.
    [158]Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.; J(?)rgensen, K. A.; Xiao, W.-J. Highly Efficient Aerobic Oxidative Hydroxylation of Arylboronic Acids:Photoredox Catalysis Using Visible Light. Angew. Chem. Int. Ed.2012,51,784-788.
    [159](a) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T. Relative Reactivity and Stereo-selectivity in the Wittig Reactions of Substituted Benzaldehydes with Benzylidenetriphenyl-phosphorane. J. Org. Chem.1992,57,2865-2869. (b) Cotter, J.; Hogan, A.-M. L.; O'Shea, D. F. Development and Application of a Direct Vinyl Lithiation of cis-Stilbene and a Directed Vinyl Lithiation of an Unsymmetrical cis-Stilbene. Org. Lett.2007,9,1493-1496. (c) Tricotet, T.; Fleming, P.; Cotter, J.; Hogan, A.-M. L.; Strohmann, C;. Gessner, V. H.; O'Shea, D. F. Selective Vinyl C-H Lithiation of cis-Stilbenes. J. Am. Chem. Soc.2009,131,3142-3143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700