临界条件下碳纤维表面清洗及氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维具有高比强度、高比模量的特点,是制备高性能树脂基复合材料最常用的增强体材料之一。未经处理的碳纤维表面上缺少极性基团及具有化学活性的官能团,其表面呈现惰性无法与基体树脂形成牢固的界面结合,鉴于此碳纤维的表面改性一直受到人们的高度关注。本文尝试在高温高压的超临界流体、亚临界流体中开展对碳纤维表面的清洗和氧化研究工作,为碳纤维的表面改性处理提供新的方法和手段。
     采用超临界水、超临界丙酮和亚临界条件下的KOH碱液作为介质,对碳纤维表面浆料进行了清洗的实验研究。实验结果显示,超临界水处理可以显著地去除掉碳纤维表面残余的环氧浆料。X射线衍射(XRD)和Raman光谱分析表明,超临界水处理对碳纤维的本体和近表面结构没有显著的影响,碳纤维的单丝拉伸强度平均下降仅2.2%。经超临界水清洗后,碳纤维复合材料的界面剪切强度(IFSS)提高了约17.6%。超临界丙酮和亚临界碱液对碳纤维的表面也具有较好的清洗效果,超临界丙酮清洗适用于去除掉碳纤维表面上的环氧浆料,亚临界碱液清洗则更适用于清洗掉碳纤维表面上的含硅上的污染物。单丝拉伸测试结果则表明,超临界丙酮清洗和亚临界碱液清洗后碳纤维的单丝拉伸强度与通常使用的丙酮抽提方法的数据基本相当。
     本文分别选用了几种不同类型的氧化剂在超临界和亚临界流体中开展了碳纤维表面的氧化实验研究。在亚临界水体系中以H_2O_2作为氧化剂对碳纤维进行氧化处理,碳纤维表面上的羟基、羧基、酯键和醚键的数量均有小幅的增加。单丝拉伸测试结果表明,该氧化体系造成碳纤维的强度损失约为2.6~3.2%,扫描电镜(SEM)观察显示氧化未对纤维表面形貌造成严重影响。
     在亚临界水体系中以KMnO_4作为氧化剂对碳纤维进行氧化处理,XPS分析数据表明,处理后碳纤维表面上氧元素的含量达到16.0%,高度氧化时碳纤维表面上生成的基团主要以羧基和酯键为主。处理后碳纤维的强度损失平均为3.6%。动态接触角(DCA)测试表明,KMnO_4/亚临界水体系氧化处理后碳纤维的表面能有很大幅度的提高。SEM观察显示,该体系处理会对碳纤维的表面形貌造成显著的影响。
     为了有效减缓KMnO_4/亚临界水体系处理对碳纤维表面的损害,并且对氧化在碳纤维表面上产生的基团进行控制,将Br_2引入到KMnO_4/亚临界水氧化体系中对碳纤维进行氧化处理。实验结果表明,经Br_2/KMnO_4/亚临界水氧化后碳纤维的氧化效果仍然较好,但高度氧化时碳纤维表面上生成的基团主要以羟基和醚键为主。SEM观察、单丝强度测试和DCA测试的结果均表明,Br_2的引入确实能够在对纤维氧化的同时,对碳纤维的表面起到一定的保护的作用。
     在超临界Br_2膨胀的浓硫酸体系中对碳纤维进行了氧化处理。XPS分析表明,Br_2/浓硫酸体系对碳纤维表面的氧化处理具有较好的氧化效果,氧化后碳纤维表面上氧元素的含量提高了约10%,碳纤维表面上增加的含氧基团以羟基和醚键为主。DCA测试的结果表明,Br_2/浓硫酸体系处理后碳纤维表面能提高了约14%。该体系造成碳纤维的强度损失较大,约为3.9~4.5%,碳纤维的表面形貌也会发生较大的变化。体系中Br_2的用量会对氧化程度有一定的影响,适量添加可对碳纤维的表面起到一定保护作用。
     为了验证与Br同族的卤素Cl是否也能在氧化体系中起到控制氧化损伤以及改变氧化产物基团种类的作用,本文进行了在浓硫酸体系中以KClO3作为主要氧化剂的氧化处理。XPS分析表明,该体系对碳纤维表面的氧化效果较好,处理后氧元素的含量提高了约11%,碳纤维表面上包括羟基、羧基、酯键和醚键在内的含氧基团均有所增加。碳纤维的强度损失约为1.2~3.5%。DCA测试表明,采用该体系对碳纤维表面张力非极性分量造成的损害较小。
     在此基础上,本文针对碳纤维表面氧化的机制进行讨论,将碳纤维表面的氧化过程分为无定形结构的氧化和完整石墨片层边缘的氧化两部分,并且给出了完整石墨片层氧化的特点:首先,完整石墨片层边缘在氧化时会失去表面电荷而被活化;其次,完整石墨片层边缘上羧基和酯键的生成只有通过碳原子的脱除才能够深入的进行;再者,完整石墨片层边缘上含氧官能团的生成会导致石墨片层边缘的扭曲,使高度氧化的石墨片层因不能紧密堆垛而易于被剥离;最后,完整石墨片层边缘的氧化过程伴随着石墨片层电子的迁移,因此在氧化时碳纤维表面对亲电取代反应的活性有所增加。
Carbon fibers combine exceptional mechanical properties and low weight, actingas ideal reinforcements for polymer matrix composite materials. The performance ofthese composites depends largely on the quality of the matrix–reinforcementinterface, which determines the way loads can be transferred from the polymer tothe fiber. It has long been recognized that carbon fiber is essentially graphitic innature, when untreated and unsized, and therefore possesses a chemically inertsurface.
     In this paper, PAN-baded carbon fibers were cleaned and oxidated at hightemperature and presure. The results of XPS indicate that residual layers on thesurfaces of carbon fibers can be thoroughly removed by supercritical water at693Kfor less than9min. The single filament strength of treated fibers decreases slightly.But the results of XRD and Raman measurement suggest that there was noexcessive destruction taken placed in this cleaning procedure.
     Experimental results also reveal that the method using supercritical acetone orsubcritical potassium hydroxide aqueous solution act as the processing mediumshows a better cleaning effect compared to the traditional method, Soxhletextraction with acetone. The method using supercritical acetone is more appropriateto wipe off the oxygenated contaminants on carbon fibers’ surfaces and causes arelatively smaller damage to the bulk strength of each carbon fiber. As far as treatingmethod using the subcritical alkali aqueous solution, it can thoroughly removesilicious contaminants on the surfaces of treated fibers.
     After oxidation by H_2O_2/subcrtical water systems, oxygen content of the treatedfibers enlarged about5%. The monofilament tensile strength decreased about2.6~3.1%. The results of SEM observations indicate that oxidation reaction therewas no significant effect on the surface appearance of the treated carbon fibers.
     After oxidation by KMnO_4/subcrtical water systems, oxygen content of thetreated fibers increased to16.0%, meanwhile, the grooves on the surfaces of thecarbon fibers were deepened gradually after treatments. The results of dynamiccontact angle measurements suggest that an obvious increase of the carbon fiber’ssurface tension is mainly because of the enlargement of its polar component. Aftertreated with increasing amounts of oxidants, the monofilament tensile strength decreased about3.6%.
     To reduce the damages of the oxiadation treatments and control the generationgounps, Br_2was mixed into these systems. It shows that the oxidation can alsoincrease the oxygen content on fiber surfaces, but the generating group is hydroxyrather than carboxyl. Scanning electron microscope was used to follow the surfacetopography of the fibers. It reveals that the grooves on the surfaces of the oxidatedfibers were deepened gradually for both oxidation systems.
     After oxidation by Br_2/concentrated sulfuric acid, oxygen content of the treatedfibers increased about10%. DCA measurement show that carbon fiber’s surfacetension increased about14%, and The monofilament tensile strength decreasedabout3.9~4.5%. And the results of SEM observations indicate that oxidationreaction has a significant effect on the surface appearance of treated carbon fibers.
     In order to follow how the effect of Cl2compared with Br_2in the oxidationsystems, the carbon fibers were oxidized with KClO3/H2SO4systems. The XPSresults show that oxygen functional groups on the surfaces of carbon fibers increaseby about11%after treated, and the main of them are hydroxys and carboxyls. Theresults of monofilament tensile tests verify that the strength loss of the treated fiberswere about1.2~3.5%.
     A discusion of the mechanism of carbon fibers is given in this paper. It indicates:decarburizing step takes place before the formation of carbonyl and carboxyl groups,so mass loss in the highly oxidizing process of carbon fiber is inevitable; because ofsteric hindrance, the formation of the carbonyl and carboxyl groups leads togenerally warping graphite layers; the generation of lactone bond is preferred to thegeneration of carboxyl group in the oxidation process of carbon fibers.
引文
1Li J, Huang Y, Fu S, et al. Study On the Surface Performance of Carbon FibresIrradiated by γ-Ray Under Different Irradiation Dose [J]. Applied SurfaceScience.2010,256(7):2000-2004.
    2Xu Z, Li J, Wu X, et al. Effect of Kidney-Type and Circular Cross Sections OnCarbon Fiber Surface and Composite Interface [J]. Composites Part A: AppliedScience and Manufacturing.2008,39(2):301-307.
    3Xu Z, Huang Y, Liu L, et al. Surface Characteristics of Kidney and CircularSection Carbon Fibers and Mechanical Behavior of Composites [J]. MaterialsChemistry and Physics.2007,106(1):16-21.
    4Zhang X, Huang Y, Wang T. Surface Analysis of Plasma Grafted Carbon Fiber[J]. Applied Surface Science.2006,253(5):2885-2892.
    5Cao H, Huang Y, Zhang Z, et al. Uniform Modification of Carbon FibersSurface in3-D Fabrics Using Intermittent Electrochemical Treatment [J].Composites Science and Technology.2005,65(11-12):1655-1662.
    6Li J, Huang Y, Xu Z, et al. High-Energy Radiation Technique Treat On theSurface of Carbon Fiber [J]. Materials Chemistry and Physics.2005,94(2-3):315-321.
    7Boudou J P, Paredes J I, Cuesta A, et al. Oxygen Plasma Modification of Pitch-Based Isotropic Carbon Fibres [J]. Carbon.2003,41(1):41-56.
    8Montes-Morn M A, Young R J. Raman Spectroscopy Study of High-ModulusCarbon Fibres: Effect of Plasma-Treatment On the Interfacial Properties ofSingle-Fibre-Epoxy Composites: Part Ii: Characterisation of the Fibre-MatrixInterface [J]. Carbon.2002,40(6):857-875.
    9Montes-Morn M A, Young R J. Raman Spectroscopy Study of Hm CarbonFibres: Effect of Plasma Treatment On the Interfacial Properties of SingleFibre/Epoxy Composites: Part I: Fibre Characterisation [J]. Carbon.2002,40(6):845-855.
    10李凌.碳纤维复合材料数字化超声检测系统关键技术研究[D].浙江大学博士,2007.
    11张慧慧.碳纤维用Lyocell原丝力学性能改进的研究[D].东华大学博士,2005.
    12Paiva M C, Bernardo C A, Nardin M. Mechanical, Surface and InterfacialCharacterisation of Pitch and Pan-Based Carbon Fibres [J]. Carbon.2000,38(9):1323-1337.
    13Atkinson K E, Kiely C. The Influence of Fibre Surface Properties On the Modeof Failure in Carbon-Fibre/Epoxy Composites [J]. Composites Science andTechnology.1998,58(12):1917-1922.
    14Li L, Liu L, Wan H, et al. Surface Modification and Submicron Structure ofCarbon Fibers through High Current Pulse [J]. Applied Surface Science.2009,255(18):8030-8035.
    15Fukunaga A, Ueda S. Anodic Surface Oxidation for Pitch-Based Carbon Fibersand the Interfacial Bond Strengths in Epoxy Matrices[J]. Composites Scienceand Technology.2000,60(2):249-254.
    16Bismarck A, Kumru M E, Springer J, et al. Surface Properties of Pan-BasedCarbon Fibers Tuned by Anodic Oxidation in Different Alkaline ElectrolyteSystems [J]. Applied Surface Science.1999,143(1-4):45-55.
    17谢广文.纳米碳纤维表面化学镀层及模板法纳微结构的制备与表征[D].青岛科技大学博士,2007.
    18Zhang X, Huang Y, Wang T, et al. Influence of Fibre Surface Oxidation-Reduction Followed by Silsesquioxane Coating Treatment On InterfacialMechanical Properties of Carbon Fibre/Polyarylacetylene Composites [J].Composites Part A: Applied Science and Manufacturing.2007,38(3):936-944.
    19Li B, Zhang C, Cao F, et al. Effects of Fiber Surface Treatments On MechanicalProperties of T700Carbon Fiber Reinforced BN-Si3N4Composites [J].Materials Science and Engineering: A.2007,471(1-2):169-173.
    20Xu B, Wang X, Lu Y. Surface Modification of Polyacrylonitrile-Based CarbonFiber and its Interaction with Imide [J]. Applied Surface Science.2006,253(5):2695-2701.
    21Severini F, Formaro L, Pegoraro M, et al. Chemical Modification of CarbonFiber Surfaces [J]. Carbon.2002,40(5):735-741.
    22Park S, Jang Y. X-Ray Diffraction and X-Ray Photoelectron SpectroscopyStudies of Ni–P Deposited Onto Carbon Fiber Surfaces: Impact Properties of aCarbon-Fiber-Reinforced Matrix[J]. Journal of Colloid and Interface Science.2003,263(1):170-176.
    23Park S, Jang Y, Rhee K. Interlaminar and Ductile Characteristics of CarbonFibers-Reinforced Plastics Produced by Nanoscaled Electroless Nickel PlatingOn Carbon Fiber Surfaces[J]. Journal of Colloid and Interface Science.2002,245(2):383-390.
    24Vickers P E, Watts J F, Perruchot C, et al. The Surface Chemistry and Acid–Base Properties of a Pan-Based Carbon Fibre [J]. Carbon.2000,38(5):675-689.
    25Ramanathan T, Bismarck A, Schulz E, et al. Investigation of the Influence ofAcidic and Basic Surface Groups On Carbon Fibres On the Interfacial ShearStrength in an Epoxy Matrix by Means of Single-Fibre Pull-Out Test [J].Composites Science and Technology.2001,61(4):599-605.
    26Lee J, Drzal L T. Surface Characterization and Adhesion of Carbon Fibers toEpoxy and Polycarbonate [J]. International Journal of Adhesion and Adhesives.2005,25(5):389-394.
    27Paredes J I, Mart A, X, et al. Atomic-Scale Scanning Tunneling MicroscopyStudy of Plasma-Oxidized Ultrahigh-Modulus Carbon Fiber Surfaces [J].Journal of Colloid and Interface Science.2003,258(2):276-282.
    28Li J, Cai C L. The Carbon Fiber Surface Treatment and Addition of Pa6OnTensile Properties of Abs Composites [J]. Current Applied Physics.2011,11(1):50-54.
    29Mcconnell B K, Pethrick R A. A Dielectric Study of Hydrolytic Ageing and theEffects of Periodic Freezing in Carbon Fibre Reinforced Plastic JointedStructures [J]. International Journal of Adhesion and Adhensives.2010,30(4):214-224.
    30Deng L, Guo S J, Zhou M, et al. A Silk Derived Carbon Fiber Mat Modifiedwith Au&Pt Urchilike Nanoparticles: A New Platform as ElectrochemicalMicrobial Biosensor [J]. Biosensors&Bioelectronics.2010,25(10):2189-2193.
    31Liu J E, Tian Y L, Chen Y J, et al. A Surface Treatment Technique ofElectrochemical Oxidation to Simultaneously Improve the Interfacial BondingStrength and the Tensile Strength of Pan-Based Carbon Fibers[J]. MaterialsChemistry and Physics.2010,122(2-3):548-555.
    32Gabr M H, Elrahman M A, Okubo K, et al. A Study On Mechanical Propertiesof Bacterial Cellulose/Epoxy Reinforced by Plain Woven Carbon FiberModified with Liquid Rubber[J]. Composites Part A: Applied Science andManufacturing.2010,41(9):1263-1271.
    33Ho K, Kolliopoulos A, Lamoriniere S, et al. Atmospheric Plasma Fluorinationas a Means to Improve the Mechanical Properties of Short-Carbon FibreReinforced Poly (Vinylidene Fluoride)[J]. Composites Part A: Applied Scienceand Manufacturing.2010,41(9):1115-1122.
    34Bismarck A., Wuertz C., Springer J. Basic surface oxides on carbon fibers[J].Carbon.1999,37(7):1019-1027
    35Pamula E, Rouxhet P G. Bulk and Surface Chemical Functionalities of Type IiiPan-Based Carbon Fibres[J]. Carbon.2003,41(10):1905-1915.
    36Gao S, M der E, Zhandarov S F. Carbon Fibers and Composites with EpoxyResins: Topography, Fractography and Interphases[J]. Carbon.2004,42(3):515-529.
    37Ehlert G J, Lin Y, Sodano H A. Carboxyl Functionalization of Carbon Fibersthrough a Grafting Reaction that Preserves Fiber Tensile Strength[J]. Carbon.2011,49(13):4246-4255.
    38Severini F, Formaro L, Pegoraro M, et al. Chemical Modification of CarbonFiber Surfaces[J]. Carbon.2002,40(5):735-741.
    39Osbeck S, Bradley R H, Liu C, et al. Effect of an Ultraviolet/Ozone TreatmentOn the Surface Texture and Functional Groups On Polyacrylonitrile CarbonFibres[J]. Carbon.2011,49(13):4322-4330.
    40Xiao H, Lu Y, Wang M, et al. Effect of Gamma-Irradiation On the MechanicalProperties of Polyacrylonitrile-Based Carbon Fiber[J]. Carbon.2013,52:427-439.
    41Liu Y R,Huang Y D,Liu L.Thermal Stability of POSS/MethylsiliconeNanocomposites [J]. Composites Science and Technology,2007,67(13):2864-2876.
    42Coleman J N, Khan U, Blau W J, et al. Small but Strong: a Review of theMechanical Properties of Carbon Nanotube-Polymer Composites [J].Carbon,2006,44(9):1624-1652.
    43Pittman J C U, Jiang W, Yue Z R, et al. Surface Properties of ElectrochemicallyOxidized Carbon Fibers[J]. Carbon.1999,37(11):1797-1807.
    44Rosenthal D, Ruta M, Schl gl R, et al. Combined XPS and TPD Study ofOxygen-Functionalized Carbon Nanofibers Grown On Sintered Metal Fibers [J].Carbon.2010,48(6):1835-1843.
    45Mei H, Cheng L, Ke Q, et al. High-Temperature Tensile Properties andOxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Bolts in aSimulated Re-Entry Environment [J]. Carbon.2010,48(11):3007-3013.
    46Rennhofer H, Loidl D, Puchegger S, et al. Structural Development of Pan-BasedCarbon Fibers Studied by in Situ X-Ray Scattering at High Temperatures UnderLoad [J]. Carbon.2010,48(4):964-971.
    47Liu J, Tian Y, Chen Y, et al. A Surface Treatment Technique of ElectrochemicalOxidation to Simultaneously Improve the Interfacial Bonding Strength and theTensile Strength of PAN-Based Carbon Fibers [J]. Materials Chemistry andPhysics.2010,122(2–3):548-555.
    48Naghipour P, Bartsch M, Chernova L, et al. Effect of Fiber Angle Orientationand Stacking Sequence On Mixed Mode Fracture Toughness of Carbon FiberReinforced Plastics: Numerical and Experimental Investigations [J]. MaterialsScience and Engineering: A.2010,527(3):509-517.
    49Li L, Liu L, Wan H, et al. Surface Modification and Submicron Structure ofCarbon Fibers through High Current Pulse[J]. Applied Surface Science.2009,255(18):8030-8035.
    50Song X, Wang C, Zhang D. Surface Structure and Adsorption Properties ofUltrafine Porous Carbon Fibers [J]. Applied Surface Science.2009,255(7):4159-4163.
    51Hoffman E N, Skidmore T E. Radiation Effects On Epoxy/Carbon-FiberComposite [J]. Journal of Nuclear Materials.2009,392(2):371-378.
    52Ganapathy H S, Park S Y, Lee W, et al. Polymeric Nanoparticles FromMacroscopic Crystalline Monomers by Facile Solid-State Polymerization inSupercritical CO2[J]. The Journal of Supercritical Fluids.2009,51(2):264-269.
    53陈振华.二元体系超临界流体相行为研究[D].浙江大学博士,2009.
    54胡德栋.超临界流体中有机固体溶解度的研究[D].山东大学博士,2005..
    55Kluge J, Fusaro F, Mazzotti M, et al. Production of Plga Micro-AndNanocomposites by Supercritical Fluid Extraction of Emulsions: II.Encapsulation of Ketoprofen[J]. The Journal of Supercritical Fluids.2009,50(3):336-343.
    56Sane A, Limtrakul J. Formation of Retinyl Palmitate-Loaded Poly(L-Lactide)Nanoparticles Using Rapid Expansion of Supercritical Solutions Into LiquidSolvents (RESOLV)[J]. The Journal of Supercritical Fluids.2009,51(2):230-237.
    57Zhou W, Anitescu G, Tavlarides L L. Polychlorinated Biphenyl (PCB) PartitionEquilibrium Between St. Lawrence River Sediments and Supercritical Fluids [J].The Journal of Supercritical Fluids.2004,29(1-2):31-42.
    58Zhou H, Fang J, Yang J, et al. Effect of the Supercritical CO2On SurfaceStructure of PMMA/PS Blend Thin Films [J]. The Journal of SupercriticalFluids.2003,26(2):137-145.
    59Schwarz C E, Bonthuys G J K, Knoetze J H, et al. The Influence of FunctionalEnd Groups On the High-Pressure Phase Equilibria of Long Chain Molecules inSupercritical Propane [J]. The Journal of Supercritical Fluids.2008,46(3):233-237.
    60Sicardi S, Manna L, Banchero M. Diffusion of Disperse Dyes in Pet FilmsDuring Impregnation with a Supercritical Fluid [J]. The Journal of SupercriticalFluids.2000,17(2):187-194.
    61Yeo S, Kiran E. Formation of Polymer Particles with Supercritical Fluids: AReview [J]. The Journal of Supercritical Fluids.2005,34(3):287-308.
    62Goto M. Chemical Recycling of Plastics Using Sub-And Supercritical Fluids[J]. The Journal of Supercritical Fluids.2009,47(3):500-507.
    63Reverchon E, Della Porta G, De Rosa I, et al. Supercritical AntisolventMicronization of some Biopolymers [J]. The Journal of Supercritical Fluids.2000,18(3):239-245.
    64汤慧华.超临界流体诱导相转化膜制备工艺基础研究[D].大连理工大学博士,2009.
    65Dong Z, Liu Z, Han B, et al. Modification of Isotactic Polypropylene Films byGrafting Methyl Acrylate Using Supercritical CO2as a Swelling Agent [J]. TheJournal of Supercritical Fluids.2004,31(1):67-74.
    66Tsivintzelis I, Pavlidou E, Panayiotou C. Biodegradable Polymer FoamsPrepared with Supercritical CO2-Ethanol Mixtures as Blowing Agents[J]. TheJournal of Supercritical Fluids.2007,42(2):265-272.
    67Muth O, Hirth T, Vogel H. Polymer Modification by SupercriticalImpregnation[J]. The Journal of Supercritical Fluids.2000,17(1):65-72.
    68Matsuyama K, Mishima K. Preparation of Poly(Methyl Methacrylate)-Tio2Nanoparticle Composites by Pseudo-Dispersion Polymerization of MethylMethacrylate in Supercritical CO2[J]. The Journal of Supercritical Fluids.2009,49(2):256-264.
    69Gooijer J M, Scheltus M, Koning C E. End Group Modification of Polyamide-6in Supercritical and Subcritical Fluids: Part2: Amine and Carboxylic Acid EndGroup Modification with1,2-Epoxybutane [J]. The Journal of SupercriticalFluids.2004,29(1-2):153-164.
    70Sauceau M, Nikitine C, Rodier E, et al. Effect of Supercritical Carbon DioxideOn Polystyrene Extrusion[J]. The Journal of Supercritical Fluids.2007,43(2):367-373.
    71Gang-Sheng T, Liu T, Zhao L, et al. Supercritical Carbon Dioxide-AssistedPreparation of Polypropylene Grafted Acrylic Acid with High Grafted Contentand Small Gel Percent[J]. The Journal of Supercritical Fluids.2009,48(3):261-268.
    72Obrzut D L, Bell P W, Roberts C B, et al. Effect of Process Conditions On theSpray Characteristics of a PLA+Methylene Chloride Solution in theSupercritical Antisolvent Precipitation Process [J]. The Journal of SupercriticalFluids.2007,42(2):299-309.
    73Kwon S, Lee K, Bae W, et al. Synthesis of a Biocompatible Polymer UsingSiloxane-Based Surfactants in Supercritical Carbon Dioxide [J]. The Journal ofSupercritical Fluids.2008,45(3):391-399.
    74Gooijer J M, Ellmann J, Mller M, et al. End Group Modification of Polyamide-6in Supercritical and Subcritical Fluids: Part3: Amine End Group Modificationwith Diketene and Diketene Acetone Adduct in CO2[J]. The Journal ofSupercritical Fluids.2004,31(1):75-87.
    75Xinli Z, Xiaoling H, Ping G, et al. Preparation and Pore Structure of PorousMembrane by Supercritical Fluid [J]. The Journal of Supercritical Fluids.2009,49(1):111-116.
    76刘燕.超临界流体制备超微颗粒的过程模拟与喷嘴设计[D].山东大学博士,2005.
    77Alessi P, Ireneo K, Angelo C, et al. Polydimethylsiloxanes in SupercriticalSolvent Impregnation (Ssi) of Polymers[J]. The Journal of Supercritical Fluids.2003,27(3):309-315.
    78Kikic I. Polymer-Supercritical Fluid Interactions [J]. The Journal ofSupercritical Fluids.2009,47(3):458-465.
    79Shieh Y, Lai J, Tang W, et al. Supercritical CO2Intercalation ofPolycaprolactone in Layered Silicates [J]. The Journal of Supercritical Fluids.2009,49(3):385-393.
    80Scialdone O, Galia A, Raimondi S, et al. Effective Recovery ofPerfluoropolyether Surfactants From Pvdf and Ptfe by Supercritical CarbonDioxide Extraction [J]. The Journal of Supercritical Fluids.2007,39(3):347-353.
    81Pham V Q, Rao N, Ober C K. Swelling and Dissolution Rate Measurements ofPolymer Thin Films in Supercritical Carbon Dioxide [J]. The Journal ofSupercritical Fluids.2004,31(3):323-328.
    82Byun H, Yoo K. Phase Behavior On the Poly[Octyl(Meth)Acrylate]Supercritical Fluid Solvents+Monomer and CO2Monomer Mixtures at HighPressure [J]. The Journal of Supercritical Fluids.2007,41(3):472-481.
    83Hwang H S, Lee W, Hong S, et al. Dispersion Polymerization of Mma inSupercritical CO2in the Presence of Poly(Poly(Ethylene Glycol) Methacrylate-CO-1H,1H,2H,2H-Perfluorooctylmethacrylate)[J].The Journal of SupercriticalFluids.2007,39(3):409-415.
    84陈爱政.超临界流体技术制备聚乳酸基药物载体的研究[D].四川大学博士,2007.
    85蒋斌波.超临界流体技术制备无载体茂金属催化剂微粒的研究[D].浙江大学博士,2001.
    86Park J, Shim J. Emulsion Stability of Pmma Particles Formed by DispersionPolymerization of Methyl Methacrylate in Supercritical Carbon Dioxide [J]. TheJournal of Supercritical Fluids.2003,27(3):297-307.
    87Du L, Kelly J Y, Roberts G W, et al. Fluoropolymer Synthesis in SupercriticalCarbon Dioxide [J]. The Journal of Supercritical Fluids.2009,47(3):447-457.
    88Yuvaraj H, Hwang H S, Jung Y S, et al. Dispersion Polymerization of Styrenein Supercritical CO2in the Presence of Non-Fluorous Random CopolymericStabilizers [J]. The Journal of Supercritical Fluids.2007,42(3):351-358.
    89Zirkel L, Jakob M, Mnstedt H. Foaming of Thin Films of a Fluorinated EthylenePropylene Copolymer Using Supercritical Carbon Dioxide [J]. The Journal ofSupercritical Fluids.2009,49(1):103-110.
    90Ferri A, Banchero M, Manna L, et al. Dye Uptake and Partition Ratio ofDisperse Dyes Between a Pet Yarn and Supercritical Carbon Dioxide [J]. TheJournal of Supercritical Fluids.2006,37(1):107-114.
    91Nikitin L N, Gallyamov M O, Vinokur R A, et al. Swelling and Impregnation ofPolystyrene Using Supercritical Carbon Dioxide [J]. The Journal ofSupercritical Fluids.2003,26(3):263-273.
    92Sproule T L, Alex Lee J, Li H, et al. Bioactive Polymer Surfaces ViaSupercritical Fluids [J]. The Journal of Supercritical Fluids.2004,28(2-3):241-248.
    93许群.超临界流体的性质及其在化学反应中的应用[D].中国科学院研究生院(化学研究所)博士,1999.
    94Hirogaki K, Tabata I, Hisada K, et al. An Investigation of the Interaction ofSupercritical Carbon Dioxide with Poly(Ethylene Terephthalate) and the Effectsof some Additive Modifiers On the Interaction [J]. The Journal of SupercriticalFluids.2005,36(2):166-172.
    95Trk M, Upper G, Hils P. Formation of Composite Drug-Polymer Particles byCo-Precipitation During the Rapid Expansion of Supercritical Fluids [J]. TheJournal of Supercritical Fluids.2006,39(2):253-263.
    96Said-Galiyev E E, Vygodskii Y S, Nikitin L N, et al. Synthesis of Polyimides inSupercritical Carbon Dioxide [J]. The Journal of Supercritical Fluids.2003,27(1):121-130.
    97Lee S, Park K C, Mahiko T, et al. Supercritical Water Oxidation ofPolychlorinated Biphenyls Based On the Redox Reactions Promoted by Nitrateand Nitrite Salts [J]. The Journal of Supercritical Fluids.2006,39(1):54-62.
    98Tang S, Zong Z, Zhou L, et al. Molecular Composition of Soluble FractionFrom Depolymerized Cornstalk Powder in Supercritical Methanol and Ethanol[J]. Renewable Energy.2010,35(5):946-951.
    99Garay I, Pocheville A, Madariaga L. Polymeric Microparticles Prepared bySupercritical Antisolvent Precipitation [J]. Powder Technology.2010,197(3):211-217.
    100徐志伟. γ射线辐照对腰形碳纤维及其复合材料界面的影响[D].哈尔滨工业大学博士,2007.
    101李东东.超临界流体对碳纤维表面处理的研究[D].哈尔滨工业大学硕士,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700