芳烃的硝化反应及其理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝化反应是工业化生产的有机合成方法中极其重要的一类。一方面,其产物可广泛地应用于炸药、推进剂、化工原料、医药和农药等许多领域;另一方面,芳烃硝化机理的研究对亲电取代反应基础理论发展起了很大的作用。本文主要探索了多种新型绿色的催化硝化反应体系,并借助于量化手段,从理论方面,包括硝化反应机理和部分硝基化合物的合成路线等,进行进一步研究。
     为了适应日益严峻的环境问题,改善工业生产中严重的污染问题,本文探索了多种绿色催化硝化体系,包括:1)纳米氧化物负载的杂多酸催化;2)酸性离子液体/N2O5体系;3)表面活性剂做相转移催化剂;4)多种高比表面的复合型固体酸催化。每个催化体系的总体研究程序如下,先通过不同的表征手段确定合成的催化剂,然后对催化硝化的反应条件进行优化,最后对催化体系的适用性和催化剂的循环次数进行考察。结果表明,这些催化体系均能减少甚至避免混酸的使用,减少废酸的排放。大部分体系还可以改变硝化产物中异构体的比值,单取代烷基苯的对邻比可以提高到1:1,单取代卤代苯的对邻比可以提高到5:1,部分二取代苯的选择性可超过9:1。改善选择性,最终可获得具有更高商业价值的硝化产物。
     采用量化模拟的手段,本文对理论方面的研究主要在两个方面,一是对部分催化硝化过程进行机理的研究,二是对部分合成的硝基化合物进行合成路线的研究。
     首先,为了深入的了解催化硝化的反应过程,本文借助Gaussian量子化学模拟软件,尝试通过计算模拟来研究其催化反应机理。在对表面活性剂催化二取代芳烃的反应模拟后发现,影响硝化产物中异构体分布的因素主要有两个,一个是空间位阻,另一个是芳烃电荷或自旋电子的分布情况,选择性是两者相互制约的结果,而通过改变其中任一因素,即很有可能使选择性发生较大改变。而在固体酸催化单取代芳烃的硝化过程中,因为空间影响相对较小,本文着重研究了固体酸催化剂中过渡金属原子与芳烃的相互作用。结果表明,这些金属原子改变了芳烃上的电荷或自旋电子的分布,最终导致选择性发生明显的变化。
     接着,围绕2,6-二氨基-3,5-二硝基吡啶和2,6-二氨基-3,5二硝基-1-氧-吡嗪(LLM-105)的制备合成与性能应用进行了深入的研究,先是优化了2,6-二氨基-3,5-硝基吡啶的合成条件,产率可达90%以上;因其可以做为多种潜在含能材料的中间体,进一步研究了其还原成2,3,5,6-四氨基吡啶的方法。而在对LLM-105的研究中,改进了LLM-105的合成方法,将总产率提高到了65%。借助与Gaussian着重比较了两条合成路线的不同,并进一步研究了各个基团之间的相互作用,结果表明,涵盖整个分子的大共轭体系是该物质有很好性能的关键。
Nitration is one of the most important organic reactions in industry. It has a wide application in many areas, such as explosive, propellant, chemical intermediates, medicine and pesticide. On the other hand, the mechanism research on aromatic plays an important role in the development of electrophilic substitution theory. Here, we mainly studied the synthesis method of nitro-compounds (mainly nitration), reaction mechanism and pre-evaluating the property of part of these compounds.
     To solve the more and more serious environmental problem and modify the pollution in industrial production, we discovered several green nitration system:1) Nano metal oxides supported heteropoly acid;2) Acidity ionic liquid/N2O5system;3) surfactant as phase-transfer catalyst;4) various of modified solid acid with high surface. The general research process in each catalytic system was as follow:first part was the characterization of these novel catalysts with different method; secondly, optimize the reaction condition with this catalytic system; finally, investigate the applicability and recycle performance of the catalyst. The results showed that all these catalytic systems could significantly reduce or avoid the using of liquid acid. Besides that, most catalytic systems could change the isomer distribution in nitro-products, the para/ortho ratio of mono-alkylbenzene could be improved to1:1, para/ortho ratio of mono-halogenobenzen would be improved to5:1, part of the disubstituted aromatic could reach9:1. By modifying the selectivity, higher commercial value compounds would be obtained.
     With quantum chemistry simulation method, the theoretical study mainly focused on two areas:one is the mechanism research of above nitration process with different catalytic system; the other is the evaluation of the property of synthesized or designed nitro-compounds.
     First, to understanding the nitration mechanism, we attempted to simulate the catalytic process by computer with quantum chemistry software Gaussian. With the simulation result of disubstituted aromatic nitration with surfactant, two main factors that affect the product distribution were found:one was sterical exclusion; the other was charge or spinning electron distribution in benzene ring. Selectivity was the mutual restraint result. Change either factor, the selectivity might be influenced. In the study of nitration of monosubstitute aromatic with solid acid, the sterical exclusion was small enough that we could focus on the other factor. We mainly calculated the interaction between transition metal and aromatic. The results showed that this interaction can modify the distribution of charge or spinning electron and thus leaded to a significant change in selectivity.
     Next, we studied the preparation and property of2,6-diamino-3,5-dinitropyrdine (LLM-105) and2,6-diamino-3,5-dinitropyrazine-l-oxide. First, the synthetic condition of2,6-diamino-3,5-dinitropyrdine was optimized and got an excellent yield over90%; then, because it was also a potential intermediate for several new and excellent energetic materials, we studied its reduction to2,3,5,6-tetraamineopyridine. In the research of LLM-105, the synthetic method was improved and the yield reached65%. Two different synthetic routes were compared with Gaussian, and the function of each group was discussed in detail. The result showed that π-conjugate of electron cloud involving the whole molecule was the key of its high stability and excellent performance.
引文
[1]Ono N. The nitro group in organic synthesis. New York:Wiley-VCH,2001.
    [2]Suzuki H, Takeuchi T, Mori T. Ozone-mediated nitration of phenylalkyl ethers, phenylacetic esters and related compounds with nitrogen dioxide. The highest ortho substitution observed in the electrophilic nitration of arenes. J. Org. Chem.,1996, 61(17):5944-5947
    [3]Suzuki H, Takeuchi T, Suzuki H, et al. A novel non-acid method for the preparation of 2,2,2-trifluoro-l-(3-nitrophenyl)ethanone and 1-nitro-3-trifluoromethyl-benzene, versatile starting materials for trifluoromethyl-contraining aromatic compounds. Synthesis,1995,(11):1353-1354
    [4]Bakke J M, Hegbom I. Dinitrogen Pentoxide--Sulfur Dioxide, a New Nitration System. Acta. Chem. Scand.,1994,48:181-182
    [5]Bakke J M, Ranes E. A new efficient synthesis of 3-Nitropyridine and substituted derivatives. Synthesis,1997, (3):281-283
    [6]Suzuki H, Iwaya M, Mori T. C-Nitration of pyridine by the kyodai-nitration modified by the Bakke procedure. A simple route to 3-nitropyridine and mechanistic aspect of its formation. Tetrahedron Lett.,1997,38(2):5647-5650
    [7]Bakke J M, Ranes E, Riha J. The cyclisation of a nitramine, formation of 3-nitropyridine from 5-nitraminopenta-2,4-dienal. Tetrahedron Lett.,1998, 39(8):911-912
    [8]Suzuki H, Mori T, Maeda K. Ozone-mediated reaction of polychlorobenzenes and some related halogeno compounds with nitrogen dioxide:a novel non-acid methodology for the selective mononitration of moderately deactivated aromatic systems. Synthesis, 1994, (8):841-845
    [9]Suzuki H, Murashima T, Mori T. Ozone-mediated nitratrion of arenes with nitrogen dioxide:change-over of the orienting influences of alkyl, alkoxyl and halogen substituent groups from meta to ortho-para dominance. J. Chem. Soc. Chem. Commun.,1994, (12):1443-1444
    [10]Kurz M E, Yang L T A, Zahora E P, et al. Nitration by acyl nitrates. J. Org. Chem., 1973,38(13):2271-2277
    [11]Smith K, Fry K. Para-selective mononitration of alkylbenzenes under mild conditions by use of benzoylnitrate in the presence of azeolite catalyst. Tetrahedron Lett.,1989, 30(39):5333-5336
    [12]Haner R, Seebach D. Nitration of the DBHA Cyclopropanecarboxylate Enolate-A New and Efficient Route to 1-Aminocyclopropane-l-carboxylic Acid. Chimia,1985, 39:356-357
    [13]彭新华,吕春绪.皂土催化剂上芳烃的硝酸酯硝化反应的区域选择性研究.有机化学,2000,20(4):570~573
    [14]Olah G H, Fung A P, Narang S C, et al. Boron trifluoride catalyzed nitration of aromatics with silver nitrate in acetonitrile solution. J. Org. Chem.,1981, 46(17):3533-3537
    [15]Coomes R G, Russell L W, Nitration of aromatic compounds by tetranitratotianium(IV) in carbon tetrachloride solution. J. Chem. Soc, Perkin 2,1974,830-834
    [16]Cornelis A, Delande L, Gerstmatie A, et al. A procedure for quantitative regioselective nitration of aromatic hydrocarbons in the laboratory. Tetrahedron Lett.,1988, 29(44):5657-5660
    [17]Cornelis A, Laszlo P, Pennetreau P. Nitration of phenols by clay-supported ferricnitrate. Bull. Soc. Chim. Beig.,1984,93(11):961-972
    [18]吕春绪,蔡春.金属硝酸盐-醋酐硝化剂的研究.兵工学报,1994,2:42~45
    [19]Coomes R G, Russell L W. Products of nitration of aromatic and heteraromatic compounds by some transition-metal nitrato-compounds. J. Chem. Soc. Perkin 1,1974, 1751-1752
    [20]Mellor J M, Stifun M, Rachel P, et al. Improved nitration using metal nitrate-sulfuric acid systems. Tetrahedron,2000,56:8019-8024
    [21]Mohammad A Z, Ezat G, Elahe M. A convenient method for selective mono or dinitration of phenol under mild conditions. Synth. Commun.,2000,30(10): 1689-1694
    [22]Nasseriranpoor, Habib F, Mohammad A Z. Efficient and selective mono and dinitration of phenols with Cr(NO3)2N2O4 as a new nitrating agent. Synth. Commun., 1998,28(15):2773-2781
    [23]Ganguly N, Sukai A K, De S. Cerium(IV)ammonium nitrate mediated nitration of coumarins. Synth. Commun.,2001,31(2):301-309
    [24]梁娟,何曙霓主编.催化科学与技术——催化剂新材料.化学工业出版社.1990
    [25]Smith K, Musson A, Deboos G A. A Novel method for the nitration of simple aromatic compounds. J. Org. Chem.,1998,63:8448-8454
    [26]Choudary B M, Lakshmi Kantam M, Koteswara Rao K, et al. Selective nitration of aromatic compounds by solid acid catalysts. J. Chem. Soc. Chem. Commun.,2000, ():25-26
    [27]Qian H, Ye Z W, Lv C X. Ultrasonically promoted nitrolysis of DAPT to HMX in ionic liquid. Ultra Sonochem.,2008,12:326-329
    [28]王恩波,胡长文,许林著.多酸化学导论.北京:化学工业出版社.1998
    [29]Fancis J W, Anthony G M B, Christopher B D, et al. Hafhium(IV) and zirconium(IV)triflates as superior recyclable catalysts for the atom economic nitration of o-nitrotoluene. Tetrahedron Lett.,1998,39:1641-1642
    [30]Sato H, Nagai K, Yoshioka H, et al. Vapor-phase nitration of benzene over solid acid catalysts (3):nitration with nitric acid; mixed metal oxide treated with sulfuric acid and heteropolyacid partially neutralized. Appl. Catal. A:Gen.,1998,175:209-213
    [31]Aramendia M A, Borau V, Jimenez C. Synthesis and characterization of ZrO2 as acid-basic catalysts:reactivity of 2-methyl-3-butyn-2-ol. J. Catal,1999,183: 240-250
    [32]Barton D G, Soled S L, Meitzner G D, et al. Structural and catalytic characterization of solid acids based on zirconia modified by tungstenoxide. J. Catal,1999,181: 57-72
    [33]Milczak T, Jacniacki J, Zawadzki J. Nitration of aromatic compounds on solid catalysts. Synth. Commun.,2001,31(2):173-181
    [34]Yadav G D, Nair J J. Selectivity engineering in the nitration of chlorobenzene using eclectically engineered sulfated zirconia and carbon molecular sieve catalysts.Catal.Lett.,1999,62:49-52
    [35]田鹏,康艳红,宋溪明.绿色溶剂——离子液体的相平衡和微观结构.北京:科学出版社,2009
    [36]顾彦龙,时峰,邓友全.室温离子液体:一类新型的软介质和功能材料.科学通报,2004,49(6):515~521
    [37]Dai L Y, Yu S Y, Shan Y K, et al. Novel room temperature inorganic ionic liquids. Eur. J. Inog. Chem.,2004,35(15):237-241
    [38]Huang J, Jiang T, Gao H X. Active and stable catalys Pd nanoparticles immobilized onto molecular sieve by ionic liquid as heterogenerous catalyst for solvent free hydrogenation. Angew Chem. Int. Ed.,2004,43:1397-1399
    [39]Leone A M, Weatherly S C, Williams M E. An ionic liquid form of DNA:redox-active molten salts of nuceic acids. J. Am. Chem. Soc.,2001,123(2):218-222
    [40]Zhao D B, Fei Z F, Williams M F. Nitrile-functionslized pyridinium ionic liquids; synthesis, characterization, and their application in carbon-carbon coupling reactions. J. Am. Chem. Soc.,2003,126 (48):218-222
    [41]Ni B K, Headley A D, Li G G. Design and synthesis of C-2 substituted chiral imidazolium ionic liquids from amino acid derivatives. J. Org. Chem.,2005,70(25): 10600-10602
    [42]Seddon K R. Ionic liquid, a taste of the future. Nature Mater.,2003,2(6):363-365.
    [43]Zhao D B, Wu M. Ionic liquids:applications in catalysis. Catal. Today,2002,74 (1-2): 157-189.
    [44]Wilkes J S. Ionic liquids in synthesis. Weinheim:Wiley-VCH,2003.
    [45]Yoshio M, Mukai T, Ohno H, Kato T. One-dimensional ion transport in self-organized columnr ionic liquids. J. Am.Chem.Soc.,2004,126(4):994-995.
    [46]Freemantle M. Designer solvent-ionic liquids may boost clean technology development. Chem. Eng. News,1998,76:32-37.
    [47]Zhao D B, Fei Z F,Geldbach T J, et al. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. J. Am. Chem. Soc.,2004,126(48):15876-15882.
    [48]Bao W L, Wang Z M, Li Y X. Synthesis of chiral ionic liquids from natural amino acids. J. Org. Chem.,2003,68(2):591-593.
    [49]Cole A C, Jensen J L, Ntai Ⅰ. Novel Brφnsted acidic liquids and their use as dual solvents-catalysts. J. Am. Chem. Soc.,2002,124(21):5962-5963.
    [50]Ishida Y, Miyauchi H, Saigo K. Design and synthesis of a novel imidazolium based ionic liquid with planar chirality. Chem. Comm.,2002, (19):2240-2241.
    [51]Zhang J, Zhang S, Dong K. Supported absorption of CO2 by tetrabutylphosphonium amino acids ionic liquids. Chem. Eur. J.,2006,12(15):4021-4026
    [52]Zhang J, Sun N, Zhang X. Periodicity and map for discovery of new ionic liquids. Sci. China Ser. B,2006,49(2):103-105
    [53]Jaeger D A, Tucker C E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett.,1989,30(14):1785-1788
    [54]Fischer T, Sethi A, Welton T, Woolf J. Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett.,1999,40(4):793-796
    [55]Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation:Heck reaction at ambient conditions in room temperature ionic liquids. Chem. Commun.,2001,(11):1544-1545
    [56]方东,施群荣,巩凯,刘祖亮.离子液体催化甲苯绿色硝化反应研究.含能材料,2007,15(2):122~124
    [57]Aridoss G, Laali K K. Ethylammonium nitrate (EAN)/Tf2O and EAN/TFAA:Ionic liquid based systems for aromatic nitration. J. Org. Chem.,76 (19):8088-8094
    [58]Bailey P S, Keller J E. Ozonation of amines. III. tert-Butylamine. J. Org. Chem.,1968, 33(7):2680-2684
    [59]Keinan E, Mazur Y. Dry ozonation of amines. Conversion of primary amines to nitro compounds. J. Org. Chem.,1977,42(5):844-847
    [60]Zajac W W, Walters Jr T R, Woods J M. 1-Amino-3,5,7-trinitroadamantane:an unexpected oxidation product of 1,3,5,7-tetraaminoadamantane. An improved synthesis of 1,3,5,7-tetranitroadamantane. J. Org. Chem.,1989,54(10):2468-2471
    [61]Jayachandran B, Sasidharan M, Sudalai A, Ravindranathan T. Chromium silicalite-2 (CrS-2):an efficient catalyst for the direct oxidation of primary amines to nitro compounds with TBHP. J. Chem. Soc., Chem. Commun.,1995, (15):1523-1524
    [62]Muray R W, Jeyaraman R, Mohan L. A new synthesis of nitro compounds using dimethyldioxirane. Tetrahedron Lett.,1986,27(21):2335-2336
    [63]Muray R W, Jeyaraman R. Dioxiranes:synthesis and reactions of methyldioxiranes. J. Org. Chem.,1985,50(16):2847-2853
    [64]Emmons W D. The oxidation of amines with peracetic acid. J. Am. Chem. Soc.,1957, 79(20):5528-5530
    [65]Gilbert K E, Borden W T. Peracid oxidation of aliphatic amines:general synthesis of nitroalkanes. J. Org. Chem.,1979,44(4),659-661
    [66]Vega-Perez J M, Candela I, Iglesias-Guerra F. A facile synthesis of saturated 2-nitrosugar derivatives. J. Org. Chem.,1997,62(19):6608-6611
    [67]Krohn K, Kupke J. Zirconium-catalyzed oxidation of primary aliphatic amines to nitro compounds with tert-butyl hydroperoxide. Eur. J. Org. Chem.,1998,1998(4):679-682
    [68]Emmons W D, Psgano A S. Peroxytrifluoroacetic Acid. VI. The oxidation of oximes to nitroparaffins. J. Am. Chem. Soc.,1955,77(17):4557-4559
    [69]Ballini R E, Marcantoni E, Petrini M. Synthesis of functionalized nitroalkanes by oxidation of oximes with urea-hydrogen peroxide complex and trifluoroacetic anhydride. Tetrahedron Lett.,1992,33(33):4835-4838
    [70]Olah G A, Ramaiah P, Lee C S, Prakash G K S. Convenient oxidation of oximes to nitro compounds with sodium perborate in glacial acetic acid. Synlett.,1992, (4):337-339
    [71]Archibald T G, Garvier L C, Baum K, Cohen M C. Synthesis of polynitrocyclobutane derivatives.J. Org. Chem.,1989,54(12):2869-2873
    [72]Marchand A P, Arney B E, Dave P R. Synthesis of 8,8,11,11-tetranitropentacyclo [5.4.0.02,6.03,10.05,9]undecane.J. Org. Chem.,1988,53(2):443-446
    [73]Iffland D C, Criner G X. Preparation of Nitro Compounds from Oximes. II. The Improved Synthesis of Nitrocycloalkanes. J. Am. Chem. Soc.,1953,75,4047-4048
    [74]Barnes M W, Patterson J M. Oxime to nitro conversion. Superior synthesis of secondary nitroparaffins. J. Org. Chem.,1976,41(4):733-735
    [75]Archibald T G, Baum K. Synthesis of polynitroadamantanes. Oxidations of oximinoadamantanes. J. Org. Chem.,1988,53(20):4645-4649
    [76]Takamoto T, Sudoh R, Nakagawa T. A new synthetic method of nitro sugars. Tetrahedron Lett.,1971,12(23):2053-2056
    [77]Takamoto T, Ohki M, Sudoh R, Nakagawa T. Studies on nitro sugars. IV, The synthesis of benzyl 2-deoxy-3,4-O-isopropylidene-2-nitro-β-D-arabino-and ribo-pyranoside. Bull. Chem. Soc. Jpn.,1973,46:670-671
    [78]Takamoto T, Sudoh R. Studies on nitro sugars. VI. Synthesis of methyl 2-deoxy-2-nitro-a-D-glucopyranoside derivatives. Bull. Chem. Soc. Jpn.,1975, 48:3413-3414
    [79]Aebischer B, Vasella A. Deoxy-nitrosugars.4th communication. Convenient synthesis of 1-deoxy-l-nitroaldoses. Helv. Chim.Acta,1983,66(3):789-794
    [80]Weber J F, Talhouk J W, Nachman R J, You T P, Halaska R C, Williams T M, Mosher H S. Methyl 2,3-dideoxy-3-nitro-D-erythro-pentofuranoside, isomers and derivatives. J. Org. Chem.,1986,51(14):2702-2706
    [81]Eaton P E, Wicks G E. Conversion of isocyanates to nitro compounds with dimethyldioxirane in wet acetone. J. Org. Chem.,1988,53(22):5353-5355
    [82]Machand A P, Jin P, Anderson J L F, Gilardi R, George C. A novel rearrangement in a 1,3-bishomocubyl ring system. J. Chem. Soc., Chem. Commun.,1987, (14):1108-1109
    [83]Corey E J, Samuelsson J B, Luzzio F A. A new method for the synthesis of organic nitro compounds. J. Am. Chem. Soc.,1984,106(12):3682-3683
    [84]Carmeli M. et al. Oxidation of azides by the HOFCH3CN:□ a Novel synthesis of nitro compounds. J. Org. Chem.,2006,71(12):4585-4589
    [85]Saito S, Koizumi Y. Copper-catalyzed coupling of aryl halides and nitrite salts:a mild Ullmann-type synthesis of aromatic nitro compounds. Tetrahedron Lett.,2005,46: 4715-4717
    [86]ForsBP, BuchwaldSL.Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics. J. Am. Chem. Soc.,2009,131 (36):12898-12899
    [87]Surya Prakash, G K, Mathew T. Ipso-nitration of arenes. Angew. Chem. Int. Ed.,2010, 49 (10):1726-1728
    [88]Jiang J J, Shi M. Development of new chiral phosphine-salen type ligands and their application in the Cu(I)-catalyzed enantioselective Henry reaction.,2007, Tetrahedron: Asymmetry,120:1265-1268
    [89]Baer H H, Urbas L. The chemistry of the nitro and nitroso groups, New York: Interscience,1970
    [90]Rosini G Comprehensive Organic Synthesis. New York:Pergamon,1992
    [91]Shvekhgeimer M C A. Aliphatic nitro alcohols. Synthesis, chemical transformation and applications. Russ. Chem. Rev.1998,67(1):35-68
    [92]Shibasaki M, Sasai H, Arai T. Asymmetric catalysis with heterobimetallic compounds. Angew. Chem. Int. Ed.,1997,36(12):1236-1256
    [93]Vanderbilt B M, Hass H B. Aldehyde-Nitroparaffin Condensation. Ind. Eng. Chem., 1940,32:34-38
    [94]Herman L W, Apsimon J W. A novel intramolecularly stabilized nitronic acid, 2-aci-nitro-1,3-propanediol. Tetrahedron Lett.,1985,26(11):1423-1424
    [95]Simaneck V, Preininger V, Klasek A, Jurina J. The structure and the synthesis of sevanine. Heterocycles,1976,4(7):1263-1266
    [96]Cavallo, A S, Lapitais H, Buchert P, Klein A, Colonna S. Asymmetric synthesis of ephedrine analogs. J. Organomet. Chem.,1987,330(3):357-363
    [97]Ballini R, Bosica G, Petrini M. Fast nitroaldol reaction using powdered KOH in dry media. Chem. Lett.,1999,28:1105-1106
    [98]Dauben H J, Ringold Jr H J, Wade R W, Pearson D L, Anderson A G. Cycloheptanone. Org. Synth.,1963,4:221
    [99]Ballini R, Castagnani R, Petrini M. Chemoselective synthesis of functionalized conjugated nitroalkenes. J. Org. Chem.,1992,57(7):2160-2162
    [100]Elfehali F E, Zajac W W..alpha.-nitro ketones.5. Synthesis of 2-nitrocyclopentanones. J. Org. Chem.,1981,46(25):5151-5155
    [101]Ozbal H, Zajac W W. Electronic and molecular structure of simple bicyclopropyls. Photoelectron spectroscopy and model calculations. J. Org. Chem.,1981,46(16), 3082-3089
    [102]Schmitt R J, Bottaro J C, Malhotra R, Bedford C D. Nitroacetylenes:synthesis of 1-nitro-2-(trialkylsilyl)acetylenes via nitrodesilylation of bis(trialkylsilyl)acetylenes. J. Org. Chem.,1987,52(11),2294-2297
    [103]Hughes E D, Ingold C K, Reed R I. Kineties and mechanism of aromatic nitration.Part II. Nitration by the nitronium ion, NO2+, derived from the nitric acid. J. Chem. Soc.,1950:2400-2440
    [104]Bunton C A, Halevi E A, Llewellyn D R. Oxygen exchange between nitric acid and water. Part I. J. Chem. Soc.,1952:4913-4916
    [105]Bunton C A, Halevi E A, Llewellyn D R. Oxygen exchange between nitric acid and water. Part I. J. Chem. Soc.,1952:4917-4924
    [106]Knowles J R, Norman R O C, Radda G K. A quantitative treatment of electrophilic aromatic substitution. J. Chem. Soc.,1960:4885-4896
    [107]Olah G A. Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res.,1971, 4:240-248
    [108]Olah G A, Kobayashis S, Tashiro M. Aromatic substitution. Friedel-Crafts benzylation of benzene and toluene with benzyl and substituted benzyl halides. J. Chem. Soc.,1972,94(21):7448-7461
    [109]Perrin C L, Skinner G A. Directive effects in electrophilic aromatic substitution ("ipso factors"). Nitration of haloanisoles. J. Am. Chem. Soc.,1971,93:3389-3394
    [110]Myhre P C. Nitro group migrations during aromatic nitration. J. Am. Chem. Soc., 1972,94(22):7921-7923
    [111]Perrin C L. Necessity of electron transfer and a radical pair in the nitration of reactive aromatics. J. Am. Chem. Soc.,1977,99(16):5516-5518
    [112]Barnett W J, Moodie R B, Sehofield K, et al. Electrophilic aromatic substitution. Part XIII kineties, isomer yields, and the consequences of ipso-attack in the nitration of toluene and polymethylbenzenes in aqueous sulphuric acid, and their significance for the mechanism of aromatic nitration. J. Am. Chem. Soc., Perkin Trans 2, 1975:648-654
    [113]De Queiroz J F, De M Carneiro J W, et al. Electrophilic aromatic nitration: Understanding its mechanism and substituent effects. J. Org. Chem.,2006,71, 6192-6203
    [114]Feng X.Q. et al. Gaussian量子化学模拟对芳烃硝化机理的探索.Univ. Chem., 2008,23,37-39
    [115]John P P. Density-functional approximation for the correlation energy of the in homogeneous electron gas. Phys. Rev. B,1986,33(12),8822-8824
    [116]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37(2):785-789
    [117]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A.1988,38(6):3098-3100
    [118]Raghavachari K, et al. Fifth order Moeller-Plesset perturbation theory:comparison of existing correlation methods and implementation of new methods correct to fifth order. J. Chem. Phys.,1990,94:5579-5586
    [119]Zhou Z X, Parr R G Activation hardness:New index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc.,1990,112:5720-5724
    [120]Olah G A, Balaram Gupta B G, Narang S C. Onium ions.20. Ambident reactivity of the nitronium ion. J. Am. Chem. Soc.,1979,101:5317-5322
    [121]Bernardi F, et al. Gaseous [N2O5]H+,[N2O4]H+, and related species from the addition of NO2+and NO+ions to nitric acid and its derivatives. J. Phys. Chem. A.,1998, 102:1987-1994
    [122]Cacace F, De Petris G, Pepi F, Rossi I, Venturini A. The gas-phase reaction of nitronium ion with ethylene. An experimental of theoretical study. J. Am. Chem. Soc., 1996,118 (50):12719-12723
    [123]D'Auria R, Turco R P. Effects of hydration on the properties of protonated-water-nitric acid clusters. J. Am. Chem. Soc.,2004,108:3756-3765
    [124]Colombo D G, Young Jr V G, Gladfelter W L. Crystal structures of nitronium tetranitratogallate and its reversible solid-state phase transition mediated by Nonmerohedral Twinning. Inorg. Chem.,2000,39 (20):4621-4624
    [125]David S R, et al. Studies in aromatic nitration 2. Nitrogen-14 NMR study of the nitric acid/nitronium ion equilibrium in aqueous sulfuric acid. J. Am. Chem. Soc.,1983, 105:4299-4302
    [126]Kim E K, Lee K Y, Kochi J K. Aromatic nitration with electrophilic N-nitropyridinium cations. Transitory charge-transfer complexes as key intermediates. J.Am. Chem. Soc.,1992,114 (5):1756-1770
    [127]Szabo K J, et al. Theoretical study on mechanism and selectivity of electrophilic aromatic nitration. J. Am. Chem. Soc.,1992,114 (17):6827-6834
    [128]Ebenson L. The ab initio calculation of inner sphere reorganization energies of inorganic redox couples. J. Am. Chem. Soc.,1992,115(7):2898-2902
    [129]Albunia R A, et al. The occurrence of electron transfer in aromatic nitration: dynamical aspects Theor. Chem. Acc.,2000,218-222
    [130]陈丽涛,肖鹤鸣,居学海,姬广富.苯硝化反应机理及其溶剂效应的理论研究.中国科学(B),2003,33(03),192~200
    [131]陈丽涛,肖鹤鸣,肖继军.甲苯定向硝化的理论研究.化学学报,2003,61(8):1169-1174
    [132]Esteves P M, et al. Unified Mechanistic Concept Electropilic Aromatic Nitration: Convergence of Computational Results and Experimental Data. J. Am. Chem. Soc., 2003,125:4836-4849
    [133]Kim E K, Boekman T M, Kochi J K. Electron-transfer mechanism for aromatic nitration via the photo activation of EDA complex. Direct relationship to electrophilic aromatic substitution. J. Am. Chem. Soc.,1993,115:3091-3104
    [134]Tanaka M, Muro E, Ando H, et al. NO2+Nitration mechanism of aromatic compounds:Electrophilic vs charge-transfer process. J. Org. Chem.,2000,65: 2972-2978
    [1]Olah G A, Kuhn S J, Flood S H, Evans J C. Aromatic substitution. ⅫⅠ.la Comparison of nitric acid and mixed acid Nitration of alkylbenzenes and benzene with nitronium salt nitrations. J. Am. Chem. Soc.,1962,84(19):3687-3693
    [2]Olah G A, Kuhn S J. Aromatic substitution Ⅻ.1 Steric Effects in nitronium salt nitrations of alkylbenzenes and halobenzenes. J. Am. Chem. Soc.,1962, 84(19):3684-3687
    [3]Olah G A, Malhotra R, Narang S C. Nitration, Methods and Mechanisms; VCH:New York,1989
    [4]Schofield K. Aromatic Nitration; Cambridge University Press:Cambridge,1980
    [5]Okuhara T, Mizuno N, Misono M. Advance in Catalysis. London:Academic Press, 1996
    [6]Hill C L, Prosser-McCartha C M. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev.,1995,143:407-455
    [7]Guo Y H, Li K X, Yu X D, Clark J H. Mesoporous H3PW12O40-silica composite: Efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl. Catal. B:Environ,2008,81(3-4):182-191
    [8]Kumbar S M, Halligudi S B. Tungstophosphoric acid supported on titania:A solid acid catalyst in benzylation of phenol with benzylalcohol. Catal. Commun.,2007, 8(5):800-806
    [9]Gong S, Liu L, Cui Q, Ding J. Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol-gel method. J. Hazard. Mater.,2010,178(1-3):404-408
    [10]Khder A S, Ahmed A I. Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl. Catal. A:Gen.,2009, 354(1-2):153-160
    [11]Kalbasi R J, Ghiaci M, Massah A R. Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5. Appl. Catal. A:Gen., 2009,353(1):1-8
    [12]Sato H, Nagai K, Yoshioka H, Y Nagaoka, Vapor phase nitration of benzene over solid acid catalysts:Ⅱ. Nitration with nitric acid (1); montmorillonite and mixed metal oxide catalysts. Appl. Catal. A:Gen.,1998,175(1-2):201-207
    [13]Sato H, Nagai K, Yoshioka H, Nagaoka Y. Vapor phase nitration of benzene over solid acid catalysts:Ⅲ. Nitration with nitric acid (2); mixed metal oxide treated with sulfuric acid and heteropolyacid partially neutralized. Appl. Catal. A:Gen.,1998, 175(1-2):209-213
    [14]Heravi M M, Benmorad T, Bakhtiari K, et al. H3+xPMo12-xVxO40 (heteropolyacids)-catalyzed regioselective nitration of phenol to o-nitrophenol in heterogeneous system. J. Mol. Catal. A:Chem.,2007,264(1-2):318-321
    [15]Kumar A S, Prasad P S. Nitration of phenol over silica supported H4PW11VO40 catalyst. Catal. Commun.,2012,18:37-40
    [16]Lv H, Gao J, Jiang Z, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis. Chem. Commun.,2007, (2):150-152
    [17]Li C, Jiang Z, Gao J, et al. Ultra-deep desulfurization of diesel:oxidation with a recoverable catalyst assembled in emulsion. Chem. Eur. J.,2004,10(9):2277-2280
    [18]Lv H, Gao J, Jiang Z, et al. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. J. Catal.,2006,239(2):369-375
    [19]Zhang J, Wang A, Li X, Ma X. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40. J. Catal.,2011,279(2):269-275
    [20]Ranga Rao G, Rajkumar T, Varghese B. Synthesis and characterization of 1-butyl 3-methyl imidazolium phosphomolybdate molecular salt. Solid State Sci.,2009, 11(1):36-42
    [21]Wu W, Li W, Han B, et al. A green and effective method to synthesize ionic liquids: supercritical CO2 route. Green Chem.,2005,7(10):701-704
    [22]Li G, Salim C, Hinode H. Hydrothermal syntheses and crystal structures of two hybrid materials constructed from polyoxometalate clusters and metal-dipyridine complexes. Solid State Sci.,2008,10(2),121-128
    [23]Yu S T, Liu F S. Solid Acid and Fine Chemicals; Chemical Industry Press, Beijing: 2005
    [1]Dupont J, De Souza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.,2002,102:3667-3692
    [2]Poliakoff M, Fitzpartrick J M, Farren T R, et al. Green Chemistry:Science and Politics of Change. Sdenee,2002,297:807-80
    [3]Blanchard L A, Hancu D, Beckman E J, et al. Green proeessing using ionic liquids and CO2. Nature,1999,399:28-29
    [4]Earle M J, EsperaAa JM S S, Gilea M A, et al. The distillation and volatility of ionic liquids. Nature,2006,439:831-834
    [5]Laali K K, Gettwert V J. Electrophilic nitration of aromatics inilonic liquid solvents. J. Org. Chem.,2001,66(1):35-40
    [6]Smith K, Liu S, El-Hiti G A. Regioselective mononitration of simple aromatic compounds under mild conditions in ionic liquids. Ind. Eng. Chem. Res.,2005, 44(23):8611-8615
    [7]Qiao K, Hagiwara H, Yokoyama C. Acidic ionic liquid modified silica gel as novel solid catalysts for esterification and nitration reactions. J. Mol. Catal. A:Chem.,2006, 246(1-2):65-69.
    [8]Qiao K, Yokoyama C. Nitration of Aromatic Compounds with Nitric Acid Catalyzed by Ionic Liquids. Chem. Lett.,2004,33,808-809
    [9]Rajagopal R, Srinivasan K V. Ultrasound promoted para-selective nitration of phenols in ionic liquid. Ultra Sonochem.,2003,10(1):41-43
    [10]Fang D, Shi Q R Cheng J. Regioselective mononitration of aromatic compounds using Brφnsted acidic ionic liquids as recoverable catalysts. Appl. Catal. A:Chem.,2008, 345(2):158-163
    [11]Millar R. W, Philbin S P. Clean nitrations:Novel syntheses of nitramines and nitrate esters by nitrodesilylation reactions using dinitrogen pentoxide (N2O5)-Tetrahedron, 1997,53(12):4371-4386
    [12]Talawar M B, Sivabalan R, Polke B G, et al. Establishment of process technology for the manufacture of dinitrogen pentoxide and its utility for the synthesis of most powerful explosive of today—CL-20.J. Hazard. Mater.,2005,124(1-3):153-164
    [13]Qian H Ye Z W Lv C X. Ultrasonically promoted nitrolysis of DAPT to HMX in ionic liquid. Ultra Sonochem.,2008,15(4):326-329
    [14]Zhi H. Z, Lv C, Zhang Q, Luo J. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans. Chem. Commun.,2009,2878-2880
    [15]Zhi H. Z, Luo J, Feng G A, Lv C X. An efficient method to synthesize HMX by nitrolysis of DPT with N2O5 and a novel ionic liquid. Chin. Chem. Lett.,2009, 20(4):379-382
    [16]Pedersen C J. Polyethers and Their Complexes with Metal Salts. J. Am. Chem. Soc., 1967,89(26):7017-703
    [17]Gibson H W, Yamaguchi N, Jones J W. Spramolecular Pseuorotaxane Polymers from Complementary Pairs of Homoditopic Molecule. J. Am. Chem. Soc.,2003, 125(12):3522-3533
    [18]Nuzzo R G, Haynie S L, Wilson M E, et al. Synthesis of Functional Chelating Diphosphines Containing the Bis(2-(diphenylphosphino)ethyl7)amino Moiety and the Use of These Materials in the Preparation of Water-Soluble Diphosphic Complexes of Transition Metals.J.Org. Chem.,1981,46(14):2861-2867
    [19]方东.离子液体的制备及其在精细有机合成中的应用研究.博士学位论文.南京:南京理工大学,2008
    [1]Olah G A, Malhotra R, Narang SC. Nitration Methods and Mechanism, VCH, New York,1989,5-15
    [2]Schofield K, Aromatic Nitration, Cambridge University Press, Cambridge,1980,8-10
    [3]Olah G A, Kuhn S J, Flood S H, Evans J C. Aromatic substitution. ⅫⅠ.la Comparison of nitric acid and mixed acid nitration of alkylbenzenes and benzene with nitronium salt nitrations. J. Am. Chem. Soc.,1962,84(19):3687-3693
    [4]Olah G A, Kuhn S J. Aromatic substitution Ⅻ.1 Steric effects in nitronium salt nitrations of alkylbenzenes and halobenzenes. J. Am. Chem. Soc.,1962, 84(19):3684-3687
    [5]Uemura S, Toshimitsu A, Okano M, Nitration of aromatic hydrocarbons and ipso-nitrosodemetallation of arylmetal compounds in sodium nitrite-trifluoroacetic acid. J. Chem. Soc., Perkin Trans.1,1978,1076-1079
    [6]Coombes R G, Russell L W. J. Chem. Soc., Perkin Trans.2,1974,830-831.
    [7]Riego J M, Sedin Z, Zaldivar J M, Marziano N C, Tortato C. Sulfuric acid on silica-gel: an inexpensive catalyst for aromatic nitration. Tetrahedron Lett.,1996,37(4):513-516
    [8]Ghorbani-Choghamarani A. A mild procedure for the preparation of o-nitrophenols by nitro urea or ammonium nitrate in the presence of silica sulfuric acid (SiO2-OSO3H). Chin. J. Chem.,2011,29(4):731-734
    [9]Kantam M L, Choudary B M, Kumar N S, Ramprasad K V. Beta zeolite:an efficient and eco-friendly catalyst for the nitration of o-xylene with high regio-selectivity in liquid phase. J. Mol. Catal. A:Chem.,2005,229(1-2):67-70
    [10]Sheemol V N, Tyagi B, Jasra R V. Nitration of o-xylene over rare earth cations exchanged zeolite-β with nitric acid and acetic anhydride. J. Mol. Catal. A:Chem., 2006,252(1-2):194-201
    [11]Shi M, Cui S C. Perfluorinated rare earth metals catalyzed nitration of aromatic compounds. J. Fluorine Chem.,2002,113(2):207-209
    [12]Jaeger D A, Wyatt J R, Raymond R E. Monochlorination of n-alkyl phenyl ethers in micellar sodium dodecyl sulfate.J.Org. Chem.,1985,50(9):1467-1470
    [13]Onyiriuka S O, Suckling C J. High selectivity in the chlorination of phenol in the presence of functionalised micelles. J. Chem. Soc. Chem. Commun.,1982, (15):833-835
    [14]Samant B S, Saraf Y P, Bhagwat S S. Chlorination of aromatic compounds in micellar media:Regioselectivity. J. Colloid Interface Sci.,2006,302(l):207-213
    [15]Cerichelli G, Luchetti L, Mancini G. Surfactant control of the ortho/para ratio in the bromination of anilines.3. Tetrahedron,1996,52(7):2465-2470
    [16]Kogelbauer A, Vassena D, Prins R, Armor J N. Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene. Catal. Today,2000,55(1-2):151-160
    [17]Smith K, Muson A, DeBoos G A. A novel method for the nitration of simple aromatic compounds. J.Org. Chem.,1998,63(23):8448-8454
    [18]Sato H, Hirose K, Nagai K, et al. Vapor phase nitration of benzene over solid acid catalysts:Ⅱ. Nitration with nitric acid (1); montmorillonite and mixed metal oxide catalysts.Appl. Catal. A Gen.,1998,175(1-2):201-207
    [19]Currie F, Holmberg K, Westman G. Regioselective nitration of phenols and anisols in microemulsion. Colloids Surfaces A:Physicochem. Eng. Aspect.,2001, 182(1-3):321-327
    [20]Nandurkar N S, Bhor M D, Samant S D, Bhanage B M. Ultrasound-Assisted Regioselective Nitration of Phenols Using Dilute Nitric Acid in a Biphasic Medium. Ind. Eng. Chem. Res.,2007,46(25):8590-8596
    [21]Nandurkar N S, Bhanushali M J, Jagtap S R, Bhanage B M. Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst. Ultrason. Sonochem.,2007,14(1):41-45
    [22]Joshi A V, Baidoosi M, Mukhopadhyay S, Sasson Y. Nitration of Phenol and Substituted Phenols with Dilute Nitric Acid Using Phase-Transfer Catalysts. Org. Process. Res. Dev.,2003,7(1):95-97
    [23]Lv C X. Nitronium Theory. Enginery Industry Publishing House:Beijing,2006, 244-245
    [1]Sato H, Nagai K, Yoshioka H, et al. Vapor phase nitration of benzene over solid acid catalysts:Ⅲ. Nitration with nitric acid (2); mixed metal oxide treated with sulfuric acid and heteropolyacid partially neutralized. Appl. Catal. A:Gen.,1998, 175(1-2):209-213
    [2]Fancis W J, Anthony G M B, Christopher B D, et al. Hafnium(IV) and zirconium(IV) triflates as superior recyclable catalysts for the atom economic nitration of o-nitrotoluene. Tetrahedron Lett.,1998,39(12):1641-1642
    [3]Heravi M M, Benmorad T, Bakhtiari K, et al. H3+xPMo12-xVx040 (heteropolyacids)-catalyzed regioselective nitration of phenol to o-nitrophenol in heterogeneous system. J. Mol. Catal. A:Chem.,2007,264(1-2):318-321
    [4]Gong S, Liu L, Cui Q, Ding J, Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol-gel method. J. Hazard. Mater,2010,178(1-3):404-408
    [5]Smith K, Almeer S, Peters C. Regioselective mononitration of aromatic compounds by zeolite/dinitrogen tetroxide/air in a solvent-free system. Chem. Commun.,2001, (24):2748-2749
    [6]Long R Q, Yang R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts. J. Catal.,1999,186(2):254-268
    [7]Moreno S, Sun K R, Molina R, et al. Al-, Al,Zr-, and Zr-pillared montmorillonites and saponites:preparation, characterization, and catalytic activity in heptane hydroconversion. J. Catal.,1999,182(1):174-185
    [8]Bharadwaj S K, Hussain S, Kar M, Chaudhuri M K. Acid phosphate-impregnated titania-catalyzed nitration of aromatic compounds with nitric acid. Appl. Catal. A: Gen.,2008,343(1-2):62-67
    [9]Sheemol V N, Tyagi B, Jasra R V. Nitration of o-xylene over rare earth cations exchanged zeolite-β with nitric acid and acetic anhydride. J. Mol. Catal. A:Chem., 2006,252(1-2):194-201
    [10]Kantam M L, Choudary B M, Kumar N S, Ramprasad K V. Beta zeolite:an efficient and eco-friendly catalyst for the nitration of o-xylene with high regio-selectivity in liquid phase. J. Mol. Catal. A:Chem.,2005,229:67-70
    [11]Bernasconi S, Pimgruber G D, Kogelbauer A, Prins R. Factors determining the suitability of zeolite BEA as para-selective nitration catalyst. J. Catal.,2003,219(1): 231-241
    [12]Kalbasi R J, Ghiaci M, Massah A R. Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5. Appl. Catal. A:Gen., 2009,353(1):1-8
    [13]Yadav G D, Nair J J. Selectivity engineering in the nitration of chlorobenzene using eclectically engineered sulfated zirconia and carbon molecular sieve catalysts. Catal. Lett.,1999,62(1):49-52
    [14]Sato H, Hirose K. Vapor-phase nitration of benzene over solid acid catalysts (1): Nitration with nitric oxide (NO2). Appl. Catal. A:Gen.,1998,174(1-2):77-81
    [15]Khder A S, Ahmed A I. Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl. Catal. A:Gen.,2009, 354(1-2):153-160
    [16]Tyagi B, Mishra M K. Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst. J. Mol. Catal. A:Chem.,2010, 317(1-2):41-45
    [17]Khatri C, Rani A. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel,2008,87(13-14):2886-2892
    [18]Peng L, Lin L, Zhang J, Shi J, Liu S. Solid acid catalyzed glucose conversion to ethyl levulinate.Appl. Catal. A:Gen.,2011,397(1-2):259-265
    [19]Bahnemann D W, Kholuiskaya S N, Dillert R, et al. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Appl. Catal. B:Environ.,2002, 36(2):161-169
    [20]Hosseini-Sarvari M, Sodagar E, Doroodmand M M. Nano Sulfated Titania as Solid Acid Catalyst in Direct Synthesis of Fatty Acid Amides. J. Org. Chem.,2011, 76(8):2853-2859
    [21]Watanabe M, Uchida H, Emori M. Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides:experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells. J. Phys. Chem. B, 1998,102(17):3129-3137
    [22]Wang Y M, Wu Z Y, Shi L Y. Rapid Functionalization of Mesoporous Materials: Directly Dispersing Metal Oxides into As-Prepared SBA-15 Occluded with Template. Adv. Mater.,2005,17(3):323-327
    [23]Laberty-Robert C, ValleK, Pereira F, Sanchez C. Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem. Soc. Rev.,2011,40: 961-1005
    [24]Sutrakar V K, Mahapatra D R. Universal stability and temperature dependent phase transformation in group VIIIB-IB transition metal FCC nanowires. J. Phys. Chem. C, 2011,115(21):10394-10398
    [25]Wang P C, Lu M. Regioselectivity nitration of aromatics with N2O5 in PEG-based dicationic ionic liquid. Tetrahedron Lett.,2011,52(13):1452-1455
    [26]Hamamoto H, Suzuki Y, Yamada Y M A, Tabata H, Takahashi H, Ikegami S. A recyclable catalytic system based on a temperature-responsive catalyst. Angew. Chem. Int. Edit.,2005,44(29):4536-4538
    [27]Tsang S C, Caps V, Paraskevas I, et al. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew. Chem. Int. Edit.,2004, 43(42):5645-5649
    [28]Shylesh S, Schunemann V. Magnetically separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Edit.,2010,49(20): 3428-3459
    [29]Arai T, Sato T, Kanoh H, et al. Organic-inorganic hybrid polymer-encapsulated magnetic nanobead catalysts. Chem. Eur. J.,2008,14(3):882-885
    [30]Zhang D H, Li G D, Li J X, Chen J S. One-pot synthesis of Ag-Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun.,2008, (29):3414-3416
    [31]Arundhathi R, Damodara D, Likhar P R, et al. Fe3O4@mesoporouspolyaniline:a highly efficient and magnetically separable catalyst for cross-coupling of aryl chlorides and phenols. Adv. Synth. Catal,2011,353(9):1591-1600
    [32]Davis A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature,1997, 385(6615):420-423
    [33]Cook G, Timms P L, Goltner-Spickerman C. Exact replication of biological structures by chemical vapor deposition of silica. Angew. Chem., Int. Ed.,2003,42(5):557-559
    [34]Dong A, Wang Y, Tang Y, et al. Zeolitic tissue through wood cell templating. Adv. Mater.,2002,14(12):926-929
    [35]Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chem. Commun.,2003, (22):2784-2785
    [36]Hall S R, Swinerd V M, Newby F N, et al. Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains. Chem. Mater.,2006,18(3):598-600
    [37]Frisch M J, Truckse G W, et al. Gaussian 03 Revision C.02, Gaussian, Inc: Wallingford CT,2004
    [38]Gwaltney S R, Rosokha S V, Head-Gordon M, Kochi J K. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab Initio) molecular-orbital and Marcus-Hush Theories with experiments. J. Am. Chem. Soc., 2003,125(11):3273-3283.
    [39]Shopsowitz K, Lelj F, MacLachlan M J. Regioselectivity in the Nitration of Dialkoxybenzenes. J. Org. Ctem.,2011,76(5):1285-1294
    [40]Zhang L, Papaefthymiou G C, Ying J Y. Size quantization and interfacial effects on a novel y-Fe2O3/SiO2 magnetic nanocomposite via sol-gel matrix-mediated synthesis. J. Appl. Phys.,1997,81(10):6892-6900
    [41]Kang Y S, Risbud S, Rabolt J F, Stroev P. Synthesis and characterization of nanometer-size Fe3O4 and y-Fe2O3 particles. Chem. Mater.,1996,8(9):2209-2211
    [42]Mφarup S, Bφdker F, Hendriksen P V, Linderoth S. Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles. Phys. Rev. B,1995, 52:287-294
    [43]Tang B Z, Geng Y H, Lam J. Processible nanostructured materials with electrical conductivity and magnetic susceptibility:□ preparation and properties of maghemite/polyaniline nanocomposite films. Chem. Mater.,1999,11(6):1581-1589
    [44]Reddy B M, Khan A. Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catal. Rev.,2005,47(2):257-296
    [45]Tanabo K, Misono M, Ono Y, et al. New solid acids and bases:their catalytic properties, Elsevier,1989
    [46]Parida K M, Pattnayak P K, Mohapatra P. Liquid phase mononitration of chlorobenzene over WOx/ZrO2:A study of catalyst and reaction parameters. J. Mol. Catal. A:Chem.,2006,260(1-2):35-42
    [47]Mishra T, Parida K M, Transition metal pillared clay:3. A para selective catalyst for nitration of chlorobenzene. J. Mol. Catal. A:Chem.,1997,121(1):91-96
    [48]周继国,刘刚,时有明,刘剑虹,常志文.几种花粉的傅里叶变换红外光谱研究.2008,25:132~136
    [1]Korkin A A, Bartlett R J. Theoretical Prediction of 2,4,6-Trinitro-1,3,5-triazine (TNTA). A New, Powerful, High-Energy Density Material? J. Am. Chem. Soc.,1996, 118(48):12244-12245
    [2]Leininger M L, Sherrill C D, Schaefer III F H. N8:A Structure Analogous to Pentalene, and Other High-Energy Density Minima. J. Phys. Chem.,1995,99:2324-2328
    [3]Strout D L. Cage Isomers of N14 and N16: Nitrogen Molecules That Are Not a Multiple of Six, J. Phys. Chem. A,2004,108(49):10911-10916
    [4]Fried L E, Manaa M R, Pagoria P F, Simpson R L. Design and synthesis of energetic materials. Annu. Rev. Mater. Res.,2001,31:291-321
    [5]Richard A Hollins L H. Aminonitropyridines and their N-Oxides. J. Heterocyclic Chem., 1996,33:895-898
    [6]黄玉东,王艳红,王保启等.一种制备2,3,5,6-四氨基吡啶盐酸盐的方法.CN:101289419A,2008.10.22
    [7]Doetze J. Design, Synthesis and properties of a novel rigid rod polymer, "PIPD" or "M5":high modulus and tenacity fibres with substantial compressive strength. Polymer,1998,39(24):5981-5986
    [8]李金山,黄奕刚,董海山.多硝基吡啶的密度泛函理论研究.含能材料,2003,11(4):177~119
    [9]李金山,黄奕刚,董海山.多硝基吡啶及其氮氧化物性能的理论预测.含能材料,2004,12:276279
    [10]Ritter H, Licht H H. Synthesis and reactions of dinitrated amino and diaminopyridines. J. Heterocycl. Chem.,1995,32:585-588
    [11]Hollins R A, Merwin L M, Nissan R A, et al. Aminonitropyridines and their N-oxides. J. Heteocycl. Chem.,1996,33:895-899
    [12]Ritter H, Licht H H.2,4,6-Trinitropyridine and Related Compounds, synthesis and characterization. Propell. Explos. Pyrot.,1988,13:25-29
    [13]成健,姚其正,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法,有机化学.2008,28(11):1943~1948
    [14]Williams R L, Cohen S A. The chemistry of Aryltetraamines Ⅱ. The Synthesis of 2,3, 5,6-Tetraamineopyridine. J. Heterocycl. Chem.,1971.8.841-844
    [15]安国成,詹家荣.2,3,5,6-四氨基吡啶的制备方法.CN1907972,2006.12.27
    [16]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis. Thermochim. Acta,2002,384:187-204
    [17]Cutting J L, Hodgin R L, Hoffman M D, Garcia F, Lee R S, McGuire E, Mitchell A R, Pagoria P F, Schmidt R D, Simpson R L, Souers P C. A small-scale screening test for HE performance:Application to the new explosive LLM-105. The 11th International Detonation Symposium,1998, UCRL-JL-131623
    [18]Tarver C M, Urtiew P A, Tran T D. Sensitivity of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J. Energ. Mater.,2005,23(3):183-203
    [19]Pagoria P F, Mitchell A R, Schmidt R D, Lee G S. A discussion of strategies in energetic materials synthesis. Gordon Conference on Energetic Materials, Holderness, N.H., July 2-6,2000
    [20]Pagoria P F, Mitchell A R, Schmidt R D. Synthesis of LLM-105. Munitions Technology Development Program,1999, UCRL-ID-103483-99
    [21]Donald D S, Del W. Tetraaminopyrazine,2,3,5-triamino-6-nitropyrazine,2,6-diamino-3,5-dinitropyrazine.U.S. Patent 3808209,1974
    [22]Cheeseman G W H, Rafiq M.2,6-Dihydroxy-3,5-diphenylpyrazine and related compounds. J. Chem. Soc. C,1971,452-454
    [23]Tran T D, Pagoria P F, Hoffman M D, Cunningham B, Simpson R L, Lee R S, Cutting J L. Small-scale Safety and Performance Characterization of New Plastic Bonded Explosives containing LLM-105. The 12th International Detonation Symposium, 2002, UCRL-JC-144963
    [24]Li H B, Cheng B B, Li H Z. Synthesis of 2,6-diamino-3,5-dinitropyrazine-1-oxide. Chin. J. Org. Chem.,2007,27:112-115
    [25]Frisch M J, et al. Gaussian 03, revision Revision C.02, Gaussian, Inc., Wallingford CT, 2004
    [26]成健,姚其正,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法.含能材料,2009,17(2):167~168
    [27]成健,刘祖亮,姚其正等.2,6-二氨基(4-氨基)吡啶的二硝化反应.火炸药学报,2009,32(3):9-11
    [28]Leslie W, Deady M. Studies on the mechanism of the nitraminopyridine rearrangement. Tetrahedron,1979,35:2895-2900
    [29]蔡可迎,魏贤勇.水中氢氧化氧铁催化水合肼还原芳香族硝基化合物.河北师范大学学报/自然科学版,2007,31(5):633~634
    [30]徐善利,陈宏博,李树德.催化加氢还原芳香硝基化合物制备芳胺的技术进展. 精细石油化工,2006,23(4):58~60
    [31]Lv C X. Nitronium Theory; Enginery Industry Publishing House:Beijing,2006
    [32]Olah G A, Malhotra R, Narang S C. Nitration, Methods and Mechanisms; VCH:New York,1989
    [33]Schofield K. Aromatic Nitration; Cambridge University Press:Cambridge,1980
    [34]Taylor R. Electrophilic Aromatic Substitution; John Wiley and Sons:Chichester,1990
    [35]Olah G A, Kuhn S J, Flood S H, Evans J C. Aromatic substitution. ⅩⅢ.la Comparison of nitric acid and mixed acid nitration of alkylbenzenes and benzene with nitronium salt nitrations. J. Am. Chem. Soc.,1962,84(19):3687-3693
    [36]Olah G A, Kuhn S J. Aromatic substitution Ⅻ.1 Steric effects in nitronium salt nitrations of alkylbenzenes and halobenzenes. J. Am. Chem. Soc.,1962, 84(19):3684-3687
    [37]Bellamy A J. A study of the synthesis and amination of 2,6-dialkoxy-3,5-dinitropyrazines. Cent. Euro. J. Energ. Mater.,2008,5(2):3-19
    [38]Hoffman M D, Lorenz K T, Cunningham B, Gagliardi F. Formulation and mechanical properties of LLM-105 PBXs. The 39th International Annual Conference of ICT,2008, LLNL-CONF-402822
    [39]Shopsowitz K, Lelj F, MacLachlan M J. Regioselectivity in the nitration of dialkoxybenzenes. J. Org. Chem.,2011,76(5):1285-1294
    [40]Gwaltney S R, Rosokha S V, Head-Gordon M, Kochi J K. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab Initio) molecular-orbital and Marcus-Hush Theories with experiments. J. Am. Chem. Soc., 2003,125(11):3273-3283
    [41]Bhattacharya A, Guo Y, Bernstein E R. Nonadiabatic Reaction of Energetic Molecules. Accounts Chem. Res.,2010,43(12):1476-1485
    [42]De Queiroz J F, Carneiro J W, Sabino A A, et al. Esteves P M. Electrophilic aromatic nitration:understanding its mechanism and substituent effects. J. Org. Chem.,2006, 71(16):6192-6203
    [43]Hudecek O, Budka J, Eigner V. Regioselective ipso-nitration of calix[4]arenes. Tetrahedron,2012,68(22):4187-4193
    [44]Esteves P M, Carneiro J W D, Cardoso S P, et al. Unified mechanistic concept of electrophilic aromatic nitration:convergence of computational results and experimental data. J. Am. Chem. Soc.,2003,125(16):4836-4849
    [45]He W D, Zhou G, Wong N B, et al. Intramolecular H-bonds in LLM-105 and its derivatives:a DFT study. J. Mol. Struc. (THEOCHEM),2005,723(1-3):217-222
    [46]He W D, Zhou G, Wong N B, et al. Molecular design of analogues of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J. Mol. Struc. (THEOCHEM),2004, 668(2-3):201-208
    [47]Alabugin I V, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding:a subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc.,2003,125(19):5973-5987
    [48]Cuma M, Scheiner S, Kar T. Competition between rotamerization and proton transfer in o-hydroxybenzaldehyde. J. Am. Chem. Soc.,1998,120(40):10497-10503
    [49]Rosokha S V, Kochi J K. Charge-Transfer Effects on Arene Structure and Reactivity. In Modern Arene Chemistry; Astruc, D., Ed, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,2002
    [50]Besler B H, Merz K M Jr, Kollman P A. Atomic charges derived from semiempirial methods. J. Comput. Chem.,1990,11(4):431-439
    [51]Cammi R, Mennucci B, Tomasi J. Fast evaluation of geometries and properties of excited molecules in solution:A Tamm-Dancoff Model with application to 4-dimethylaminobenzonitrile. J. Phys. Chem. A,2000,104(23):5631-5637
    [52]Altman R A, Shafir A, Choi A, et al. An improved Cu-based catalyst system for the reactions of alcohols with rryl halides. J. Org. Chem.,2008,73(1):284-286
    [53]Chung G, Kwon Q, Kwon Y, Theoretical study on salicylaldehyde and 2-mercaptobenzaldehyde:intramolecular hydrogen bonding. J. Phys. Chem. A,1998, 102(13):2381-2387
    [54]Cheng C, Shyu S F, Hsu F S. Theoretical study of salicylaldehyde conformal isomers and their intramolecular oxygen and hydrogen relations. Int. J. Quantum Chem.,1999, 74(4):395-404
    [55]Cossi M, Scalmani G, Rega N, Barone V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution.J. Chem. Phys.,2002,117(1):43-54
    [56]Mahesvari S, Chowdury A, Sathyamurthy N, et al. Ground and excited state intramolecular proton transfer in salicylic acid:an Ab initio electronic structure investigation. J. Phys. Chem. A,1999,103(31):6257-6262
    [57]Liu X, Zhou X, Shu X, Zhu J. A polymer-based ultrasensitive metal ion sensor. Macromolecules,2009,42(20):7634-763

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700