C-H官能化反应合成硫醚,吲哚以及吡唑衍生物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C-H官能化反应是一种通过断裂C-H键,直接导入各种官能团,构建C-C键和C-杂原子键的技术方法。C-H键官能化反应避免使用预先官能团化的反应物,直接实现化合物的官能化,大大提高原子经济利用效率,减少废物的排放。应用C-H官能化反应技术,构建药物先导骨架,或对药物先导化合物直接官能团化,合成多样性的活性化合物,对于药物分子的高通量筛选具有重要意义。
     C-S键,吲哚以及吡唑骨架广泛存在于天然产物和药物分子之中。应用简单、快捷、高效的技术方法构建这些骨架具有重要的现实意义。而C-H官能化技术则可以为硫醚,吲哚以及吡唑等衍生物的合成提供最为简便的方法,通过导入各种各样的官能团,合成多样性的活性分子,为相关药物分子的设计与合成打下坚实的基础。
     本论文主要研究C-H氧化反应技术在合成硫醚,吲哚以及吡唑衍生物中的应用,本文内容包括以下四个部分:
     1.综述了近10年来基于氧化脱氢偶联反应和过渡金属催化的氮原子邻位sp3C-H键官能化反应进展。基于氧化脱氢偶联反应的氮原子邻位sp3C-H键官能化反应研究领域,归纳成三部分分别叙述:(1)无金属参与的氮原子邻位sp3C-H键官能化研究进展;(2)金属参与的氮原子邻位sp3C-H键官能化研究进展;以及(3)光催化的氮原子邻位sp3C-H键官能化研究进展。在过渡金属催化的氮原子邻位sp3C-H键官能化研究领域,根据反应类型分成三部分进行叙述:(1)氮原子邻位sp3C-H键氢氨基烷基化反应;(2)氮原子邻位sp3C-H键芳基化反应;以及(3)其它个别反应。
     2.发现了一种无金属参与的分子筛促进TBHP氧化酰胺氮原子邻位或醚的氧原子邻位sp3C-H键的硫化反应,合成S,N-杂化合物和S,O-杂化合物的技术方法。在4A分子筛和TBHP的共同作用下,通过氧化脱氢途径,将氮原子或氧原子邻位的sp3C-H键氧化脱氢生成自由基,然后被二硫醚中的S-S键捕获,发生硫化反应形成C-S键。该硫化反应方法适用范围广,参与反应的酰胺可以是N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基吡咯烷酮;氧醚可以是四氢呋哺、吡喃、叔丁基甲醚和乙二基二甲醚;二硫醚可以是各种基团取代的二芳基二硫醚和二苄基二硫醚。在4A分子筛和TBHP的氧化体系中,这些底物反应高效,能得到中等或优良的产率。有意义的是,应用TBHP氧化的硫化反应方法,可以使邻氨基苯二硫醚与N,N-二甲基乙酰胺先发生硫化反应,然后再进一步氧化环化,合成系列苯并噻哗衍生物。更为重要的是,氟虫腈前体吡唑基二硫醚(4,4'-二硫二基双(5-氨基-1-(2,6-二氯-4-三氟甲基苯基-1氢-吡唑-3-甲腈)也能顺利地分别与N,N-二甲基乙酰胺和四氢呋喃反应,得到相应的氟虫腈类似物。杀虫活性测试表明,这两种氟虫腈类似物对粘虫和苜蓿虫具有优良的杀虫活性。
     3.探索了一种钯催化α-氨基羰基化合物的C-N键选择性氧化断裂,与吲哚发生氧化脱氢偶联反应合成3-氧代羰基吲哚衍生物的方法。在Pd(OAc)2, Cu(OAc)2和HOAc的催化体系中,一系列含取代基的吲哚能与各种a-氨基羰基化合物顺利地发生氧化脱氢偶联反应,合成多样性的3-氧代羰基吲哚衍生物。更有意义的是,2-苯乙炔基苯胺作为吲哚的前体能与α-氨基羰基化合物反应,一锅法合成2-取代的3-氧代羰基吲哚衍生物。首先,将2-苯乙炔基苯胺在PdCl2的催化下,发生亲电环化反应,合成2-取代吲哚衍生物,然后再加入a-氨基羰基化合物,Cu(OAc)2和HOAc,继续反应有效地合成相应的吲哚衍生物。HRMS机理研究表明,α-氨基羰基化合物先被氧化,生成亚胺阳离子过渡态,然后与吲哚氧化偶联,然后再次生成亚胺阳离子过渡态,发生水解氧化,脱去苯胺得到3-氧代羰基吲哚衍生物,同位素实验证明羰基中的氧原子来源于水。值得指出的是,在对甲苯磺酸的催化下,3-氧代羰基吲哚的双羰基能与两分子吲哚发生环化反应,构建稠氮杂环化合物。得到的稠氮杂环化合物具有优良的荧光性能,能有效地检测Hg2+和Fe3+。
     4.建立了一种由Ni(II)催化氧化三分子α-氨基羰基化合物环三聚反应,合成多取代吡唑衍生物的方法。在空气氛围下,(C5H5)Ni(II)Cl(PPh3)/PhCO2H体系能有效地催化α-氨基羰基化合物发生环三聚串联反应,合成多样性的多取代吡唑衍生物,产率高达75%。利用ESI-HRMS实时在线分析以及控制实验,探究了反应中生成的中间体,得出了原料,中间体和产物的变化曲线,描绘了α-氨基羰基化合物环三聚的反应机理。反应机理表明吡唑环的构建经历了氧化脱氢,脱胺,重建两个C-C键,一个N-N键,以及羰基的异构化脱羟基等过程。
The C-H functionalization is a reaction that cleaves a carbon-hydrogen bond for direct introduction of various functional groups into the carbon atom for the formation of the carbon-carbon bonds and carbon-heteroatom bonds. The C-H functionalization can avoid the use of pre-functionalized substrate, remarkably improve the atom-economic efficiency and reduce the discharge of waste material. The C-H functionalization method has been widely applied to construct some lead skeleton of drugs and diverse bioactive compounds, thereby making it significant in the high throughput drug screening.
     The carbon-sulfur bond, indole and pyrazole motifs are embedded in numerous natural products and pharmaceuticals. For these reasons, many elegant methods have been delevoped for their construction. In this field, the C-H functionalization serves as one of the most important and efficient methods for direct introduction of functional groups to form diverse thioether, indole and pyrazole derivatives, which can pave the way for the design and synthesis of corresponding pharmaceuticals, as well as for organizing the bioactive molecular libraries.
     This dissertation focuses on the synthesis of thioethers, indoles and pyrazoles through the C-H bond oxidation strategy. The content of dissertation includes four parts:
     1. Recent advances in the functionalization of sp3C-H bond adjacent to a nitrogen atom via the metal-free oxidative dehydrogenation coupling reaction or transition metal-catalyzed process. The functionalization of sp3C-H bond adjacent to a nitrogen atom through oxidative dehydrogenation coupling reactions include three ways:(1) metal-free mediated sp3C-H bond functionalization,(2) metal-catalyzed sp3C-H bond functionalization, and (3) photoredox catalyzed sp3C-H bond functionalization. According to the type of reaction, the research field of transition metal-catalyzed functionalization of sp3C-H bond adjacent to a nitrogen atom was also discussed involving three parts:(1) hydroaminoalkylation of sp3C-H bond adjacent to a nitrogen atom,(2) arylation of sp3C-H bond adjacent to a nitrogen atom, and (3) some other reactions.
     2. A new method for metal-free molecular sieve-promoted TBHP-mediated oxidative thiolation of sp3C-H bond adjacent to a nitrogen atom in amides or to an oxygen atom in ethers has been developed for the synthesis of S,N-heterocyclic compounds and S,O-heterocyclic compounds. In the presence of4A molecular sieve and TBHP, the oxidative deprotonation of a sp3C-H bond adjacent to a nitrogen atom or an oxygen atom was achieved to produce a carbon radical. It could be trapped by the S-S bond of disulfide to form the C-S bond. The present thiolation method is general for a wide range of substrates, including amides (DMF, DMAc and1-methylpyrrolidin-2-one), ethers (tetrahydrofuran, tetrahydro-2H-pyran,2-methoxy-2-methylpropane and1,2-dimethoxyethane) and disulfides (diaryl disulfides and dibenzyl disulfide). Significantly, this tiolation method could be applied to the synthesis of benzothiozoles derivatives from2,2'-disulfanediyldianiline and amides through the thiolation and oxidative cyclization cascade process. Moveover, the present thiolation method was viable for the synthesis of pesticide fipronil analogues by the reaction of pyrazole disulfide with DMAc or THF, respectively. Indoor pesticidal activities test indicated that the two fipronil analogues have highly pesticidal activities for the mythima sepatare and aphis medicaginis.
     3. A new and selective C-N bond oxidative cleavage method to3-acylated indoles by Pd-catalyzed oxidative cross coupling of indoles with a-amino carbonyl compounds has been established. In the presence of Pd(OAc)2, Cu(OAc)2and HOAc, a wide range of substituted indoles successfully reacted with a-amino carbonyl compounds to form diverse3-oxoacetylindole derivatives. Importantly, the oxidative coupling method allows one-pot reaction of2-ethynylanilines with a-amino carbonyl compounds to afford the2-substituted-3-oxeacetylindoles.2-Ethynylanilines was firstly underwent an electrophilic cyclization catalyzed by PdCl2, affording a2-substituted indole, followed by reaction with a-amino carbonyl compounds, Cu(OAc)2and HOAc to yield the corresponding indole derivatives. Mechanism research on HRMS indicated that a-amino carbonyl compound was firstly oxidated to an imine cation intermediate, followed by coupling with indole in the presence of palladium catalysis. The in-situ formed intermediate was further oxidated to an imine cation, followed by hydrolysis, oxidation and deamination afforded the3-oxoacetylindoles. The isotope experiments demonstrated that the oxygen atom in carbonyl derived from water. It is noteworthy that in the presence of4-methylbenzenesulfonic acid the cyclization of indolyl diones with indole can be achieved to access polyheterocyclic compounds with good fluorescent properties, which can be employed as efficient probes for Hg2+and Fe3+ions.
     4. A new strategy for the synthesis of multi-substituted pyrazoles is presented by Ni-catalyzed oxidative cyclotrimerization of a-amino ketones. In the presence of (C5H5)Ni(II)Cl(PPh3), PhCO2H and air, a series of a-amino ketones smoothly underwent the oxidative cyclotrimerization to afford various multi-substituted pyrazoles (up to75%yield). The ESI-HRMS real-time analysis and control experiments were used to investigate the reaction intermediates and materials balance. A change curve chart for starting material, intermediates and products was given, and a possible reaction mechanism was discussed. The reaction mechanism displays that this unprecedented method allows three a-amino ketones to undergo sequential multiple deprotonations and deamination through two C-C bonds, one N-N bond formation, carbonyl isomerization and dehydration cascade.
引文
[1]Daugulis, O.; Do, H.-Q.; Shabashov, D. Palladium-and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds, Acc. Chem. Res.2009,42,1074-1086.
    [2]Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium(Ⅱ)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions:Versatility and Practicality, Angew. Chem., Int. Ed.2009,48,5094-5115.
    [3]Giri, R.; Shi, B. F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Transition metal-catalyzed C-H activation reactions:diastereoselectivity and enantioselectivity, Chem. Soc. Rev.2009,38,3242-3272.
    [4]Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions, Chem. Rev.2010,110,1147-1169.
    [5]Kevin R. Campos Direct sp3 C-H bond activation adjacent to nitrogen in heterocycles, Chem. Soc. Rev.2007,36,1069-1084.
    [6]Li, C. J. Cross-Dehydrogenative Coupling (CDC):Exploring C-C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res.2009,42, 335-344.
    [7]Kumar, R. A.; Saidulu, G.; Prasad, K. R.; Kumar, G. S.; Sridhar, B.; Reddy, K. R. Transition metal-free a-C(sp3)-H bond functionalization of amines by oxidative cross dehydrogenative coupling reaction. Simple and direct access to C-4-alkylated 3,4-dihydroquinazoline derivatives, Adv. Synth. Catal.2012,354, 2985-2991.
    [8]Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. A Versatile C-H Functionalization of Tetrahydroisoquinolines Catalyzed by Iodine at Aerobic Conditions, Org. Lett.2013,15,1092-1095.
    [9]Schweitzer-Chaput, B.; Klussmann, M. Bronsted Acid Catalyzed C-H Functionalization of N-Protected Tetrahydroisoquinolines via Intermediate Peroxides, Eur. J. Org. Chem.2013,2013,666-671.
    [10]Wang, H.; Li, X.; Wu, F.; Wan, B. Direct oxidative phosphonylation of amines under metal-free conditions, Tetrahedron Lett.2012,53,681-683.
    [11]Chu, L.; Qing, F.-L. Benzoyl peroxide (BPO)-promoted oxidative trifluoromethylation of tertiary amines with trimethyl(trifluoromethyl)silane, Chem. Commun.2010,46,6285-6287.
    [12]Zhang, G.; Ma, Y.; Wang, S.; Kong, W.; Wang, R. Chiral organic contact ion pairs in metal-free catalytic enantioselective oxidative cross-dehydrogenative coupling of tertiary amines to ketones, Chem. Sci.2013,4,2645-2651.
    [13]Shu, X. Z.; Xia, X. F.; Yang, Y. F.; Ji, K. G.; Liu, X. Y.; Liang, Y. M. Selective Functionalization of sp3 C-H Bonds Adjacent to Nitrogen Using (Diacetoxyiodo) benzene (DIB), J. Org. Chem.2009,74,7464-7469.
    [14]Lao, Z.-Q.; Zhong, W. H.; Lou, Q. H.; Li, Z. J.; Meng, X. B. KI-catalyzed imidation of sp3 C-H bond adjacent to amide nitrogen atom, Org. Biomol. Chem. 2012,10,7869-7871.
    [15]Li, Z.; Bohle, D. S.; Li, C. J. Cu-catalyzed cross-dehydrogenative coupling:a versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds, Proc. Natl. Acad. Sci. U. S. A.2006,103,8928-8933.
    [16]Zeng, T.; Song, G.; Moores, A.; Li, C. J. Magnetically recoverable iron nanoparticle catalyzed cross-dehydrogenative coupling (CDC) between two Csp3-H bonds using molecular oxygen, Synlett 2010,2002-2008.
    [17]Basle, O.; Li, C. J. Copper-catalyzed oxidative alkylation of sp3 C-H bond adjacent to a nitrogen atom using molecular oxygen in water, Green Chem.2007, 9,1047-1050.
    [18]Kumaraswamy, G.; Murthy, A. N. FeCl3-Catalyzed Oxidative Allylation of sp2 and sp3 C-H Bond Adjacent to a Nitrogen Atom:Easy Access to Homoallyl Tertiary Amines, J. Org. Chem.2010,75,3916-3919.
    [19]Zhang, G.; Zhang, Y.; Wang, R. Catalytic Asymmetric Activation of a Csp3-H Bond Adjacent to a Nitrogen Atom:A Versatile Approach to Optically Active a-Alkyl a-Amino Acids and C1-Alkylated Tetrahydroisoquinoline Derivatives, Angew. Chem., Int. Ed.2011,50,10429-10432.
    [20]Xia, Q.; Chen, W. Iron-Catalyzed N-Alkylation of Azoles via Cleavage of an sp3 C-H Bond Adjacent to a Nitrogen Atom, J. Org. Chem.2012,77,9366-9373.
    [21]Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y Copper-catalyzed amidation of sp3C-H bonds adjacent to a nitrogen atom Org. Lett.2007, 9,3813-3816.
    [22]Wei, Y.; Ding, H.; Lin, S.; Liang, F. Iron(Ⅱ)-Catalyzed Oxidation of sp3C-H Bonds Adjacent to a Nitrogen Atom of Unprotected Arylureas with tert-Butyl Hydroperoxide in Water, Org. Lett.2011,13,1674-1677.
    [23]Ye, X.; Xie, C.; Pan, Y.; Han, L.; Xie, T. Copper-Catalyzed Synthesis of a-Amino Imides from Tertiary Amines:Ugi-Type Three-Component Assemblies Involving Direct Functionalization of sp3 C-Hs Adjacent to Nitrogen Atoms, Org. Lett.2010,12,4240-4243.
    [24]Sugiishi, T.; Nakamura, H. Zinc(Ⅱ)-Catalyzed Redox Cross-Dehydrogenative Coupling of Propargylic Amines and Terminal Alkynes for Synthesis of N-Tethered 1,6-Enynes, J. Am. Chem. Soc.2012,13.4,2504-2507.
    [25]Moehlmann, L.; Baar, M.; Riess, J.; Antonietti, M.; Wang, X.; Blechert, S. Carbon Nitride-Catalyzed Photoredox, C-C Bond Formation with N-Aryltetrahydroisoquinolines, Adv. Synth. Catal.2012,354,1909-1913.
    [26]Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Visible Light Photoredox Catalysis:Generation and Addition of N-Aryltetrahydroisoquinoline-Derived α-Amino Radicals to Michael Acceptors, Org. Lett.2012,14,672-675.
    [27]Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light, Org. Lett.2012,14,94-97.
    [28]Rueping, M.; Zhu, S.; Koenigs, R. M. Visible-light photoredox catalyzed oxidative Strecker reaction, Chem. Commun.2011,47,12709-12711.
    [29]Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Dual Catalysis:Combination of Photocatalytic Aerobic Oxidation and Metal Catalyzed Alkynylation Reactions-C-C Bond Formation Using Visible Light, Chem.-Eur. J.2012,18,5170-5174.
    [30]Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. Visible-Light Photoredox Catalysis:Aza-Henry Reactions via C-H Functionalization, J. Am. Chem. Soc.2010,132,1464-1465.
    [31]Hari, D. P.; Koenig, B. Eosin Y Catalyzed Visible Light Oxidative C-C and C-P bond Formation, Org. Lett.2011,13,3852-3855.
    [32]Rueping, M.; Vila, C.; Bootwicha, T. Continuous Flow Organocatalytic C-H Functionalization and Cross-Dehydrogenative Coupling Reactions:Visible Light Organophotocatalysis for Multicomponent Reactions and C-C, C-P Bond Formations, ACS Catal.2013,3,1676-1680.
    [33]Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C.-H. Graphene oxide and Rose Bengal:oxidative C-H functionalization of tertiary amines using visible light, Green Chem.2011,13,3341-3344.
    [34]Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-H. Dehydrogenative coupling reactions catalysed by Rose Bengal using visible light irradiation, Green Chem.2011,13, 2682-2685.
    [35]Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Visible light-induced oxidative coupling reaction:easy access to Mannich-type products, Chem. Commun.2012,48,2337-2339.
    [36]Xue, Qi.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Highly efficient visible-light-induced aerobic oxidative C-C, C-P coupling from C-H bonds catalyzed by a gold(Ⅲ)-complex, Org. Biomol. Chem.2013,11,1606-1609.
    [37]Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Dual catalysis:combining photoredox and Lewis base catalysis for direct Mannich reactions, Chem. Commun.2011,47,2360-2362.
    [38]Cherevatskaya, M.; Neumann, M.; Fueldner, S.; Harlander, C.; Kuemmel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; Koenig, B. Visible-Light-Promoted Stereoselective Alkylation by Combining Heterogeneous Photocatalysis with Organocatalysis, Angew. Chem., Int. Ed.2012,51,4062-4066.
    [39]Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Visible-Light-Mediated Utiliz ation of α-Aminoalkyl Radicals:Addition to Electron-Deficient Alkenes Usi ng Photoredox Catalysts, J. Am. Chem. Soc.2012,134,3338-3341.
    [40]Ruiz Espelt, L.; Wiensch, E. M.; Yoon, T. P. Bronsted Acid Cocatalysts in Photocatalytic Radical Addition of α-Amino C-H Bonds across Michael Acceptors, J. Org. Chem.2013,78,4107-4114.
    [41]Rueping, M.; Zhu, S.; Koenigs, R. M. Photoredox catalyzed C-P bond forming reactions-visible light mediated oxidative phosphonylations of amines, Chem. Commun.2011,47,8679-8681.
    [42]Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Light-Mediated Heterogeneous Cross Dehydrogenative Coupling Reactions:Metal Oxides as Efficient, Recyclable, Photoredox Catalysts in C-C Bond-Forming Reactions, Chem.-Eur. J.2012,18,3478-3481.
    [43]DiRocco, D. A.; Rovis, T. Catalytic Asymmetric α-Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode:N-Heterocyclic Carbene and Photoredox Catalysis, J. Am. Chem. Soc.2012,134,8094-8097.
    [44]Zhu, S.; Rueping, M. Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides, Chem. Commun.2012,48,11960-11962.
    [45]Wang, Z. Q.; Hu, M.; Huang, X. C.; Gong, L. B.; Xie, Y. X.; Li, J. H. Direct α-Arylation of α-Amino Carbonyl Compounds with Indoles Using Visible Light Photoredox Catalysis, J. Org. Chem.2012,77,8705-8711.
    [46]Rueping, M.; Vila, C. Visible Light Photoredox-Catalyzed Multicomponent Reactions, Org. Lett.2013,15,2092-2095.
    [47]McNally, A.; Prier, C. K.; MacMillan, D. W. C. Discovery of an α-Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity, Science 2011,334,1114-1117.
    [48]Roesky, P. W. Catalytic Hydroaminoalkylation, Angew. Chem., Int. Ed.2009, 48,4892-4894.
    [49]Muller, C.; Saak, W.; Doye, S. Neutral group-IV metal catalysts for the intramolecular hydroamination of alkenes, Eur. J. Org. Chem.2008,2731-2739.
    [50]Kubiak, R.; Prochnow, I.; Doye, S. Titanium-catalyzed hydroaminoalkylation of alkenes by C-H bond activation at sp3 centers in the a-position to a nitrogen atom, Angew. Chem., Int. Ed.2009,48,1153-1156.
    [51]Prochnow, I.; Kubiak, R.; Frey, O. N.; Beckhaus, R.; Doye, S. Tetrabenzyltitanium:an improved catalyst for the activation of sp3 C-H bonds adjacent to nitrogen atoms, ChemCatChem 2009,1,162-172.
    [52]Kubiak, R.; Prochnow, I.; Doye, S. [Ind2TiMe2]:A Catalyst for the Hydroaminomethylation of Alkenes and Styrenes, Angew. Chem., Int. Ed.2010, 49,2626-2629.
    [53]Prochnow, I.; Zark, P.; Miiller, T.; Doye, S. The Mechanism of the Titanium-Catalyzed Hydroaminoalkylation of Alkenes, Angew. Chem., Int. Ed. 2011,50,6401-6405.
    [54]Jaspers, D.; Saak, W.; Doye, S. Dinuclear titanium complexes with sulfamide ligands as precatalysts for hydroaminoalkylation and hydroamination reactions, Synlett 2012,23,2098-2102.
    [55]Dorfler, J.; Doye, S. Aminopyridinato Titanium Catalysts for the Hydroaminoalkylation of Alkenes and Styrenes, Angew. Chem., Int. Ed.2013,52, 1806-1809.
    [56]Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.; Payne, P. R.; Schafer, L. L. Selective C-H activation a to primary amines. Bridging metallaaziridines for catalytic, intramolecular α-alkylation, J. Am. Chem. Soc.2009,131,2116-2118.
    [57]Clerici, M. G.; Maspero, F. Catalytic C-alkylation of secondary amines with alkenes, Synthesis 1980,305-306.
    [58]Nugent, W. A.; Ovenall, D. W.; Holmes, S. J. Catalytic C-H activation in early transition-metal dialkylamides and alkoxides, Organometallics 1983,2,161-162.
    [59]Herzon, S. B.; Hartwig, J. F.; Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines, J. Am. Chem. Soc.2007,129,6690-6691.
    [60]Herzon, S. B.; Hartwig, J. F. Hydroaminoalkylation of Unactivated Olefins with Dialkylamines, J. Am. Chem. Soc.2008,130,14940-14941.
    [61]Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L. L. Tantalum-Ami date Complexes for the Hydroaminoalkylation of Secondary Amines:Enhanced Substrate Scope and Enantioselective Chiral Amine Synthesis, Angew. Chem., Int. Ed.2009,48,8361-8365.
    [62]Eisenberger, P.; Schafer, L. L. Catalytic synthesis of amines and N-containing heterocycles:amidate complexes for selective C-N and C-C bond-forming reactions, Pure Appl. Chem.2010,82,1503-1515.
    [63]Zi, G.; Zhang, F.; Song, H. Highly enantioselective hydroaminoalkylation of secondary amines catalyzed by group 5 metal amides with chiral biarylamidate ligands, Chem. Commun.2010,46,6296-6298.
    [64]Reznichenko, A. L.; Emge, T. J.; Audcrsch, S.; Klauber, E. G.; Hultzsch, K. C.; Schmidt, B. Group 5 metal binaphtholate complexes for catalytic asymmetric hydroaminoalkylation and hydroamination/cyclization, Organometallics 2011,30, 921-924.
    [65]Reznichenko, A. L.; Hultzsch, K. C. The Mechanism of Hydroaminoalkylation Catalyzed by Group 5 Metal Binaphtholate Complexes, J. Am. Chem. Soc.2012,134,3300-3311.
    [66]Payne, P. R.; Garcia, P.; Eisenberger, P.; Yim, J. C.-H.; Schafer, L. L. Tantalum Catalyzed Hydroaminoalkylation for the Synthesis of α- and β-Substituted N-Heterocycles, Org. Lett.2013,15,2182-2185.
    [67]Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. Ru3(CO)12-Catalyzed Coupling Reaction of sp3 C-H Bonds Adjacent to a Nitrogen Atom in Alkylamines with Alkenes,J. Am. Chem. Soc.2001,123,10935 10941.
    [68]Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Cationic Ir(Ⅰ)-Catalyzed sp3 C-H Bond Alkenylation of Amides with Alkynes, Org. Lett.2009,11,1821-1823.
    [69]Pan, S.; Endo, K.; Shibata, T. Ir(Ⅰ)-Catalyzed Enantioselective Secondary sp3 C-H Bond Activation of 2-(Alkylamino)pyridines with Alkenes, Org. Lett.2011, 13,4692-4695.
    [70]Pan, S.; Matsuo, Y.; Endo, K.; Shibata, T. Cationic iridium-catalyzed enantioselective activation of secondary sp3 C-H bond adjacent to nitrogen atom, Tetrahedron 2012,68,9009-9015.
    [71]Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. Direct Catalytic Asymmetric Vinylogous Mannich-Type and Michael Reactions of an α,β-Unsaturated y-Butyrolactam under Dinuclear Nickel Catalysis,J. Am. Chem. Soc.2010,132,3666-3667.
    [72]Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K. Investigation of the Mechanism of C(sp3)-H Bond Cleavage in Pd(0)-Catalyzed Intramolecular Alkane Arylation Adjacent to Amides and Sulfonamides, J. Am. Chem. Soc.2010, 132,10692-10705.
    [73]Prokopcov, H.; Bergman, S. D.; Aelvoet, K.; Smout, V.; Herrebout, W.; Veken, B.; Meerpoel, V. L.; Maes B. U. W. C-2 Arylation of Piperidines through Directed Transition-Metal-Catalyzed sp3 C-H Activation, Chem.-Eur. J.2010,16,13063-13067.
    [74]Tsuchimoto, T.; Ozawa, Y.; Negoro, R.; Shirakawa, E.; Kawakami, Y. Zirconium triflate catalyzed direct coupling reaction of lactams with heterocyclic arenes under atmospheric oxygen, Angew. Chem., Int. Ed.2004,43,4231-4233.
    [75]Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. Carbonylation at sp3 C-H Bonds Adjacent to a Nitrogen Atom in Alkylamines Catalyzed by Rhodium Complexes, J. Am. Chem. Soc.2000,122, 12882-12883.
    [76]Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu, J. Q. Palladium-Catalyzed Oxidation of Boc-Protected N-Methylamines with IOAc as the Oxidant:A Boc-Directed sp3 C-H Bond Activation, Org. Lett.2006,8,3387-3390.
    [77]Balazs, A.; Hetenyi, A.; Szakonyi, Z.; Sillanpaa, R.; Fulop, F. Solvent-Enhanced Diastereo-and Regioselectivity in the PdⅡ-Catalyzed Synthesis of Six-and Eight-Membered Heterocycles via cis-Aminopalladation, Chem.-E ur. J.2009,15,7376-7381.
    [78]Tobisu, M.; Chatani, N. A catalytic approach for the functionalization of C(sp3)-H bonds, Angew. Chem., Int. Ed.2006,45,1683-1684.
    [79]Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of Organic Molecules by Transition-Metal-Catalyzed C(sp3)-H Activation, Chem.-Eur. J.2010,16,2654-2672.
    [80]Bellina, F.; Rossi, R.; Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C-H bonds and some of their synthetic equivalents with aryl halides and pseudohalides, Chem. Rev.2010,110,1082-1146.
    [81]Davies, H. M. L.; Beckwith, R. E. J. Catalytic enantioselective C-H act ivation by means of metal-carbenoid-induced C-H insertion, Chem. Rev.200 3,103,2861-2903.
    [82]Roesky, P. W. Catalytic Hydroaminoalkylation, Angew. Chem., Int. Ed. 2009,48,4892-4894.
    [83]Campos, K. R. Direct sp3 C-H bond activation adjacent to nitrogen in heterocycles, Chem. Soc. Rev.2007,36,1069-1084.
    [84]Doye, S. Catalytic C-H activation of sp3 C-H bonds in a-position to a nitrogen atom-two new approaches, Angew. Chem., Int. Ed.2001,40,33 51-3353.
    [85]Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. The Oxidative Mannich Reaction Catalyzed by Dirhodium Caprolactamate, J. Am. Chem. Soc. 2006,128,5648-5649.
    [86]Li, Z.-P.; Li, C. J. CuBr-Catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom, J. Am. Chem. Soc.2004,126,11810-11811.
    [87]Niu, M. Y.; Yin, Z. M.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. Copper-Catalyzed Coupling of Tertiary Aliphatic Amines with Terminal Alkynes to Propargylamines via C-H Activation, J. Org. Chem.2008,73,3961-3963.
    [88]Xu, X. L.; Li, X. N. Copper/Diethyl Azodicarboxylate Mediated Regioselective Alkynylation of Unactivated Aliphatic Tertiary Methylamine with Terminal Alkyne, Org. Lett.2009,11,1027-1029.
    [89]Volla, C. M. R.; Vogel, P. Chemoselective C-H Bond Activation:Ligand and Solvent Free Iron-Catalyzed Oxidative C-C Cross-Coupling of Tertiary Amines with Terminal Alkynes. Reaction Scope and Mechanism, Org. Lett.2009,11, 1701-1704.
    [90]Murahashi, S. I.; Komiya, N.; Terai, H. Ruthenium-catalyzed oxidative cyanation of tertiary amines with hydrogen peroxide and sodium cyanide, Angew. Chem., Int. Ed.2005,44,6931-6933.
    [91]Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Molecular Oxygen or Hydrogen Peroxide and Sodium Cyanide:sp3 C-H Bond Activation and Carbon-Carbon Bond Formation, J. Am. Chem. Soc.2008,130,11005-11012.
    [92]Han, W.; Ofial, A. R. Iron catalyzed oxidative cyanation of tertiary amines, Chem. Commun.2009,5024-5026.
    [93]Singhal, S.; Jain, S. L.; Sain, B. An efficient aerobic oxidative cyanation of tertiary amines with sodium cyanide using vanadium based systems as catalysts, Chem. Commun.2009,2371-2372.
    [94]Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Fares, C. M. Klussmann Mechanistic Studies on a Cu-Catalyzed Aerobic Oxidative Coupling Reaction with N-Phenyl Tetrahydroisoquinoline:Structure of Intermediates and the Role of Methanol As a Solvent, J. Am. Chem. Soc.2011,133,8106-8109.
    [95]Zhang, Y. H.; Li, C. J. Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds, Angew. Chem., Int. Ed.2006,45, 1949-1952.
    [96]Zhang, Y. H.; Li, C. J. DDQ-Mediated Direct Cross-Dehydrogenative-Co upling (CDC) between Benzyl Ethers and Simple Ketones, J. Am. Chem. So c.2006,128,4242-4243.
    [97]Li, Z. P.; Yu, R.; Li, H. J. Iron-catalyzed C-C bond formation by direct functionalization of C-H bonds adjacent to heteroatoms, Angew. Chem., Int. Ed. 2008,47,7497-7500.
    [98]Suematsu, H.; Katsuki, T. Iridium(Ⅲ) Catalyzed Diastereo-and Enantioselective C-H Bond Functionalization, J. Am. Chem. Soc.2009,131, 14218-14219.
    [99]Chu, L. L.; Zhang, X. G.; Qing, F. L. CuBr-Catalyzed Oxidative Difluoromethylation of Tertiary Amines with Difluoroenol Silyl Ethers, Org. Lett. 2009,11,2197-2200.
    [100]Yoshimitsu, T.; Arano, Y.; Nagaoka, H. Radical Hydroxyalkylation of C-H Bond Adjacent to Nitrogen of Tertiary Amides, Ureas, and Amines, J. Am. Chem. Soc.2005,127,11610-11611.
    [101]Shepherd, N. E.; Tanabe, H.; Xu, Y. J.; Matsunaga, S.; Shibasaki, M. Direct Catalytic Asymmetric Vinylogous Mannich-Type and Michael Reactions of an α,β-Unsaturated y-Butyrolactam under Dinuclear Nickel Catalysis, J. Am. Chem. Soc.2010,132,3666-3667.
    [102]Trost, B. M.; Hitce, J.; Direct Asymmetric Michael Addition to Nitroalkenes: Vinylogous Nucleophilicity under Dinuclear Zinc Catalysis, J. Am. Chem. Soc. 2009,131,4572-4573.
    [103]Ube, H.; Shimada, N.; Terada, M. Asymmetric Direct Vinylogous Aldol Reaction of Furanone Derivatives Catalyzed by an Axially Chiral Guanidine Base, Angew. Chem., Int. Ed.2010,49,1858-1861.
    [104]Yamada, K.; Yamamoto, Y.; Tomioka, K. Initiator-Dependent Chemosele ctive Addition of THF Radical to Aldehyde and Aldimine and Its Applicati on to a Three-Component Reaction, Org. Lett.2003,5,1797-1799.
    [105]Akindele, T.; Yamamoto, Y.; Maekawa, M.; Umeki, H.; Yamada, K.; T omioka, K. Asymmetric Radical Addition of Ethers to Enantiopure N-p-Tolu enesulfinyl Aldimines, Mediated by Dimethylzinc-Air, Org. Lett.2006,8,5 729-5732.
    [106]Correia, C. A.; Li, C. J. Copper-Catalyzed Cross-Dehydrogenative Coupling (CDC) of Alkynes and Benzylic C-H Bonds, Adv. Synth. Catal.2010,352, 1446-1450.
    [107]Li, Z. P.; Li, C. J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C-H and sp2 C-H bonds, J. Am. Chem. Soc.2005,127,6968-6969.
    [108]Li, Z. P.; Li, C. J. Highly efficient copper-catalyzed nitro-Mannich type reaction:Cross-dehydrogenative-coupling between sp3 C-H bond and sp3 C-H bond, J. Am. Chem. Soc.2005,127,3672-3673.
    [109]Liu, X. W.; Zhang, Y. M.; Wang, L.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. General and Efficient Copper-Catalyzed Amidation of Saturated C-H Bonds Using N-Halosuccinimides as the Oxidants, J. Org. Chem.2008,73,6207-6212.
    [110]Pan, S.-G.; Liu, J.-H.; Li, H.-R.; Wang, Z.-Y.; Guo, X.-W.; Li, Z.-P. Iron-Catalyzed N-Alkylation of Azoles via Oxidation of C-H Bond Adjacent to an Oxygen Atom, Org. Lett.2010,12,1932-1935.
    [111]Basle, O.; Li, C.-J. Copper-catalyzed aerobic phosphonation of sp3 C-H bonds, Chem. Commun.2009,4124-4126.
    [112]Han, W.; Ofial, A. R. Iron-catalyzed dehydrogenative phosphonation of N,N-dimethylanilines, Chem. Commun.2009,6023-6025.
    [113]Han, W.; Mayer, P.; Ofial, A. R. Iron-Catalyzed Oxidative Mono- and Bis-Phosphonation of N,N-Dialkylanilines, Adv. Synth. Catal.2010,352,1667-1676.
    [114]Li, Y.; Bao, W. L. A highly efficient, metal-free and convenient diarylallyl ether/thioether formation via oxidative C-H activation, Adv. Synth. Catal.2009, 351,865-868.
    [115]Fan, R. H.; Li, W. X.; Pu, D. M.; Zhang, L. Transition-metal-free intermolecular amination of sp3 C-H bonds with sulfonamides, Org. Lett.2009, 11,1425-1428.
    [116]Cheng, D. P.; Bao, W. L. Highly efficient metal-free cross-coupling by C-H activation between allylic and active methylenic compounds promoted by DDQ, Adv. Synth. Catal.2008,350,1263-1266.
    [117]Liu, Z. Q.; Sun, L.; Wang, J. G.; Han, J.; Zhao, Y. K.; Zhou, B. Free-Radical-Initiated Coupling Reaction of Alcohols and Alkynes:Not C-O but C-C Bond Formation, Org. Lett.2009,11,1437-1439.
    [118]He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Direct C2-Alkylation of Azoles with Alcohols and Ethers through Dehydrogenative Cross-Coupling under Metal-Free Conditions, Org. Lett.,2011,13,5016-5019
    [119]Huang, R.; Xie, C.; Huang, L.; Liu, J. Copper-catalyzed N-alkoxyalkylation of nucleobases involving direct functionalization of sp3 C-H bonds adjacent to oxygen atoms, Tetrahedron 2013,69,577-582
    [120]Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Bu4NI-Catalyzed C-O Bond Formation by Using a Cross-Dehydrogenative Coupling (CDC) Reaction, Chem.-Eur. J.2011,17,4085-4089.
    [121]Kumar, G. S.; Pieber, B.; Reddy, K. R.; Kappe, C. O. Copper-Catalyzed Formation of C-O Bonds by Direct α-C-H Bond Activation of Ethers Using Stoichiometric Amounts of Peroxide in Batch and Continuous-Flow Formats, Chem.-Eur. J.2012,18,6124-6128
    [122]Li, X.; Wang, H. Y.; Shi, Z. J. Transition-metal-free cross-dehydrogenative alkylation of pyridines under neutral conditions, New J. Chem.2013,37, 1704-1706
    [123]Zhang, S.; Guo, L. N.; Wang, H.; Duan, X. H. Bu4NI-catalyzed decarboxylative acyloxylation of an sp3 C-H bond adjacent to a heteroatom with α-oxocarboxylic acids, Org. Biomol. Chem.2013,11,4308-4311
    [124]Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. Cu(Ⅱ)-Catalyzed Functionalizations of Aryl C-H Bonds Using O2 as an Oxidant, J. Am. Chem. Soc. 2006,128,6790-6791.
    [125]K. Inamoto, Y. Arai, K. Hiroya, T. Doi, Palladium-catalysed direct synthesis of benzo[b]thiophenes from thioenols, Chem. Commun.2008,5529-5531.
    [126]Zhao, X.; Dimitrijevic, E.; Dong, V. M. Palladium-Catalyzed C-H Bond Functionalization with Arylsulfonyl Chlorides, J. Am. Chem. Soc.2009,131, 3466-3467.
    [127]Fukuzawa, S. I.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K. Copper-catalyzed direct thiolation of benzoxazole with diaryl disulfides and aryl thiols, Tetrahedron Lett.2009,50,2374-2376.
    [128]Fang, X. L.; Tang, R. Y.; Zhong, P.; Li, J. H. Iron-catalyzed sulfenylation of indoles with disulfides promoted by a catalytic amount of iodine, Synthesis 2009, 4183-4185.
    [129]Zhang, S. H.; Qian, P. C.; Zhang, M. L.; Hu, M. L.; Cheng, J. Copper-Catalyzed Thiolation of the Di- or Trimethoxybenzene Arene C-H Bond with Disulfides, J. Org. Chem.2010,75,6732-6735.
    [130]Konaklieva, M. I.; Plotkin, B. J. Antimicrobial properties of organosulfur anti-infectives:a review of patent literature 1999-2005, Recent Pat. Anti-Infect. Drug Discovery 2006,1,177-180.
    [131]Legros, J.; Dehli, J. R.; Bolm, C. Applications of catalytic asymmetric sulfide oxidations to the syntheses of biologically active sulfoxides, Adv. Synth. Catal. 2005,347,19-31.
    [132]Kumagai, H. Inhibitory activity of sulfur-containing flavor components from food against platelet aggregation, Aroma Research.2004,5,312-318.
    [133]Mitchell, S. C.; Nickson, R. M.; Waring, R. H. The biological activity of selenium sulfide, Sulfur Reports,1993,13,279-292.
    [134]Sammelson, R. E.; Caboni, P.; Durkin, K. A.; Casida, J. E.; GABA receptor antagonists and insecticides:common structural features of 4-alkyl-1-phenylpyrazoles and 4-alkyl-1-phenyltrioxabicyclooctanes, Bioorg. Med. Chem. 2004,12,3345-3355.
    [135]Ozoe, Y.; Yagi, K.; Nakamura, M.; Akamatsu, M.; Miyake, T.; Matsumura, F. Fipronil-Related Heterocyclic Compounds:Structure-Activity Relationships for Interaction with γ-Aminobutyric Acid-and Voltage-Gated Ion Channels and Insecticidal Action, Pestic. Biochem. Physiol.2000,66,92-104.
    [136]Gilchrist T. E. "Heterocyclic Chemistry" 3rd Edition, Longman,1992.
    [137]Milanova, E.; Ellis, S.; Sithole, B. Aquatic toxicity and solution stabilit y of two organic corrosion inhibitors:2-mercaptobenzothiazole and 1,2,3-b enzotriazole, Nord. Pulp Paper Res. J.2001,16,215-218.
    [138]Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. The discovery of the potent and selective antitumour agent 2-(4-amino-3-methylphenyl)benzothiazole (DF 203) and related compounds, Curr. Med. Chem.2001,8,203-210.
    [139]Clavel, J. L.; Pelta, I.; Bars, L.; Charreau, P. Process for preparing 4-trifluoromethylsulfinylpyrazole derivative, Patent US 6620943 (2003).
    [140]Bertenshaw, S. R.; Talley, J. J.; Rogier, D. J.; Graneto, M. J.; Koboldt, C. M.; Zhang, Y. Conformationally restricted 1,5-diarylpyrazoles are selective COX-2 inhibitors, Bioorg. Med. Chem. Lett.1996,6,2827-2830.
    [141]Cole, L. M.; Nicholson, R. A.; Casida, J. E. Action of phenylpyrazole insecticides at the GABA-gated chloride channel, Pestic. Biochem. Physiol.1993, 46,47-54.
    [142]Cohen, S. M.; Smith, R. I. GRAS flavoring substances 21 Food Technology, 2003,57,46-59.
    [143]Sundberg, R. J. The Chemistry of Indoles; Academic Press:New York,1970.
    [144]Sundberg, R. J. Indoles; Academic Press:London,1996.
    [145]Gilchrist, T. L. Heterocyclic Chemistry; 3rd ed. Addison Wesley:Essex England,1998.
    [146]Taber, D. F.; Tirunahari, P. K. Indole synthesis:a review and proposed classification, Tetrahedron 2011,67,7195-7210.
    [147]Cacchi, S.; Fabrizi, G. Update 1 of:Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions, Chem. Rev.2011,111, PR215-PR283.
    [148]Vicente, R. Recent advances in indole syntheses:New routes for a classic target, Org. Biomol. Chem.2011,9,6469-6480.
    [149]Testa, B.; Murset Rossetti, L. The partition coefficient of protonated antihistamines. Its calculation and interpretation in terms of hydrophobic fragmental constants, Helv. Chim. Acta 1978,61,2530-2537.
    [150]Watanabe, M.; Koike, H.; Ishiba, T.; Okada, T.; Seo, S.; Hirai, K. Synthesis and biological activity of methanesulfonamide pyrimidine- and N-methanesulfonyl pyrrole-substituted 3,5-dihydroxy-6-heptenoates, a novel series of HMG-CoA reductase inhibitors, Bioorg. Med. Chem.1997,5,437-444.
    [151]Yutilov, Y. M.; Smolyar, N. N.; Volchkov, A. S. Alternate Synthesis for Diazoline, Pharm. Chem. J.2000,34,661-662.
    [152]Fujimoto, H.; Sumino, M.; Okuyama, E.; Ishibashi, M. Immunomodulatory Constituents from an Ascomycete, Chaetomium seminudum, J. Nat. Prod.2004, 67,98-102.
    [153]Li, G. Y.; Li, B. G.; Yang, T.; Yan, J. F.; Liu, G. Y.; Zhang, G. L. Chaetocochins A-C, epipolythiodioxopiperazines from Chaetomium cochliodes, J. Nat. Prod. 2006,69,1374-1376.
    [154]Zhou, H.; He, H. P.; Wang, Y. H.; Hao, X. J. A New Dimeric Alkaloid from the Leaf of Psychotria calocarpa, Helv. Chim. Acta 2010,93,1650-1652.
    [155]Schallenberger, M. A.; Newhouse, T.; Baran, P. S.; Romesberg, F. E. J. The psychotrimine natural products have antibacterial activity against Gram-positive bacteria and act via membrane disruption, Antibiot 2010,63,685-687.
    [156]Maurya, R.; Singh, R.; Deepak, M.; Handa, S. S.; Yadav, P. P.; Mishra, P. K. Constituents of Pterocarpus marsupium:an Ayurvedic crude drug, Phytochemistry 2004,65,915-920.
    [157]Mahabusarakam, W.; Deachathai, S.; Phongpaichit, S.; Jansakul, C; Taylor, W. C. A benzil and isoflavone derivatives from Derris scandens Benth, Phytochemistry 2004,65,1185-1191.
    [158]Nicolaou, K. C.; Gray, D. L. F.; Tae, J. Total Synthesis of Hamigerans and Analogues Thereof. Photochemical Generation and Diels-Alder Trapping of Hydroxy-o-quinodimethanes, J. Am. Chem. Soc.2004,126,613-627.
    [159]Wadkins, R. M.; Hyatt, J. L.; Wei, X.; Yoon, K. J. P.; Wierdl, M.; Edwards, C. C.; Morton, C. L.; Obenauer, J. C.; Damodaran, K.; Beroza, P.; Danks, M. K.; Potter, P. M. Identification and Characterization of Novel Benzil (Diphenylethane-1,2-dione) Analogues as Inhibitors of Mammalian Carboxylesterases, J. Med. Chem.2005,48,2906-2915.
    [160]Mousset, C.; Giraud, A.; Provot, O.; Hamze, A.; Bignon, J.; Liu, J.-M.; Thoret, S.; Dubois, J.; Brion, J. D.; Alami, M. Synthesis and antitumor activity of benzils related to combretastatin A-4, Bioorg. Med. Chem. Lett.2008,18,3266-3271.
    [161]Wolkenberg, S. E.; D. D. Wisnoski, W. H. Leister, Y. Wang, Z. Zhao, C. W. Lindsley Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irradiation, Org. Lett.2004,6,1453-1456.
    [162]Deng, X.; Mani, N. An Efficient Route to 4-Aryl-5-pyrimidinylimidazoles via Sequential Functionalization of 2,4-Dichloropyrimidine, Org. Lett.2006,8, 269-272.
    [163]Herrera, A. J.; Rondon, M.; Suarez, E. Stereocontrolled Photocyclization of 1,2-Diketones:Application of a 1,3-Acetyl Group Transfer Methodology to Carbohydrates,J. Org. Chem.2008,73,3384-3391.
    [164]Merkul, E.; Dohe, J.; Gers, C.; Rominger, F.; Muller, T. J. J. Three-component synthesis of ynediones by a glyoxylation/Stephens-Castro coupling sequence, Angew. Chem., Int. Ed.2011,50,2966-2969.
    [165]Wenkert, E.; Moeller, P. D. R.; Piettre, S. R.; McPhail, A. T. Yuehchukene analogs,J.Org. Chem.1988,53,3170-3178.
    [166]Ketcha, D. M.; Gribble, G. W. A convenient synthesis of 3-acylindoles via Friedel Crafts acylation of 1-(phenylsulfonyl)indole. A new route to pyridocarbazole-5,11-quinones and ellipticine,J. Org. Chem.1985,50, 5451-5457.
    [167]Okauchi, T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H. A general method for acylation of indoles at the 3-position with acyl chlorides in the presence of dialkylaluminum chloride, Org. Lett.2000,2,1485-1487.
    [168]Ottoni, O.; Neder, A.; de, V. F.; Dias, A. K. B.; Cruz, R. P. A.; Aquino, L. B. Acylation of Indole under Friedel-Crafts Conditions-An Improved Method To Obtain 3-Acylindoles Regioselectively, Org. Lett.2001,3,1005-1007.
    [169]Katritzky, A. R.; Suzuki, K.; Singh, S. K.; He, H.-Y. Regiospecific C-Acylation of Pyrroles and Indoles Using N-Acylbenzotriazoles, J. Org. Chem. 2003,68,5720-5723.
    [170]Powers, J. C. Synthesis of piperidylindoles, J. Org. Chem.1965,30, 2534-2540.
    [171]Davidsen, S. K.; Summers, J. B.; Albert, D. H.; Holms, J. H.; Heyman, H. R.; Magoc, T. J.; Conway, R. G.; Rhein, D. A.; Carter, G. W. N-(Acyloxyalkyl) pyridinium Salts as Soluble Prodrugs of a Potent Platelet Activating Factor Antagonist, J. Med. Chem.1994,37,4423-4429.
    [172]Szmuszkovicz, J.3-Acylindole Mannich bases and their transformation products, J. Am. Chem. Soc.1960,82,1180-1186.
    [173]Bergman, J.; Venemalm, L. Acylation of the zinc salt of indole, Tetrahedron 1990,46,6061-6066.
    [174]Wu, W.; Su, W. Mild and Selective Ru-Catalyzed Formylation and Fe-Catalyzed Acylation of Free (N-H) Indoles Using Anilines as the Carbonyl Source,J.Am. Chem. Soc.2011,133,11924-11927.
    [175]Wu, J. C.; Song, R. J.; Wang, Z. Q.; Huang, X. C.; Xie, Y. X.; Li, J. H. Copper-Catalyzed C-H Oxidation/Cross-Coupling of a-Amino Carbonyl Compounds, Angew. Chem., Int. Ed.2012,51,3453-3457.
    [176]Chen, J.; Liu, B.; Liu, D.; Liu, S.; Cheng, J. The Copper-Catalyzed C-3-Formylation of Indole C-H Bonds using Tertiary Amines and Molecular Oxygen, Adv. Synth. Catal.2012,354,2438-2442.
    [177]Murahashi, S. I. Synthetic aspects of metal-catalyzed oxidations of amines and related reactions, Angew. Chem., Int. Ed.1995,34,2443-2465.
    [178]Murahashi, S. I.; Zhang, D. Ruthenium-catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450, Chem. Soc. Rev.2008,37, 1490-1501.
    [179]Murahashi, S. I.; Nakae, T.; Terai, H.; Komiya, N. Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Molecular Oxygen or Hydrogen Peroxide and Sodium Cyanide:sp3 C-H Bond Activation and Carbon-Carbon Bond Formation, J. Am. Chem. Soc.2008,130,11005-11012.
    [180]Samec, J. S. M.; Ell, A. H.; Backvall, J. E. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system, Chem.-Eur. J.2005,11,2327-2334.
    [181]DeBoef, B.; Pastine, S. J.; Sames, D. Cross-Coupling of sp3 C-H Bonds and Alkenes:Catalytic Cyclization of Alkene-Amide Substrates, J. Am. Chem. Soc. 2004,126,6556-6557.
    [182]Murahashi, S.-I.; Noata, T.; Yonemura, K. Ruthenium-catalyzed cytochrome P-450 type oxidation of tertiary amines with alkyl hydroperoxides, J. Am. Chem. Soc.1988,110,8256-8258.
    [183]Bailey, A. J.; James, B. R. Catalyzed aerobic dehydrogenation of amines and an x-ray crystal structure of a bis(benzylamine) ruthenium(II) porphyrin species, Chem. Commun.1996,2343-2344.
    [184]Campos, K. R. Direct sp3 C-H bond activation adjacent to nitrogen in heterocycles, Chem. Soc. Rev.2007,36,1069-1084.
    [185]Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis, Science 2006,312,67-72.
    [186]Murahashi, S. I.; Okano, Y.; Sato, H.; Nakae, T.; Komiya, N. Aerobic ruthenium-catalyzed oxidative transformation of secondary amines to imines, Synlett 2007,1675-1678.
    [187]Jiang, T. S.; Li, J. H. Palladium-catalyzed oxidative tandem reaction of allylamines with aryl halides leading to α,β-unsaturated aldehydes, Chem. Commun.2009,7236-7238.
    [188]Liu, Y.; Yao, B.; Deng, C. L.; Tang, R. Y.; Zhang, X. G.; Li, J. H. Palladium-Catalyzed Oxidative Coupling of Trialkylamines with Aryl Iodides Leading to Alkyl Aryl Ketones, Org. Lett.2011,13,2184-2187.
    [189]Zhao, X. H.; Liu, D. L.; Guo, H.; Liu, Y. G.; Zhang, W. B. C-N Bond Cleavage of Ally lic Amines via Hydrogen Bond Activation with Alcohol Solvents in Pd-Catalyzed Allylic Alkylation of Carbonyl Compounds, J. Am. Chem. Soc. 2011,133,19354-19357.
    [190]Xie, J.; Li, H.; Zhou, J.; Cheng, Y.; Zhu, C. A Highly Efficient Gold-Catalyzed Oxidative C-C Coupling from C-H Bonds Using Air as Oxidant, Angew. Chem., Int. Ed.2012,51,1252-1255.
    [191]Sakamoto, T.; Kondo, Y.; Iwashita, S.; Nagano, T.; Yamanaka, H.Condensed heteroaromatic ring systems. XIII. One-step synthesis of 2-substituted 1-methylsulfonylindoles from N-(2-halophenyl)methanesulfonamides, Chem. Pharm. Bull.1988,36,1305-1308.
    [192]Saulnier, M. G.; Frennesson, D. B.; Deshpande, M. S.; Vyas, D. M. Synthesis of a rebeccamycin-related indolo[2,3-a]carbazole by palladium(0) catalyzed polyannulation, Tetrahedron Lett.1995,36,7841-7844.
    [193]Shin, K.; Ogasawara, K. A new synthesis of the naturally occurring free radical scavenger carazostatin, Chem. Lett.1995,289-290.
    [194]Shin, K.; Ogasawara, K. Enantiotopical synthesis of carbazoquinocins A and D, the potent lipid peroxidation inhibitors from Streptomyces violaceus 2448-SVT2, Synlett 1996,922-924.
    [195]Shin, K.; Ogasawara, K. An expeditious synthesis of 2,2'-biindolyl, Synlett 1995,859-860.
    [196]Tyrrell, E.; Whiteman, L.; Williams, N. Sonogashira cross-coupling reactions and construction of the indole ring system using a robust, silica-supported palladium catalyst, Synthesis 2009,829-835.
    [197]Guo, Y. J.; Tang, R. Y.; Li, J. H.; Zhong, P.; Zhang, X. G. Palladium-Catalyzed Annulation of 2-(1-Alkynyl)benzenamines with Disulfides:Synthesis of 3-Sulfenylindoles, Adv, Synth, Catal.2009,351,2615-2618.
    [198]Janreddy, D.; Kavala, V.; Kuo, C. W.; Kuo, T. S.; He, C. H.; Yao, C. F. The PdCl2-catalyzed sequential heterocyclization/Michael addition cascade in the synthesis of 2,3-disubstituted indoles, Tetrahedron 2013,69,3323-3330.
    [199]Nair, V.; Nandialath, V.; Abhilash, K. G.; Suresh, E. An efficient synthesis of indolo[3,2-a]carbazoles via the novel acid catalyzed reaction of indoles and diaryl-1,2-diones, Org. Biomol. Chem.2008,6,1738-1742.
    [200]Song, Y.; Chen, Z.; Li, H. Advances in coumarin-derived fluorescent chemosensors for metal ions, Curr. Org. Chem.2012,16,2690-2707.
    [201]Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chem. Rev.2012,112,1910-1956.
    [202]Tang, R. Y.; Li, J. H. PdCl2-Catalyzed Domino Reactions of 2-Alkynylbenzaldehydes with Indoles:Synthesis of Fluorescent 5H-Benzo[b] carbazol-6-yl Ketones, Chem.-Eur. J.2010,16,4733-4738.
    [203]Ni, J.; Li, Q.; Li, B.; Zhang, L. A novel fluorescent probe based on rhodamine B derivative for highly selective and sensitive detection of mercury(Ⅱ) ion in aqueous solution, Sensors Actuators, B:Chem.2013,186,278-285.
    [204]Shi, B.; Zhang, P.; Wei, T.; Yao, H.; Lin, Q.; Liu, J.; Zhang, Y. A reversible fluorescent chemosensor for mercury ions based on 1H-imidazo[4,5-b]phenazine derivatives, Tetrahedron 2013,69,7981-7987.
    [205]Wang, H. F.; Wu, S. P. Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging, Tetrahedron 2013,69, 1965-1969.
    [206]Pal, D.; Saha, S.; Singh, S. Importance of pyrazole moiety in the field of cancer, Int. J. Pharma. Pharma. Sci.2012,4,98-104.
    [207]Secci, D.; Bolasco, A.; Chimenti, P.; Carradori, S. The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant /anticonvulsant agents, Current Med. Chem.2011,18,5114-5144.
    [208]Bekhit, A. A.; Hymete, A.; Bekhit, A. E.-D. A.; Damtew, A.; Aboul-Enein, H. Y. Pyrazoles as promising scaffold for the synthesis of antiinflammatory and/or antimicrobial agent, Mini-Rev. Med. Chem.2010,10,1014-1033.
    [209]Viciano-Chumillas, M.; Tanase, S.; de Jongh, L. J.; Reedijk, J. Coordination Versatility of Pyrazole-Based Ligands towards High-Nuclearity Transition-Metal and Rare-Earth Clusters, Eur. J. Inorg. Chem.2010,3403-3418.
    [210]Perez, J.; Riera, L. Pyrazole Complexes and Supramolecular Chemistry Eur. J. Inorg. Chem.2009,4913-4925.
    [211]Ojwach, S. O.; Darkwa, J. Pyrazole and (pyrazol-1-yl)metal complexes as carbon-carbon coupling catalysts, Inorg. Chim. Acta 2010,363,1947-1964.
    [212]Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives-a recent development, Rec. Patents on Anti-Infect. Drug Discov.2009,4,154-163.
    [213]Lamberth, C. Pyrazole chemistry in crop protection, Heterocycles 2007,71, 1467-1502.
    [214]Mukherjee, R. Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects, Coord. Chem. Rev.2000,203,151-218.
    [215]T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collin s, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G. Burton, J. N. C ogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. V eenhuizen, Y. Y. Zhang and P. C. Isakson, Synthesis and Biological Evaluat ion of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors:Identific ation of 4-[5-(4-Methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesu lfonamide (SC-58635, Celecoxib), J. Med. Chem.1997,40,1347-1365.
    [216]G. L. Plosker and K. L. Goa, Granisetron. A review of its pharmacological properties and therapeutic use as an antiemetic Drugs,1991,42,805-824.
    [217]T. de Paulis, K. Hemstapat, Y. Chen, Y. Zhang, S. Saleh, D. Alagille, R. M. Baldwin, G. D. Tamagnan and P. J. Conn, Substituent effects of N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides on positive allosteric modulation of the metabotropic glutamate-5 receptor in rat cortical astrocytes, J. Med. Chem.,2006,49,3332-3344.
    [218]S. Okuno, A. Saito, T. Hayashi and P. H. Chan, The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia, J. Neurosci.,2004,24,7879-7887.
    [219]B. D. Maxwell, J. Labelled The radiolabeled syntheses of JV 485, a herbicide candidate for winter wheat, Compd. Radiopharm.,2000,43,645-654.
    [220]G. P. Lahm, D. Cordova and J. D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem.,2009,17,4127-4133.
    [221]Mancy, A.; Dijols, S.; Poli, S.; Guengerich, P.; Mansuy, D. Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C:molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9, Biochem.1996, 35,16205-16212.
    [222]Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. From 2000 to Mid-2010:A Fruitful Decade for the Synthesis of Pyrazoles, Chem. Rev.2011,111, 6984-7034.
    [223]El-Saghier, A. M.; Abdel-Ghany, H.; Mohamed, M. A.; Younes, S. H. Recent advances in the chemistry of thienoazoles, Trends Org. Chem.2011,15,1-24.
    [224]Schmidt, A.; Dreger, A. Recent advances in the chemistry of pyrazoles. Part 2. Reactions and N-heterocyclic carbenes of pyrazole, Curr. Org. Chem.2011,15, 2897-2920.
    [225]Dadiboyena, S.; Nefzi, A. Synthesis of functionalized tetrasubstituted pyrazolyl heterocycles-A review, Eur. J. Med. Chem.2011,46,5258-5275.
    [226]Yoon, J.-Y.; Lee, S.-g.; Shin, H. Recent advances in the regioselective synthesis of pyrazoles, Curr. Org. Chem.2011,15,657-674.
    [227]Janin, Y. L. Synthetic accesses to 3/5-pyrazole carboxylic acids, Mini-Rev. Org. Chem.2010,7,314-323.
    [228]Makino, K.; Kim, H. S.; Kurasawa, Y. Synthesis of pyrazoles, J. Heterocycl. Chem.1998,35,489-497.
    [229]Elnagdi, M. H.; Elgemeie, G. E. H.; Abd-Elaal, F. A. E. Recent developments in the synthesis of pyrazole derivatives, Heterocycles 1985,23,3121-3153.
    [230]Kost, A. N.; Grandberg,I.I. Progress in pyrazole chemistry, Adv. Heterocycl. Chem.1966,6,347-429.
    [231]Janin, Y. L. Preparation and Chemistry of 3/5-Halogenopyrazoles, Chem. Rev. 2012,112,3924-3958.
    [232]Knorr, L. Knorr Pyrazole Synthesis, Chem. Ber.1883,16,2587-2588.
    [233]Kempson, J. Knorr pyrazole synthesis in Name Reactions in Heterocyclic Chemistry Ⅱ,2011, p.p.317-326.
    [234]Huang, Y. R.; Katzenellenbogen, J. A. Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles:novel ligands for the estrogen receptor, Org. Lett.2000, 2,2833-2836.
    [235]Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M. V.; Steel, P. J. Regioselective Synthesis of Polysubstituted Pyrazoles and Isoxazoles,J. Org. Chem.2001,66,6787-6791.
    [236]Heller, S. T.; Natarajan, S. R.1,3-Diketones from Acid Chlorides and Ketones: A Rapid and General One-Pot Synthesis of Pyrazoles, Org. Lett.2006,8, 2675-2678.
    [237]Shen, L.; Cao, S.; Liu, N.; Wu, J.; Zhu, L.; Qian, X. Ytterbium(III) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions, Synlett 2008,1341-1344.
    [238]Fustero, S.; Roman, R.; Sanz-Cervera, J. F.; Simon-Fuentes, A.; Bueno, J.; Villanova, S. Synthesis of New Fluorinated Tebufenpyrad Analogs with Acaricidal Activity Through Regioselective Pyrazole Formation, J. Org. Chem. 2008,73,8545-8552.
    [239]Meng, L.; Lorsbach, B. A.; Sparks, T. C.; Fettinger, J. C.; Kurth, M. J. Parallel Synthesis of Bis-heterocyclic Isoxazolylmethyl- and Isoxazolinylmethylpyrazoles, J. Comb. Chem.2010,12,129-136.
    [240]Garcia, H.; Iborra, S.; Miranda, M. A. Pyrazoles and isoxazoles derived from 2-hydroxyaryl phenylethynyl ketones:synthesis and spectrophotometric evaluation of their potential applicability as sunscreens, Heterocycles 1991,32, 1745-1755.
    [241]Grotjahn, D. B.; Van, S.; Combs, D.; Lev, D. A.; Schneider, C.; Rideout, M.; Meyer, C.; Hernandez, G.; Mejorado, L. New Flexible Synthesis of Pyrazoles with Different, Functionalized Substituents at C3 and C5, J. Org. Chem.2002,67, 9200-9209.
    [242]Bishop, B. C.; Brands, K. M. J.; Gibb, A. D.; Kennedy, D. J. Regioselective synthesis of 1,3,5-substituted pyrazoles from acetylenic ketones and hydrazines, Synthesis 2004,43-52.
    [243]Dastrup, D. M.; Yap, A. H.; Weinreb, S. M.; Henryb, J. R.; Lechleiter, A. J. Synthesis of β-tosylethylhydrazine and its use in preparation of N-protected pyrazoles and 5-aminopyrazoles, Tetrahedron 2004,60,901-906.
    [244]Smith, C. D.; Tchabanenko, K.; Adlington, R. M.; Baldwin, J. E. Synthesis of linked heterocycles via use of bis-acetylenic compounds, Tetrahedron Lett.2006, 47,3209-3212.
    [245]Liu, H. L.; Jiang, H. F.; Zhang, M.; Yao, W. J.; Zhu, Q. H.; Tang, Z. One-pot three-component synthesis of pyrazoles through a tandem coupling-cyclocondensation sequence, Tetrahedron Lett.2008,49,3805-3809.
    [246]Pechmann, H. v. Formation of pyrazoles from acetylenes and diazomethane, Chem. Ber.1898,31,2950-2951.
    [247]Padwa, A.1,3-Dipolar Cycloaddition Chemistry; John Wiley & Sons:New York,1984; Vol. I.
    [248]Padwa, A., Pearson, W. H., Eds.; Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; John Wiley & Sons:New York,2002.
    [249]Mullins, R. J. Pechmann pyrazole synthesis in Name Reactions in Heterocyclic Chemistry Ⅱ2011, p.p.327-336.
    [250]Nakano, Y.; Hamaguchi, M.; Nagai, T. A synthetic route to bicyclic pyrazolenines via 3-chloropyrazolines and the ring opening of pyrazolenines to. diazoalkenes, J. Org. Chem.1989,54,5912-5919.
    [251]Foti, F.; Grassi, G.; Risitano, F. First synthesis of a bromonitrilimine. Direct formation of 3-bromopyrazole derivatives, Tetrahedron Lett.1999,40, 2605-2606.
    [252]Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. A Novel One-Pot Method for the Preparation of Pyrazoles by 1,3-Dipolar Cycloadditions of Diazo Compounds Generated in Situ, J. Org. Chem.2003,68,5381-5383.
    [253]Deng, X.; Mani, N. S. Reaction of N-Monosubstituted Hydrazones with Nitroolefins:A Novel Regioselective Pyrazole Synthesis, Org. Lett.2006,8, 3505-3508.
    [254]Hari, Y.; Tsuchida, S.; Sone, R.; Aoyama, T. An efficient synthesis of 2-diazo-2-(trimethylsilyl)ethanols and their application to pyrazole synthesis, Synthesis 2007,3371-3375.
    [255]Deng, X.; Mani, N. S. Regioselective Synthesis of 1,3,5-Tri- and 1,3,4,5-Tetrasubstituted Pyrazoles from N-Arylhydrazones and Nitroolefins, J. Org. Chem. 2008,73,2412-2415.
    [256]Zora, M.; Kivrak, A. Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α,β-alkynic hydrazones, J. Org. Chem.2011,76,9379-9390.
    [257]Liang, J. T.; Deng, X.; Mani, N. S. Convergent Synthesis of a 5HT7/5HT2 Dual Antagonist, Org. Process Res. Dev.,2011,15,876-882.
    [258]Xu, X.; Zavalij, P. Y.; Hu, W.; Doyle, M. P. Vinylogous Reactivity of Enol Diazoacetates with Donor-Acceptor Substituted Hydrazones, Synthesis of Substituted Pyrazole Derivatives, J. Org. Chem.2013,78,1583-1588.
    [259]Felding, J.; Kristensen, J.; Bjerregaard, T.; Sander, L.; Vedso, P.; Begtrup, M. Synthesis of 4-Substituted 1-(Benzyloxy)pyrazoles via Iodine-Magnesium Exchange of 1-(Benzyloxy)-4-iodopyrazole,J. Org. Chem.1999,64,4196-4198.
    [260]Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. Copper-diamine-catalyzed N-arylation of pyrroles, pyrazoles, indazoles, imidazoles, and triazoles, J. Org. Chem.2004,69,5578-5587.
    [261]Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Mild conditions for copper-catalyzed N-arylation of pyrazoles, Eur. J. Org. Chem.2004,695-709.
    [262]Mukherjee, A.; Sarkar, A. Pyrazole-tethered arylphosphine ligands for Suzuki reactions of aryl chlorides. How important is chelation?, Tetrahedron Lett.2004, 45,9525-9528.
    [263]Zhu, L.; Guo, P.; Li, G.; Lan, J.; Xie, R.; You, J. Simple Copper Salt-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with Aryl and Heteroaryl Halides, J. Org. Chem.2007,72,8535-85.38.
    [264]Xi, Z.; Liu, F.; Zhou, Y.; Chen, W. Cul/L (L=pyridine-functionalized 1,3-diketones) catalyzed C-N coupling reactions of aryl halides with NH-containing heterocycles, Tetrahedron 2008,64,4254-4259.
    [265]McLaughlin, M.; Marcantonio, K.; Chen, C. Y.; Davies, I. W. A Simple, Modular Method for the Synthesis of 3,4,5-Trisubstituted Pyrazoles, J. Org. Chem. 2008,73,4309-4312.
    [266]Despotopoulou, C.; Klier, L.; Knochel, P. Synthesis of fully substituted pyrazoles via regio- and chemoselective metalations, Org. Lett.2009,11, 3326-3329.
    [267]Goikhman, R.; Jacques, T. L.; Sames, D. C-H Bonds as Ubiquitous Functionality:A General Approach to Complex Arylated Pyrazoles via Sequential Regioselective C-Arylation and N-Alkylation Enabled by SEM-Group Transposition, J. Am. Chem. Soc.2009,131,3042-3048.
    [268]Deng, X.; Roessler, A.; Brdar, I.; Faessler, R.; Wu, J.; Sales, Z. S. N. S. Mani, Direct, metal-free amination of heterocyclic amides/ureas with NH-heterocycles and N-substituted anilines in POC13, J. Org. Chem.2011,76,8262-8269.
    [269]Ye, M.; Edmunds, A. J. F.; Morris, J. A.; Sale, D.; Zhang, Y; Yu, J. Q. A robust protocol for Pd(ii)-catalyzed C-3 arylation of (1H) indazoles and pyrazoles: total synthesis of nigellidine hydrobromide, Chem. Sci.2013,4,2374-2379.
    [270]Chemistry and Biochemistry of the Amino Acids, Barrett, G. C. Ed.; Chapman and Hall, London,1985.
    [271]Williams, R. M. Synthesis of optically active a-amino acids; Organic Chemistry Series; Pergamon:New York,1989.
    [272]Ohfune, Y. Stereoselective routes toward the synthesis of unusual amino acids Acc. Chem. Res.1992,25,360-366.
    [273]Gellman, S. H. Foldamers:A Manifesto, Acc. Chem. Res.1998,31,173-180.
    [274]Klingler, F. D. Asymmetric Hydrogenation of Prochiral Amino Ketones to Amino Alcohols for Pharmaceutical Use, Acc. Chem. Res.2007,40,1367-1376.
    [275]Concellon, J. M.; Rodriguez-Solla, H. Synthesis and synthetic applications of a-amino ketones derived from natural a-amino acids, Curr. Org. Chem.2008,12, 524-543.
    [276]Obrecht, D.; Altorfer, M.; Lehmann, C.; Schonholzer, P.; Muller, K. An Efficient Strategy to Orthogonally Protected (R)-and (S)-a-Methyl(alkyl) serine-Containing Peptides via a Novel Azlactone/Oxazoline Interconversion Reaction, J. Org. Chem.1996,61,4080-4086.
    [277]Obrecht, D.; Bohdal, U.; Broger, C.; Bur, D.; Lehmann, C.; Ruffieux, R.; Schonholzer, P.; Spiegler, C.; Muller, K. L-Phenylalanine cyclohexylamide:a simple and convenient auxiliary for the synthesis of optically pure a,a-disubstituted (R)- and (S)-amino acids, Helv. Chim. Act.1995,78,563-568.
    [278]Schoepp, D. D.; Jane, D. E.; Monn, J. A. Pharmacological agents acting at subtypes of metabotropic glutamate receptors, Neuropharmacology 1999,38, 1431-1476.
    [279]Takahashi, A.; Naganawa, H.; Ikeda, D.; Okami, Y. Structure determination of altemicidin by NMR spectroscopic analysis, Tetrahedron 1991,47,3621-3632.
    [280]Schirlin, D.; Gerhart, F.; Hornsperger, J. M.; Hamon, M.; Wagner, J.; Jung, M. J. Synthesis and biological properties of a-mono and a-difluoromethyl derivatives of tryptophan and 5-hydroxytryptophan, J. Med. Chem.1988,31,30-36.
    [281]Walsh, J. J.; Metzler, D. E.; Powell, D.; Jacobson, R. A.2-(Hydroxymethyl) aspartic acid:synthesis, crystal structure, and reaction with a transaminase, J. Am. Chem. Soc.1980,102,7136-7138.
    [282]Beenen, M. A.; Weix, D. J.; Ellman, J. A. Asymmetric synthesis of protected arylglycines by rhodium-catalyzed addition of arylboronic acids to N-tert-butanesulfinyl imino esters, J. Am. Chem. Soc.2006,128,6304-6305.
    [283]Zhao, L.; Li, C. J. Functionalizing glycine derivatives by direct C-C bond formation, Angew. Chem., Int. Ed.2008,47,7075-7078.
    [284]Barbieri, A.; Montevecchi, P. C.; Nanni, D.; Navacchia, M. L. LDA-promoted decomposition of benzenesulfenamides. A route to aminyl radicals by dioxygen oxidation of lithium amides, Tetrahedron 1996,52,13255-13264.
    [285]Kauffmann, T.; Sahm, W. Synthesis of dienes from vinyl halides via organocopper compounds, Angew. Chem., Int. Ed.1967,6,85.
    [286]Kauffmann, T.; Albrecht, J.; Berger, D.; Legler, J. "Dimerization of organic nitrogen compounds via copper-containing intermediates, Angew. Chem. Int. Ed. 1967,6,633-634.
    [287]Ueda, S.; Nagasawa, H. Facile Synthesis of 1,2,4-Triazoles via a Copper-Catalyzed Tandem Addition-Oxidative Cyclization, J. Am. Chem. Soc.2009,131, 15080-15081.
    [288]Wieland, H.; Gambarjan, S. Oxidation of diphenylamine, Chem. Ber.1906,39, 1499-1506.
    [289]Windaus, A. Dissociation of tetraphenylhydrazine, Ann. Chem.1957,604, 251-256.
    [290]Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Novel Alternative for the N-N Bond Formation through a PIFA-Mediated Oxidative Cyclization and Its Application to the Synthesis of Indazol-3-ones, J. Org. Chem.2006,71, 3501-3505.
    [291]Nehru, K.; Jang, Y. K.; Seo, M. S.; Nam, W.; Kim, J. Oxidation of N-methylanilines by a nonheme iron(IV)-oxo complex, Bull. Korean Chem. Soc. 2007,28,843-846.
    [292]Naimi-Jamal, M. R.; Hamzeali, H.; Mokhtari, J.; Boy, J.; Kaupp, G. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions, ChemSusChem 2009,2,83-88.
    [293]Neumann, J. J.; Suri, M.; Glorius, F. Efficient syntheses of pyrazoles: Oxidative C-C/N-N bond-formation cascade, Angew. Chem., Int. Ed.2010,49, 7790-7794.
    [294]Fanshawe, W. J.; Bauer, V. J.; Safir, S. R. Synthesis and alkylation of tetrahydrofuro[3,4-c]pyrazolols, J. Med. Chem.1972,15,980-982.
    [295]Ren, H.; Wulff, W. D. Direct Catalytic Asymmetric Aminoallylation of Aldehydes:Synergism of Chiral and Nonchiral Bronsted Acids, J. Am. Chem. Soc. 2011,133,5656-5659.
    [296]Ren, H.; Wulff, W. D. Total Synthesis of Sedum Alkaloids via Catalyst Controlled aza-Cope Rearrangement and Hydroformylation with Formaldehyde, Org. Lett.2013,15,242-245.
    [297]Azap, C.; Rueping, M. Cooperative coexistence:effective interplay of two Broensted acids in the asymmetric synthesis of isoquinuclidines, Angew. Chem., Int. Ed.2006,45,7832-7835.
    [298]Zheng, L. S.; Li, L.; Yang, K. F.; Zheng, Z. J.; Xiao, X. Q.; Xu, L. W. New silver(I)-monophosphine complex derived from chiral Ar-BINMOL:synthesis and catalytic activity in asymmetric vinylogous Mannich reaction, Tetrahedron 2013, 69,8777-8784.
    [299]Akimova, T. I.; Trofimenko, N. N.; Verbitskii, G. A.; Gerasimenko, A. V. (Z)-1,4-diphenyl-2-phenylamino-2-butene-1,4-dione:Synthesis and mechanism of formation Russ, J. Org. Chem.2004,40,693-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700