城市自然灾害风险评估与实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市自然灾害风险研究是国际灾害研究领域的前沿与热点问题。在全球自然灾害频发、强度不断增强的背景下,城市自然灾害风险研究更引起了国际社会和国内外学者的高度关注。在国家自然科学基金项目“中国沿海城市自然灾害风险评估体系研究”和重点项目“沿海城市自然灾害风险应急预案情景分析”的资助下,调查分析了中国沿海典型城市自然灾害发育特征及其风险管理,获得了大量的文献资料与数据基础上,借鉴国内外自然灾害风险研究进展的成果,从地球系统科学思想出发,分析了典型城市自然灾害风险系统主要特征,探讨城市自然灾害风险评估方法与理论,并应用遥感和GIS技术,剖析城市不同尺度下的自然灾害风险动态评估途径和范式,为城市综合减灾降险和风险管理决策提供科学依据。主要研究结果如下:
     1.国内外自然灾害分析实践表明,完全准确预报和阻止自然灾害发生并不现实,采用有效的自然灾害风险评估与管理战略,可以避免或减轻其带来的巨大损失。城市自然灾害风险研究的核心是人类社会环境暴露程度、承灾体脆弱性和风险表达。城市自然灾害风险系统具有连锁效应、放大效应和人为效应等基本特征。多元化数据获取手段和复杂系统仿真建模工具相结合,模拟人类活动干扰下的灾害发展演化过程,形成对灾害风险的动态综合评估。
     2.从地球系统科学思想出发,按照成因分类和分级序列原则,建立了城市灾害分类系统。第一级的自然灾害和人为灾害二大类对应于地球表层系统和人类活动系统,人类活动系统和地球表层系统是灾害形成的孕灾环境系统。第二级的气象灾害、水文灾害、地质灾害、生物灾害形成于地球表层系统的大气圈、水圈、岩石圈和生物圈;技术灾害和人为灾害形成于人与技术等人为作用;环境灾害是人地系统共同作用下的灾害类型,具有自然与人为的双重特点。第三级的灾种是各灾害类型按成因的进一步细分,如气象灾害有台风、冰雪、风暴潮等。这一城市灾害分类系统,从灾害形成的机理和不同的环境系统出发,有利于认别和分析各致灾因子形成灾害的孕灾环境,针对不同的孕灾环境,开展灾害的脆弱性和风险分析,提出相对应的减灾和降低风险决策与管理措施。
     3.构建了城市自然灾害系统、灾害风险系统与灾害风险评估之间的关系模型。城市自然灾害风险系统与灾害系统是两个相互关联的系统。风险系统是灾害系统的一个子系统。城市灾害系统包括孕灾环境、致灾因子和承灾体三个要素。而城市灾害风险系统是对灾害系统中致灾因子危险性分析,以及承灾体脆弱性分析和暴露要素分析。城市自然灾害风险表达是致灾因子、人类社会环境暴露程度和承灾体脆弱性三者共同作用下的可能灾害损失。
     4.提出了城市自然灾害风险评估的多尺度体系。城市自然灾害风险评估的尺度是与研究区域比例尺、空间分辨率、行政单元和数据精度相对应。根据自上而下和自下而上两种尺度研究方法,建立了市级、区级(城区)和社区级3个尺度开展灾害风险评估工作。市级尺度下,研究比例尺为1:500000~1:100000,对应分析单元的空间分辨率为250m~30m;区级尺度下,研究比例尺为1:100000~1:10000,对应分析单元的空间分辨率为30m~5m;社区尺度下,研究比例尺为1:10000~1:1000的比例尺,对应分析单元的空间分辨率为5m以下。不同的研究尺度,可采用不同的评估方法,大尺度研究一般用指标体系的评估方法,中小尺度的研究采用情景模拟和灾害现场调查方法。在同一尺度下也可采用不同的风险评估方法,对于同一种评估方法也可以应用于不同尺度下的研究,以满足不同的评估精度需求,形成多尺度的城市自然灾害风险评估。
     5.上海城市尺度自然灾害综合风险评估,选用指标体系的风险建模范式和方法。从致灾因子、历史灾情、暴露-易损性和抗灾恢复力出发,选取19个风险评估指标,建立了上海市自然灾害综合风险评估指标体系。以上海下辖各区县作为评估基本单元,采取特尔菲法与AHP相结合方法,确定各指标权重。经标准化处理,计算得到各指标因子指数和综合风险值,由低到高分为10个等级,基于GIS编制上海综合风险图。分析表明:①各区县暴露-易损性指数差别较大,最高的是黄浦区和静安区。②各区县的风险值基本处于风险等级的中段,黄浦区最高值为0.75,金山区最低值为0.38。③综合风险等级从上海中心城区向郊外辐射递减。④沿海区县风险值0.5以上,高于西部区县风险值0.4左右。该指标体系方法对于快速评估城市综合风险具有借鉴意义。
     6.静安城区暴雨洪涝灾害风险评估,采用基于情景分析的动态风险评估方法。应用遥感和GIS工具,从致灾因子、脆弱性和暴露分析出发,模拟出研究区8种不同重现期内1小时降雨的淹没区域和淹没深度情景,并以三维可视化方式显示模拟结果。通过实地调查与收集灾损数据,建立居民房屋和室内财产内涝淹没深度和损失率之间的关系曲线;通过人口和房屋被淹没状况的暴露分析,进行受灾人口与损失评估,并利用超越概率-损失曲线,建立了研究区风险序列,计算出年平均内涝损失数值,作为减灾的成本-效益分析。分析表明:①静安区8种重现期建立的超越概率-损失曲线,得出年平均内涝损失为342万元。②8种重现期暴雨内涝情景模拟,淹没最深处为50cm。③该风险评估方法,改进了城市内部地形模拟,提高了场景模拟的空间分析精度,使评估结果更为准确,可作为该尺度暴雨内涝风险管理依据。
     7.城市社区暴雨内涝灾害情景分析,以上海市浦东新区临园社区2008年9月20日暴雨内涝为例,采用现场调查方法,应用遥感和GIS工具,开展该次暴雨内涝灾害的多情景模拟。从致灾因子、脆弱性和暴露分析出发,实地测量不同积水点水深进行插值,模拟洪水淹没情景。根据居民房屋和室内财产暴露与灾损率,分别得到房屋和室内财产等损失,总损失为608732元,重现期为150年一遇,超越概率0.0067,暴雨内涝风险值(年平均灾害损失AAFL)约4079元,与实际灾损情况基本一致。这为城市社区尺度的暴雨内涝灾害数据获取与风险评估方法提供了一种新探索。
     城市自然灾害系统是个复杂系统,受多变量因素制约,导致灾害风险评估的复杂性和艰巨性。尽管本文对城市自然灾害风险研究进行了探讨,但仍有待深化,如重视城市灾害数据库构建,力求形成灾害数据管理的统一模板和共享平台;加强城市自然灾害风险实证研究,系统建立城市不同类型承灾体脆弱性灾损曲线;探讨城市不同尺度自然灾害风险评估范式,实现灾害综合风险的动态评估,为城市各级主管部门减灾降险和管理决策提供依据。
Urban natural disaster risk is the spotlight in international disaster and abroad researchfield. Because both the frequency and the intensity of global natural disasteroccurrences are increasing, the research on urban natural disaster risk is drawing moreattention in international professional field as well as in domestic related field. In2005, the researcher of this paper take part in two National Science Fund Committeeprogrammes, which are Comprehensive Risk Assessment and Management ModeResearch on Natural Disaster in Coastal Cities, and key programme ScenarioAnalysis on Natural Disaster Emergencies in Coastal Cities. During the researchperiod, the researcher collects a great number of literatures and research data. On theadvanced bases, the paper summary the achievement of previous development innatural disaster risk research both in domestic and abroad for references. Starting fromearth systemic and scientific thought, the paper makes analysis on the maincharacteristics of natural disaster risk system and probes into the theories and methodsof natural disaster risk assessment. The paper apply Remote Sensing and GIStechniques to take apart the dynamic assessment ways and modes of natural disasterrisk in diverse scales cities, in order to provide scientific basis for urban disaster riskdecreasing and risk decision-making management. The followings are mainconclusions of the research:
     1.Research analysis and practices indicate that it is unrealistic to make exactforecasting and preventing natural disaster, but adopting the results of scientificnatural disaster risk assessment and strategic management can avoid or alleviate thegreat losses; Urban natural disaster risk may focus on the degree of human societyexposure to surroundings, the vulnerability of disaster acceptor; and risk express.Urban natural disaster risk system is provided with characteristics of chain dominoeffect, magnify domino effect and man-made effect, etc. Getting help frommulti-datum gaining methods and complicate system imitated to model, whichsimulates the evolvement process of disaster happening under the disturbing situation of human behavior, to make a dynamic assessment on disaster risk.
     2. Starting from earth systemic and scientific thoughts, the paper set up urban disasterclassification system according to cause of formation and grade sequence principle.Corresponding earth surface layer and human activity system, the natural disaster andman-made disaster belong to the first grade, which is the environmental system totrigger disasters. The second grade includes weather disaster, hydrological disaster,geological disaster, biological disaster, which are formed in atmosphere, hydrosphere,lithosphere and biosphere in the earth surface layer. And technological disaster andman-made disaster attribute to humankind and technique, and so on. Environmentaldisaster attribute to both humankind and nature, which is operated by humankindsystem and nature system altogether. The third grade is the further classificationaccording to the cause of formation of diverse disaster types, just as the weatherdisaster which has typhoon, ice and snow, storm tide, etc. Such kind of urban disasterclassification system based on cause of formation of disaster and environment system,it is propitious to recognize and analysis the surrounding which trigger to disaster, andin view of different surroundings, it can help to make analysis on risk andvulnerability, and put forward corresponding decision making and managementcountermeasures on disaster reducing and risk debasing.
     3. The paper built up a relation mode which connect urban natural disaster system,disaster risk system and disaster risk assessment. Urban natural disaster risk systemand disaster system has a lose relationship. Risk system is a subsystem of disastersystem. Urban disaster system contains pregnant disaster environment, hazards anddisaster acceptor. And urban natural disaster risk system based on the analysis on boththe danger of hazards and vulnerability of disaster acceptor, and further analysis onthe exposing elements processed by the hazards and vulnerability of disaster acceptor.Urban natural disaster risk may due to three points: hazards, the degree of humansociety exposure to surroundings, and the vulnerability of disaster acceptor; The papermakes an expression of disaster risk via disaster loss assessment and disastercost-benefit analysis.
     4. The paper makes a probe into multi-scale system on urban natural disaster riskassessment. The urban natural disaster risk assessment is related to the scale ofresearch field, spatial resolution, administrative unit and the precision of data.According to both from top to bottom and from bottom to top two scales researchmethods, the paper formed city,district and community three scales to develop thedisaster risk assessment. City scale, research map scale 1:500000~1:100000, relatedunit spatial resolution 250m~30m, district scale, research map scale 1:100000~1:10000, related unit spatial resolution 30m~5m, community scale, research map scale1:10000~1:1000, related unit spatial resolution is below 5m. So different researchscale refer to different assessment methods, the big scale research generally use indexsystem assessment way, and middle and small scale research use scenario simulationand disaster investigation on scenario spot. And in order to meet the need of differentassessment precision, the same scale research can make use of different riskassessment methods, and the same risk assessment method can apply to different scaleresearches.
     5. Selecting index system risk modeling mode and method, based on hazards, disasterhistories, exposure and vulnerability, and resilience of disaster resisting, choosing 19risk assessment indexes, the paper set up Shanghai natural disaster integrated riskassessment index system. Taking all Shanghai municipal districts as assessing primaryunits, the paper makes use of Delphi method and AHP to certain each index value.The paper makes a processing of standardization to get each index factor andintegrated risk value, which has 10 grades from bottom to top, and make use of GIS tomap Shanghai integrated risk. It indicates:①There are great differences aboutexposure-vulnerability index in each districts, the greatest are Huangpu district andJing'an district.②2 The risk value of each district is in middle grade of risk grades, thegreatest is 0.75 in Huangpu district, the lowest is 0.38 in Jinshan district.③Theintegrated risk grades present radiate descending from Shanghai downtown to suburb.④The risk value of coastal districts is above 0.5, which is higher than the 0.4 in westdistricts. This index system method can be used for reference to assessing urban riskin a quick step.
     6. Making use of dynamic risk assessment method based on scenario analysis, thepaper makes flood disaster risk assessment on Jing'an district. Starting from hazards,vulnerability and exposure analysis, and applying remote sensing and GIS to simulatedifferent scenarios of 8 return periods within one-hour-rain inundation area andinundation depth, and display the simulating result by three-dimensional visualizationway. And thorough field survey and data selecting, the paper makes a relation curvechart between the loss of citizen housing and treasure and the inundation degree. Thepaper makes assessment on population suffering from disaster and loss, according tothe exposing analysis on people and houses inundation situation, and makes use ofexceedance probability-loss curve to form risk sequence and count the AverageAnnual Flood Loss, which can help make cost-benefit analysis on disaster decreasing.The analysis indicates:①According to the exceedance probability-loss curve basedon 8 return periods situations in Jing'an district, the Average Annual Flood Loss is3.42 million.②2 According to 8 return periods scenario simulation on flood, thedeepest is 50cm.③The risk assessment method can advance urban DEM, andpromote the spatial analysis precision of scenario simulation, and it makes a moreexact assessment result, which can help flood risk management.
     7. Taking Linyuan community's flood, Pudong district, Shanghai Sep. 20~(th), in 2008 asexample, the paper makes several multi-scenario simulations with remote sensing andGIS, through the field survey. And it measures the different submerging spots andinterpolating base on the spots; simulate the flood scenario with the analysis ofhazards, vulnerability and exposure. According to citizen houses and contentsexposing and losing rate, it gets the total loss is 608732 Yuan, the return period is 150years, exceedance probability is 0.0067, the Average Annual Flood Loss(Risk value)is about 4079 Yuan, which is in line with the actual. This provides a new probe forflood disaster data collecting and risk assessment method in urban community scale.Urban natural disaster risk system is a complex system, and it is restricted by a lot ofdiverse factors, which leads to the complexity and difficulty of the whole disaster riskassessment system. The paper makes a research and discussion on urban naturaldisaster risk system, but it needs more hard work and study to make further developments in this field in future, which, for example, includes to pay moreattention to urban disaster data-base construction to provide the standard mode andsharing materials for disaster data management, to strengthen case study on urbannatural disaster risk, and to form the vulnerability curves of different type disasteracceptors, to study on natural disaster risk assessment mode in urban multi-scale torealize the dynamic assessment of integrated disaster risk, to provide foundation andcountermeasures on disaster decreasing and risk reducing for every level ofgovernment.
引文
1. Adams J., 1995, Risk [M]. London: University College London Press: 228.
    
    2. Adger W.N, Hughes T.P, Folke C, et al., 2005, Social-Ecological Resilience to Coastal Disasters [J]. Science, 309(12 August): 1036-1039.
    
    3. Adger W N., 2006, Vulnerability. Global Environmental Change [J], 16:268-281.
    
    4. Alexander, 2000, Confronting Catastrophe. New York: Oxford University Press: 632.
    
    5. Ammann W.J, Dannemann S, Vulliet, L., 2006, RISK21 - Coping with Risks due to Natural Hazards in the 21st Century. London: Taylor & Francis: 181-190.
    
    6. Arnell N.W., 1989, Expected Annual Damage and Uncertainties in Flood Frequency Estimation [J].Water Res PI Management, 115:94-107.
    
    7. Arnold M., Chen R.S, Deichmann U, et al., 2006, Natural Disaster Hotspots Case Studies, Washington DC: Hazard Management Unit[R].World Bank: 1-181.
    
    8. Berning C, Viljoen M. F, DuPlessis L.A., 2000, Loss Function for Sugar-cane: Depth and Duration of Inundation as Determinates of Extent of Flood Damage [J]. Water SA, 26(4):527-530.
    
    9. Berning C, DuPlessis L. A., Viljoen M. F., 2001, Loss Function for Structural Flood Mitigation Measures[J].Water SA, 27(1): 35-38.
    
    10. Besio M, Ramella A, Boobe A, et al., 1998, Risk Maps: Theoretical Concepts and Techniques[J].J Hazard Mater. 61:299-304.
    
    11. Birkmannn J.eds., 2006. Measuring Vulnerability to Hazards of National Origin.Tokyo: UNU Press.
    
    12. Blaikie P. T, Cannon I.D, Wisner B., 1994, At Risk: Natural Hazards, People's Vulnerability and Disasters. Barbados. 287
    
    13. Boyle S.J, Tsanis 1. K, Kanaroglou P.S., 1998, Developing Geographic Information Systems for Land Use Impact Assessment in Flooding Conditions[J].J Water Res Pl,124(2):89-98.
    
    14. Bruce D.Jermyn,.1999,Response Interval Comparison Between Urban Fire Departments And Ambulance Services[M].Emergency Care,3(l):15-18.
    
    15. Bull L.J, Kirkby M J, Shannon J, et al., 1999, The Impact of Rainstorms on Floods in Ephemeral Channels in Southeast Spain[J].Catena, 38:191-209.
    16. Burton I, Feenstra J F, Parry M L, et al., 1998, UNEP Handbook on Methods for Climate Change Impact Assessment and Adaptation Studies, Version 2.1 [M]. United Nations Environment Programme and Institute for Environmental Studies, Vrije University, Amsterdam.
    
    17. Cannon B, Davis I P T, Wisne B., 1994, At Risk: Natural Hazards, People's Vulnerability and Disasters [M].London:Routledge, 141 - 156.
    
    18. Cardona O D, Hurtado J E, Chardon A C, et al., 2005, Indicators of Disaster Risk and Risk Management Summary Report for WCDR. Program for Latin America and the Caribbean IADB UNC/IDEA, 1-47.
    
    19. Cazenave A, Nerem R S., 2004, Present-day Sea Level Change: Observation and Causes [M].
    
    20. Chongfu H., Xilin L., 2008, Theory and Practice of Risk Analysis and Crisis Response [M]. Atlantis Press.
    
    21. Crichton D., 1999, The Risk Triangle in Ingleton, J. (ed.) Natural Disaster Management [M] London: Tudor Rose: 102-103.
    
    22. Cutter S.L., 1996, Vulnerability to Environmental Hazards [J]. Progress in Human Geography, 20: 529-539.
    
    23. Cutter S.L., 2003, The Vulnerability of Science and the Science of Vulnerability. Annals of the Association of American Geographers, 93(1): 1-12.
    
    24. Cutter S. L., Mitchell J.T., Scott M.S., 2000, Revealing Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographer, 90:713-737.
    
    25. Dawson R.J, Hall J.W, Bates P.D, et al., 2005, Quantified Analysis of the Probability of Flooding in the Thames Estuary under Imaginable Worst Case Sea-level Rise Scenarios. International Journal of Water Resources Development, in review.
    
    26. Demaria M, Kaplan J., 1994, Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical-cyclones [J]. J. Climate, 7: 1324-1334.
    
    27. Demirkesen A.C,Evrendilek F, Berberoglu S., et al., 2007, Coastal Flood Risk Analysis Using Landsat-7 ETM+ Imagery and SRTM DEM: A Case Study of Izmir, Turkey [J]. Environ Monit Assess, 131:293-300
    
    28. Dennis S.M., 1999, Disaster by Design: A Reassessment of Natural Hazards in the United States (Natural Hazards and Disasters) [M]. Washington, D. C: Joseph Henry Press:
    
    29. DeVautier, F., 1993, Review of GIS Applications in Hydrologic Modelling. Journal of Water Resources Planning Management, 119(2):45-62.
    
    30. Deyle R.E, French S.P, Olshansky R B, Paterson R.G., 1998, Hazard Assessment: The Factual Basis for Planning and Mitigation [M]. In: Burby R J (ed). Cooperating with nature: Confronting Natural Hazards with Land-Use Planning for Sustainable Communities. Washington D. C: Joseph Henry Press:119-166
    
    31. DFID, 2006, Reducing the Risk of Disasters-Helping to Achieve Sustainable Poverty Reduction in a Vulnerable World: A DFID policy paper.
    
    32. Dilley M, Chen R.S, Deichmann U, et al. 2005, Natural Disaster Hotspots: A Global Risk Analysis Synthesis Report [R] Washington DC: Hazard Management Unit, World Bank, 1-132.
    
    33. Dixon B., 2005, Groundwater Vulnerability Mapping: A GIS and Fuzzy Rule Based Integrated Tool Applied Geography, 25(4):327-347.
    
    34. Downing T.E ,Butterfield , Cohen R., Huq S., Moss S., Rahman R., Sokona A., Stephen Y and, Vulnerability L., 2001, Indices: Climate Change Impacts and Adaptation[R].UNEP Policy Series, UNEP, Nairobi.
    
    35. Dowdeswell J. A., 2006, The Greenland Ice Sheet and Global Sea-level Rise [J]. Science, 311:963-964.
    
    36. Dutta D, Herath S, Musiake K. A., 2003, Mathematical Model for Flood Loss Estimation [J]. J Hydrol, 277:24-49.
    
    37. EERI, 2006, Guidelines for Developing an Earthquake Scenario[R]. Report of Endowment Fund of the Earthquake Engineering Research Institute and FEMA.
    
    38. Emanual K.A., 1987, The Dependence of Hurricane Intensity on Climate [J]. Nature, 362, 483-485
    
    39. Emanual K. A., 1995, Comments on Global Change and Tropical Cyclones (Part Ⅰ)[J]. Bulletin American Meteorological Society, 76:2241-2242.
    
    40. Emanuel K., 2005, Increasing Destructiveness of Tropical Cyclones over the past 30 years [J]. Nature, 436(4):686-688.
    
    41. Emmanuel, 2003, Towards Total Disaster Risk Management Approach[R]. Summary Report of Asian Conference on Disaster Reduction 2003—Living with Risk: Towards Disaster Resilient Societies[C]. January 15-17, 2003, Kobe, Japan.
    
    42. Fedeski M, Gwilliam J., 2007, Urban Sustainability in the Presence of Flood and Geological Hazards: The Development of a GIS-based Vulnerability and Risk Assessment Methodology[J]. Landscape and Urban Planning, 83:50-61.
    
    43. Gambolati G, Teatini P. 2002, GIS Simulations of the inundation risk in the coastal lowlands of the Northern Adriatic Sea [J]. Mathematical and Computer Modelling, 35:963-972.
    
    44. GESAMP. 2004, Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection and Advisory Committee on Protection of the Sea .A sea of troubles Reports and Studies.
    
    45. Goldman D., 1997, Estimating Expected Annual Damage for Levee Retrofits [J].J Water Res PI, 123(2): 89-94.
    
    46. Goldstein BD. 2003, SRA president's message [Jj.SRA Risk Newsletter, 23(2).
    
    47. Hardison C. H, Jennings M. E., 1972, Bias in Computed Flood Risk [J]. J Hydr Div-ASCE, 98(3): 415-427.
    
    48. Henderson-sellers, Zhang A. H., Berz G, et al., 1998, Tropical Cyclone and Global Climate Change: A post IPCC Assessment [J]. Bull Amer. Meteorol. Sec. 79: 1938.
    
    49. Helm P., 1998, Integrated Risk Management for Natural and Technological Disasters [J]. Tephra, 15(1):4-13.
    
    50. Helm P., 1996, Integrated Risk Management for Natural and Technological Disasters [J]. Tephra, 15(1):4-13.
    
    51. Herman K, Anthony W, Hudson I., 1967, The Year 2000: A Framework for Speculation on the Next Thirty-three years [M]. New York: Macmillan.
    
    52. Hewitt, K., 1997, Regions of Risk: A Geographical Introduction to Disasters [M]. Addison Wesley Longman Limited: London, England. 311.
    
    53. Hoyos C.D, Agudelo P.A, Webster P J, et al., 2006, Deconvolution of the Factors Contributing to the Increase in Global Hurricane Intensity[J]. Science, 312(5770):94-97.
    
    54. Hubbert G.D, Mclnnes K.L., 1999, A Storm Surge Inundation Model for Coastal Planning and Impact Studies [J], J. Coastal Research, 15, 168-185.
    
    55. Hubbert G. D., Mclnnes K.L., 1999, Modeling Storm Surges and Coastal Ocean Flooding, In:B. J. Noye (ed.), Modelling Coastal Sea Processes [M] World Scientific Publishing Co.,159-187.
    56. ICTP. 2007, Workshop on the Physics of Tsunami, Hazard Assessment Methods and Disaster Risk Management [J]. Miramare-Trieste, Italy, May, 14-18.
    
    57. Inter-American Development Bank, Colombia University. 2005, Indicators of Disaster Risk and Risk Management Program for Latin America and the Caribbean[R].
    
    58. IPCC. 2001, Climate change 2000: Impacts, Adaptation and Vulnerability, Summary for Policymakers[R].WMO.
    
    59. IPCC CZMS. 1992, Global Climate Change and the Rising Challenge of the Sea[R].Report of the Coastal Zone Management Sub-group. IPCC Response Strategies Working Group , Risks water saat ,the Hague.
    
    60. ISDR, 2006. International Strategy for Disaster Reduction: Mission and objectives, http://www.unisdr.org/eng/about_isdr/isdr-mission-objectives-eng.htm
    
    61. Jaiswal R.K, Mukherjee S, Raju K.D, et al. 2002, Forest Fire Risk Zone Mapping from Satellite Imagery and GIS [J]. International Journal of Applied Earth Observation and Geoinformation, 4:1-10.
    
    62. Jelesnianski C. P., Chen J, Shaffer W.A. 1992, SLOSH: Sea, Lake, and Overland Surges from Hurricanes. NOAA Technical Report NWS 48, United States Department of Commerce, NOAA, NWS, Silver Springs, MD., 71 .
    
    63. Jonkman S .N , Bockarjova M, Kok M, et al. 2008, Integrated Hydrodynamic and Economic Modelling of Flood Damage in the Netherlands[J].Ecological Economics, 66:77-90.
    
    64. Kaplan S., Garrick B.J.1981, "On the Quantitative Definition of Risk."[J]. Risk Analysis, 1:11-27.
    
    65. Kapur A., 2005, The Future of the Red Metal Scenario Analysis [J]. Futures, 37(10).
    
    66. Karen O, Jon B, Indra D.S, et al. 2005, Hurricane Katrina Reveals Challenges to Human Security-Hurricane Katrina Reinforced Many Key Lessons about the Nature of Environmental Change. AVISO, (14).
    
    67. Kasperson R.E, Bohn M T, Goble R. 2005, Assessing the Risks of a Future Rapid Large Sea Level Rise: A review, from the World Wide Web: http://www.uni-hamburg.de/Wiss/FB/15/Sustainabilitv/annex4.pdf.
    
    68. Kenneth H. 1997, Regions of Risk [M]. Produced by Longman Singapore Publisher(Pte) Ltd. Printed in Singapore.
    
    69. Keping C. 2003, Scale analysis for remotely sensed images and areal census data: Stressing objects. Proceedings of the 30th International Symposium on Remote Sensing of Environment (CD-ROM) - Information for Risk Management and Sustainable Development, 10-14 November 2003, Honolulu, Hawaii, 4 pages.
    
    70. Kerry E. 2005, Increasing Destructiveness of Tropical Cyclones over the Past 30 years [J]. Nature v. 436. 8: 4.
    
    71. Kleiber C. 2003, Risk Governance: A New Approach. Risk and Governance[R]. Program of World Congress on Risk, Brussels, Belgium, June: 22-25.
    
    72. Knuson T.R, Tuleya R.E, Kurihara Y., 1998, Simulated Increase of Hurricane Intersities in a CO_2 Warmed Climate [J]. Science, 279: 1018-1020.
    
    73. Kreimer A., Arnold M., Carlin A., 2003, Building Safer Cities: The Future of Disaster Risk [M].Washington DC: Hazard Management Facility, World Bank: 1-298.
    
    74. Kron, et al. 2002, Flood Risk Zoning and Loss Accumulation Analysis for Germany. In: Proc. Of the International Conference on Flood Estimation, Mar. 6-8, Berne, Switzerland, 549-558.
    
    75. Liththill. 1994, Global Climate Change and Tropical Cyclones [J]. Bulletin American Meteorological Society. 75: 2147-2157.
    
    76. Lopez-Baldovin M.J, Gutierrez-Martin C, Berbel J. 2006, Multicriteria and Multiperiod Programming for Scenario Analysis in Guadalquivir River Irrigated Farming. Journal of the Operational Research Society, 57(5).
    
    77. Manny. 2002, Total Disaster Risk Management Approach: Towards Effective Police Action in Disaster Reduction and Response [A]. Regional Workshop on Total Disaster Risk Management[C]. August 7-9, 2002, Kobe, Japan.
    
    78. Marshall N, Grady B. 2005, Travel Demand Modeling for Regional Visioning and Scenario Analysis. Transportation Research Record (1921).
    
    79. Maskrey A. 1989, Disaster Mitigation: A Community Based Approach. Oxford: Oxfam
    
    80. McBurney P, Parsons S. 2003, Chance Discovery and Scenario Analysis [J]. New Generation Computing, 21(1): 13-22.
    
    81. Mccuen R.H. 1982, A Guide to Hydrologic Analysis Using SCS Method [M].Prentice-Hall Inc: Englewood Cliffs, 67-97.
    
    82. Mcinnes K.L, Walsh K.J.E, Hubbert G.D, et al. 2003, Impact of Sea-level Rise and Storm Surges on a Coastal Community [J]. Natural Hazards, 30: 187-207.
    
    83. Mejia-Navarro M, Wohl E.E, Oaks S.D. 1994, Geological Hazards, Vulnerability, and Risk Assessment Using GIS: Model for Glenwood Springs, Colorado [J]. Geomorphology, 10(1-4):331-354.
    
    84. Merz B, Kreibich H ,Thieken A, et al.2004, Estimation Uncertainty of Direct Monetary Flood Damage to Buildings[J]. Natural Hazards and Earth System Sciences, 4: 153-163.
    
    85. Michaels P.J, Knappenberger P.C, Davis R.E. 2003, Sea-surface Temperatures and Tropical Cyclones: Breaking the Paradigm.
    
    86. Mileti D.S. 1999, Natural Hazards and Disasters-disasters by Design a Reassessment of Natural Hazards in the United States [M]. Washington D C: Joseph Henry Press.
    
    87. Ming-Daw Su, Jui-lin Kang, Ling-Fang Chang, and Albert s.chen.2005, A grid-based GIS approach to regional flood damage assessment [J]. Journal of marine science and technology, 113(3): 184-192.
    
    88. Mitchell J.K. 1999, Megacities and Natural Disasters: A Comparative Analysis [J]. GeoJournal,2(49): 137-142.
    
    89. Morgan M..G., Henrion M. 1990, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis [M]. London: Cambridge University Press, 332.
    
    90. Moss R H, Malone E L, Brenkert A L., 2002, Vulnerability to climate change: a quantitative approach. Prepared for the US Department of Energy [J], Available online: http://www.globalchange.umd.edu/cgi - bin/Details.pl sref =PNNL -13765.
    
    91. Navas A, Machín J. 1997, Assessing Erosion Risks in the Ggyp Siferous Steppe of Litigio (NE Spain): An approach Using GIS [J]. Journal of Arid Environments, 37: 433-441.
    
    92. Nicholls R.J. 2004, Coastal Flooding and Wetland Loss in the 21st Century: Changes under the SRES Climate and Socio-economic Scenarios [J]. Global Environmental Change, 14:69-86.
    
    93. Nishikawa S. 2003, Total Disaster Risk Management for Sustainable Development [A]. Proceedings of the International Conference on TDRM[C]. December 2-4, 2003, Kobe,Japan.
    
    94. Novotny V, Chesters G, Shannon J. 1981,Handbook of Nonpoint Pollution Source and Management[M].New York : Van Nostrand Reinhold Company, 81-103.
    
    95. Okada N, Amendola A. 2001, Research Challenges for Integrated Disaster Risk Management [R]. Presentation to the First Annual IIASA-DPR IM meeting on Integrated Disaster Risk Management: Reducing Socio2Economic Vulnerability, at IIASA, Laxenburg, Austria (Aug 1-4,2001),2001.
    
    96. Okada N. 2003, Urban Diagnosis and Integrated Disaster Risk Management [A]. Proceedings of the China-Japan EQTAP Symposium on Police and Methodology for Urban Earthquake Disaster Management[C]. November 9-10, Xianmen, China.
    
    97. Otto-Bliesner B.L, Marshall S J, Overpeck J.T, et al. 2006, Simulating Arctic Climate Warmth and Ice field Retreat in the Last Interglaciation[J]. Science, 311(5768): 1751-1753.
    
    98. Overpeck J.T, Otto-Bliesner B.L, Miller G.H, et al. 2006, Paleo Climatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise [J]. Science, 311(5768): 1747-1750.
    
    99. Pelling M. 2004, Visions of Risk: A Review of International Indicators of Disaster Risk and Its Management[R]. ISDR/UNDP, 1-56.
    
    100. Pelling M, Maskrey A, Ruiz P. 2004, United Nations Development Programme[R]. A Global Report Reducing Disaster Risk: A Challenge for Development. New York: UNDP, 1-146.
    
    101. Penning-Rowsell E.C., Chatterton J B. 1977, The Benefits of Flood Alleviation: A Manual of Assessment Techniques [M]. Gower Aldershot,
    
    102. Plate E J. 2002, Flood Risk and Flood Management [J]. J Hydrol, 267: 2-11.
    
    103. Programme and Institute for Environmental Studies , 1998,Vrije University,Amsterdam.
    
    104. Pro Vention Consortium. 2006, Identification and Analysis of Global Disaster Risk Hotspots, http://www.proventionconsortium.org/?pageid=32&projectid=15
    
    105. Pusch C. 2004, Preventable Losses: Saving Lives and Property through Hazard Risk Management[R]. Working Paper Series of the World Bank.
    
    106. Remy U G. 2003, Transboundary Risks: How Governmental and Non-Governmental Agencies Work Together. Risk and Governance, Program of World Congress on Risk, Brussels, Belgium, June: 22-25.
    
    107. Rignot E, Kanagaratnam P. 2006, Changes in the Velocity Structure of the Greenland Ice Sheet [J]. Science, 311: 986-990.
    
    108. Sahin S, Kurum E. 2002, Erosion Risk Analysis by GIS in Environmental Impact Assessments: a Case Study [J]. Journal of Environmental Management, 66: 239-247.
    
    109. Smith K.1996, Environmental Hazards [M].London: Routledge, 389.
    
    110. Smith D I. 1994, Flood Damage Estimation-A Review of Urban Stage-damage Curves and Loss Functions [J]. Water SA, 20(3): 231-238.
    
    111. Sinnakaudan S, Ghani A. 2003, Flood Risk Mapping for Pari River Incorporating Sediment Transport. Environmental Modelling & Software, 18: 119-130.
    
    112. Small C, Cohen J E. 1999, Continental Physicography, Climate and the Global Distribution of Human Population [A]. Proceedings of the International Symposium on Digital Earth[C]. Science Press, Beijing, 965-971.
    
    113. Small C, Nicholls R J. 2003, A Global Analysis of Human Settlement in Coastal Zones [J]. Journal of Coastal Resources, 19(3):584-599.
    
    114. Shi P J, Du J, Ji M X. 2006, Urban Risk Assessment Research of Major Natural Disasters in China [J]. Advances in Earth Science. 21(2):170-177.
    
    115. Stefan G, Mark F., Johannes L. 2006, Methodology for an Integrated Risk Assessment of spatially relevant hazards [J]. Journal of environmental planning and management. 149 (1):1-19.
    
    116. Stenchion P. 1997, Development and Disaster Management [J].Australian Journal of Emergency Management, 12(3): 40-44.
    
    117. Su M. D., Kang J L, Chang L F, et al. 2005, A Grid-based GIS Approach to Regional Flood Damage Assessment [J]. Journal of Marine Science and Technology, 13(3): 184-192.
    
    118. Thirumalaivasan D, Karmegam M, Venugopal K. 2003, AHP -DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS [J]. Environmental Modelling & Software, 18(7): 645-656.
    
    119. Tobin G. A., Montz B.E. 1997, Natural Hazards: Explanation and Integration [M]. The Guilford Press: New York, 388.
    
    120. Tol R.S.J, Bohn M, Downing T.E, et al. 2004, Adaptation to Five Meters of Sea Level Rise. Special Issue from the Society of Risk Analysis-Europe Annual Conference.Paris, 2004. Journal of Risk Research.
    
    121. Umana A. 2003, Governance and Capability Development for Risk Management in Developing Countries [J]. Risk and Governance, Program of World Congress on Risk, Brussels, Belgium, June: 22-25.
    
    122. UNDHA.1992, Internationally Agreed Glossary of Basic Terms Related to Disaster Management[C].United Nations Department of Humanitarian Affairs, Geneva.
    
    123. UNDRO (1991).Mitigating Natural Disasters.Phenomena, Effects and Options.A Manual for Policy Makers and Planners.UNDRO/MND/1990 Manual, Genf.
    
    124. UN/ISDR. 2004, Living with Risk: A Global Review of Disaster Reduction Initiatives 2004 Version [M]. United Nations Publication.
    
    125. United Nations. 2002, Risk Awareness and Assessment in Living with Risk [M]. ISDR, UN, WMO and Asian Disaster Reduction Centre, Geneva, 39-78.
    
    126. United Nations Development Programme (UNDP). 2004, A global report reducing disaster risk: A Challenge for Development[R].New York: UNDP, 1-144.
    
    127. Vaughan D.C, Spouge J R. 2002, Risk estimation of collapse of the West Antarctic Sheet [J]. Climate Change, 52:52-91.
    
    128. Watson C, Johnson E. 1998, A Modular Object Oriented Model for Meteorological Hazard Assessment [J]. Submitted.
    
    129. Watson C, Johnson E. 1999, Design Implementation and Operation of a Modular Integrated Tropical Cyclone Hazard Model [J]. Caribbean Disaster Mitigation Project, 1-6
    
    130. P.J, Curry J.A, Liu J, et al. 2006, Response to Comment on "Changes in Tropical Cyclone Number, Duration, and Intensity in A Warming Environment"[J], Science, 311 (5768): 1713.
    
    131. Webster P.J, Holland GJ, Curry J.A, et al. 2005, Changes in Tropical Cyclone Number, Duration, and Intensity in A Warming Environment [J]. Science, 309(5742): 1844-1846.
    
    132. Wei Y.M, Liang Q.M, Fan Y. 2006, A Scenario Analysis of Energy Requirements and Energy Intensity for China's Rapidly Developing Society in the year 2020. Technological Forecasting and Social Change, 73 (4).
    
    133. White G F. 1974, Natural Hazards [M]. Oxford: Oxford University Press,.
    
    134. Wiedeman P. 2003, Risk as a Model for Sustainability [J]. Risk and Governance, Program of World Congress on Risk, Brussels, Belgium, June: 22-25.
    
    135. Wilson R, Crouch E A C. 1987, Risk Assessment and Comparison: an Introduction [J]. Science, 236(4799): 267-270
    
    136. Xiaoshan P, Charles S. H, Ken D,Kincho H.L. 2007,A Multi-agent based Framework for the Simulation of Human and Social Behaviors during Emergency Evacuations [J]. AI & Soc 22:113-132
    
    137. Xuwei C, John W. M., Benjamin F.Z. 2006, Agent-Based Modeling and Analysis of Hurricane Evacuation Procedures for the Florida Keys [J]. Natural Hazards, 38: 321-338
    
    138. Zerger A. 2002, Examining G1S decision utility for natural hazard risk modeling [J]. Environmental Modelling & Software, 17: 287-294.
    
    139. 布里林格,片山恒雄. 1988, 地震危险性评定与地震区划[M].黄玮琼, 等译. 北京:地震出 版社.
    140.陈军,陈利军,廖安平等.2009,汶川地震灾区应急影像地图制作技术[J].遥感学报,13(1):162-168.
    141.陈梅花.2005,卫星遥感的热信息与地震活动的关系研究.博十论文.
    142.陈满荣,王少平.2000,上海城市风暴潮灾害及其预测[J].灾害学,15(3):26~29.
    143.陈鹏霄.2008,基于GIS和遥感数据的洪水风险分析[J].水利水电快报,29(8):15~21.
    144.陈婧,刘婧,王志强,等.2006,中国城市综合灾害风险管理现状与对策[J],自然灾害学报,15(6):17~22.
    145.陈顒,刘杰,陈棋福,等.1999,地震危险性分析和震害预测[M].北京:地震出版社.
    146.邓辉.2007,高精度卫星遥感技术在地质灾害调查与评价中的应用.博十论文.
    147.丁金才,叶其欣,丁长根.2001,上海地区高温分布的诊断分析[J].应用气象学,12(4):494~499.
    148.丁石孙.2004,城市灾害管理[M],北京:群言出版社.
    149.丁志雄.2004,于RS与GIS的洪涝灾害损失评估技术方法研究.博十论文.
    150.樊运晓,高朋会,王红娟.2003,模糊综合评判区域承灾体脆弱性的理论模型[J].灾害学,18(3):20~23.
    151.冯利华,黄亦君.2003,生态环境脆弱度的综合评价[J].热带地理,23(2):102~114.
    152.傅国斌,刘昌明.2001,遥感技术在水文学中的应用与研究进展.水科学进展,12(4):547~559.
    153.高庆华.2003,中国自然灾害的分布与分区减灾对策[J].地学前缘,10(特刊):258~264.
    154.葛全胜,邹铭,郑景云,等,2008,中国自然灾害风险综合评估初步研究[M].北京:科学出版社.
    155.国家质量技术监督局.2001,中国地震动参数区划图[M].北京:中国标准出版社.
    156.郭洪寿,叶琳,王喜年.1993,1 992年罕见特大风暴潮灾分析及预(警)报服务[J].海洋预报,10(1):40~47.
    157.郭利华,龙毅.2002,基于DEM的洪水淹没分析[J].测绘通报,11:25~30.
    158.贺宝根,陈春根,周乃晟.2003,城市化地区径流系数及其应用[J].上海环境科学,22(7):472~475.
    159.贺新春,邵东国,陈南祥.2005,地下水环境脆弱性分区研究[J].武汉大学学报(工学版),38(1):73~78.
    160.黄崇福,史培军,张远明,1994a.城市自然灾害风险评价的一级模型[J].自然灾害学报,3(1):3~8.
    161.黄崇福,史培军,1994b.城市自然灾害风险评价的二级模型[J].自然灾害学报,3(2):22~27.
    162.黄崇福,张俊香,陈志芬,等.2004,自然灾害风险区划图的一个潜在发展方向[J].自然灾害学报,13(2):9~15.
    163.黄崇福.2005,自然灾害风险评价理论与实践[M].北京:科学出版社.
    164.黄方,刘湘南,张养贞.2003,GIS支持下的吉林省西部生态环境脆弱态势评价研究[J].地理科学,23(1):95~100.
    165.黄蕙,温家洪,司瑞沽,等.2008,自然灾害风险评估国际计划述评I——指标体系[J].灾害学,23(2):112~116.
    166.黄金池.2002,中国风暴潮灾害研究综述[J].水利发展研究,2(12):63~65.
    167.黄声.2005,上海市综合减灾管理体制研究——以上海市民防办公室承担减灾职能为例[D].华东师范大学.
    168.黄庭,张志,谷延群,等.2009,基于遥感的地震次生地质灾害分布特征.遥感学报,13(1):77~85.
    169.黄镇国,张伟强,吴厚水,等.2000,珠江三角洲2030年海平面上升幅度预测及防御方略[J].中国科学(D),30(2):202-208.
    170.火恩杰.2002,上海地区自然灾害史料汇编:公元751-1949年[M].北京:地震出版社.
    171.蒋庆丰,游珍.2006,基于GIS的南通市自然灾害风险区划[J].灾害学,20(2):110~114.
    172.金磊.1997,城市灾害学原理[M].北京:气象出版社出版:494~496.
    173.金子史朗.1991,世界大灾害[M],济南:山东科学技术出版社.
    174.李杰,宋建学.城市火灾危险性分析[J].自然灾害学报,1995,4(2):98~103.
    175.联合国UN.2005,减少灾害问题世界会议报告[R].日本:神户:1~100.
    176.廖邦固,徐建刚,韩雪培,等.2008,1990-2000年上海中心城区人口密度模拟与时空变化分析[J].华东师范大学学报(自然科学版),4:130~139.
    177.刘敏,杨宏青,向玉春.2002,湖北省雨涝灾害的风险评估与区划[J].长江流域资源与环境,11(5):476~481.
    178.刘仁义,刘南.2001,基于GIS的复杂地形洪水淹没区计算方法[J].地理学报,56(1):1~6
    179.刘艳,康仲远,赵汉章等.我国城市减灾管理综合指标体系的研究[J].自然灾害学报,1999,8(2):61~66.
    180.刘燕华,葛全胜,吴文祥.2005,风险管理—新世纪的挑战[M].北京:气象出版社.
    181.龙尼兹C.1988,地震危险性分析中的统计方法.见:布里林格DR等著,黄玮琼等译.地震危险性评定与地震区划.北京:地震出版社:3~25.
    182.罗培.2005,基于GIS的地质灾害风险评估信息系统探讨[J].灾害学,20(4):57~61.
    183.罗祖德,马波.1990,上海市的灾害隐患及减灾对策[J],灾害学,5(2):37~40.
    184.罗祖德,徐长乐.1990,灾害论[M],杭州:浙江教育出版社.
    185.骆誴.2000,上海城市发展敏感区划分研究与对策[J],城市规划汇刊,5:19~22.
    186.马亚杰,苏幼坡.2005,刘瑞兴.城市防灾公园的安全评价[J].安全与环境工程,12(1):50~52.
    187.马宗晋,高庆华,位梦华.1990,自然灾害与减灾600问答.北京:地震出版社:6~7.
    188.马宗晋,高庆华.1990,减轻自然灾害系统r程刍议[J],科技导报,5:5l~54.
    189.马宗晋等著.1994,中国重大自然灾害及减灾对策[M].北京:地震出版社.
    190.孟菲.2008,上海成灾台风的气象特征及灾害风险评估[D].上海师范大学.
    191.牟伶俐.2006,农业早情遥感监测指标的适应性与不确定性分析[D].博十论文.
    192.尼克.卡特.1993,灾害管理手册[M],北京:地震出版社.
    193.牛宝茹.2002,航空影像与TM图像融合解译西吕攀枝花公路右侧的马桑坪滑坡[J].公路,10:15~17.
    194.牛晓霞.2004,城市公共安全规划理论与方法的研究[D].天津:南开大学环境科学学院.
    195.浦树柔.2004,公共安全:一年丧生20万[J].瞭望新闻周刊,8:17~19.
    196.秦大河,丁一汇,苏纪兰,等.2005,中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,1(1):4~8.
    197.瞿惠春,费国忠.2002,上海地区1949-2000q年突发灾害事故的统计分析[J],中华流行病学杂志,23(4):326.
    198.任鲁川.1996,灾害损失等级划分的模糊灾度判别法[J].自然灾害学报,5(3):13~17.
    199.上海灾害防御协会.2006,上海市人民政府突发公共事件总体应急预案[EB/0L].
    200.上海市灾害防御协会.2007,2007年上海市综合灾情趋势预测及对策报告[R].
    201.史培军.1990,自然灾害系统,灾害学概论,北京:北京师范大学出版社.
    202.史培军.1996,再论灾害研究的理论与实践[J].自然灾害学报,5(4):6~17.
    203.史培军.2002,三论灾害研究的理论与实践[J].自然灾害学报,11(3):1~9.
    204.史培军.2003,中国自然灾害系统地图集.北京:科学出版社.
    205.史培军.2005,四论灾害系统研究的理论与实践[J].自然灾害学报,14(6):1~7.
    206.史培军等.2006,灾害过程与综合灾害风险防范模式[R].第六届DPRI-IIASA综合灾害风险管理论坛,8:13~17,十耳其:伊斯坦布尔.
    207.施雅风,朱季文,谢志仁,等.2000,长江三角洲及毗邻地区海平面上升影响预测与防治对策[J].中国科学(D),30(3):225~232.
    208.苏桂武,高庆华.2003,自然灾害风险的行为主体特性与时间尺度问题[J].自然灾害学报,12(1):9~16.
    209.孙绍骋.2001,灾害评估研究内容与方法探讨[J].地理科学进展,20(2):122~130.
    210.孙卫东.1993,相对灾度的提出及其实际意义[J].灾害学,8(3):88~39.
    211.孙振华.1991,上海城市灾害高发区的形成、分布、预测及其对减灾决策的意义[J].中国软科学,(4):25~29.
    212.孙振华.1996,上海城市人为灾害的灾变动力学研究[J].灾害学,11(1):54~58.
    213.汤爱平,董莹,文爱花,等.1999,国外地震风险评估和风险管理基础研究[J].世界地震工程,15(3):26~32.
    214.唐川,朱静.2005,基于GIS的山洪灾害风险区划[J].地理学报,60(1):87~94.
    215.唐川,朱静.2006,城市泥石流风险评价探讨[J].水科学进展,17(3):383~388.
    216.唐小明,冯杭建.赵建康.2008,泥石流地质灾害遥感解译—以嵊州市为例[J].地质科技情报.27(2):12~16.
    217.唐越,方鸿琪.1992,城市地质灾害的风险模型[J].中国地质灾害与防治学报.3(4):54~61.
    218.陶夏新.1986,京津唐地区地震区划图编制方法的研究[D].哈尔滨:国家地震局工程力学研究所.
    219.滕五晓,加藤孝明,小出治.2003,日本灾害对策体制[M].北京:中国建筑工:业出版社.
    220.田国珍,刘新立,王平,等.2006,中国洪水灾害风险区划及其成因分析[J].灾害学21(2):1~6.
    221.铁永波,唐川,周春花2005,层次分析法在城市灾害应急能力评价中的应用[J].地质灾害与环境保护16(4):433~437.
    222.王飞,尹古娥,温家洪.2009,基于多智能体的自然灾害动态风险评估模型[J],地理与地理信息科学,25(2):85~88.
    223.王建,刘泽纯.199l,全球变暖后西北太平洋台风频率的可能变化[J].第四纪研 究,(3):277~281.
    224.王静爱,史培军,王平,等,2006,中国自然灾害时空格局[M].北京:科学出版社.
    225.王静爱,史培军,王瑛.2005,中国城市自然灾害区划编制[J],自然灾害学报,14(6):42~46.
    226.王林,秦其明,李吉芝,等.2004,基于GIS的城市内涝灾害分析模型研究[J].测绘科学,29(3):48~51.
    227.王绍玉,冯百侠.2005,城市灾害应急与管理[M].重庆:重庆出版社.
    228.魏风华.2006,河北省唐山市地质灾害风险区划研究[D].北京:中国地质大学.
    229.翁韬,朱霁平,麻名更,等.2006,城市重大危险源区域风险评价研究[J].中国工程科学,8(4):46~49.
    230.吴新燕.2004,美国社区减灾体系简介及其启示[J].城市与减灾,3:2~4.
    231.吴宗之,多英全,魏利军,等.2006,区域定量风险评价方法及其在城市重大危险源安全规划中的应用[J].中国工程科学,17(3):383~388
    232.武强,郑铣鑫,应玉飞,等.2002,世纪中国沿海地区相对海平面上升及其防治策略.中国科学(D辑)32(9):760~766
    233.袭祝香,马树庆,王琪.2003,东北区低温冷害风险评估及区划[J].自然灾害学报,12(2):98~102.
    234.夏普H C,董伟民.1988.对现行地震危险性评估方法的评述.见:布里林格D R等著,黄伟琼等译.地震危险性评定与地震区划.北京:地震出版社:40~45
    235.肖功建,韦晓.2001,上海城市灾害分析与减灾建设[J].灾害学,16(2):70~75.
    236.徐健.2001,上海市城市灾害管理的系统规划与实施[D].同济大学
    237.徐建华.2002,现代地理学中的数学方法[M].北京:高等教育出版社,9.224~249,69~84.
    238.徐其华.1997,水利与上海发展[J].中国水利,6:43~48.
    239.徐姗楠,陈作志,何培民.2007,人类活动对浙江近海赤潮发生频率的影响分析[J].海洋环境科学,26(3):236~342.
    240.徐向阳,马秀梅,刘翔.2005,湖南省城市洪水成因及防治对策[J].灾害学,20(4):79~82.
    241.许世远,王军,石纯,等.2006,沿海地区自然灾害风险研究[J].地理学报,61(2):127~138.
    242.杨桂山,施雅风.1999,中国海岸地带面临的重大环境变化与灾害及其防御对策[J].自 然灾害学报,8(2):13~20.
    243.杨华庭,田素珍.1993,中国海洋灾害四十年资料汇编(1949~1990)[A].北京:海洋出版社.
    244.杨小时,2002,上海社区灾害和灾害管理中存在的问题[J].灾害学,4:72~75.
    245.杨中华.2006,黄河冰凌灾害遥感动态监测模式及冰情信息提取模型研究.博十论文.
    246.仪垂祥,史培军.1995,自然灾害系统模型—理论部分[J].自然灾害学报,4(3):6~8.
    247.于庆东.1993,灾度等级判别方法的局限性及其改进[J].自然灾害学报,2(2):8~11.
    248.袁一凡.2007,地震现场工作—第四部分:地震灾害直接损失评估(GB/T18208.4-2005)[M].北京:地震出版社.
    249.虞中悦.1998,谈谈今年长江中下游大洪水后的儿点反思[J].上海水利,4:4~6.
    250.曾宪云,列平,邓曙光.2006,城市公共安全的现状及防灾减灾策略[J],安全生产与监督,1:44~46.
    251.詹道江,邹进上,等.1983,可能最大暴露与洪水[M].北京:水利电力出版社.
    252.张风华,谢礼立.2001,城市防震减灾能力评估研究[J].自然灾害学报,10(4):57~64.
    253.张继权,冈田宪夫,多多纳裕一.2006,综合自然灾害风险管理——全面整合的模式与中国的战略选择[J].自然灾害学报,15(1):29~37.
    254.张锦文,王喜亭,王惠.2001,未来中国沿海海平面上升趋势估计[J].测绘通报.4:4~5.
    255.张俊香,黄崇福,乔森.2006,昆明—楚雄—大理—丽江地区地震软风险区划实例[J].自然灾害学报,15(1):59~65.
    256.张犁.1995,城市洪水分析与模拟的GIS方法研究[J].地理学报,50(增刊):76~84.
    257.张文君.2007,滑坡灾害遥感动态特征监测及其预测分析研究.博士论文.
    258.张行南,罗健,陈雷,等.2000,中国洪水灾害危险程度区划[J].水利学报,(3):l~7.
    259.张旭,万群志,程晓陶,等.1997.关于全国推J洪水风险图的认识与设想[J].自然灾害学报,6(4):61~67
    260.赵阿兴,马宗晋.1993,自然灾害损失评估指标体系的研究[J].自然灾害学报,2(3):1~6.
    261.赵冬至.2004,我国赤潮灾害分布规律与卫星遥感探测模型[D].博十论文.
    262.赵林,朱乐东,葛耀君.上海地区台风风特性Monte-Carlo随机模拟研究[J].空气动力学学报,2009,27(1):25~31.
    263.赵思健,陈志远,熊利亚.2004,利用空间分析建立简化的城市内涝模型[J].自然灾害学 报,13(6):8~14.
    264.赵艳霞,何磊,刘寿东等.2007,农业生态系统脆弱性评价方法.生态学杂志[J],26(5):754~758.
    265.郑文振,陈宗镛.1999,我国海平面年速率的分布和长周期分潮的变化[A].冯浩鉴等.中国东部沿海地区海平面与陆地垂直运动[M].北京:海洋出版社:65~74.
    266.中国国家海洋局.200l~2007,中国海洋环境质量公报.
    267.周成虎,杜云艳,骆剑承.1996,基于知识的AVHRR影像的水体自动识别方法与模型研究[J].自然灾害学报.5(3):100~108.
    268.周成虎,万庆,黄诗峰,等.2000,基于 GIS的洪水灾害风险区划研究[J].地理学报,55(1):15~24.
    269.周名江,于仁成.2007,有害赤潮的形成机制、危害效应与防治对策[J].自然杂志,29(2):73~76.
    270.周乃晟,袁雯.1993,上海市暴雨地面积水的研究[J].地理学报,48(3):262~271.
    271.周晓英,胡学军,胡得宝,等.2005,“0414号—云娜”台风路径分析[J].海洋预报,22(3):25~30.
    272.朱静,唐川.2008,城市山洪灾害易损性的RS和GIS分析.成都理工大学学报.3(1).
    273.朱琳,叶殿秀,陈建文.2002,陕西省冬小麦干旱风险分析及区划[J].应用气象学报,13(2):201~206.
    274.新华网.2006,国家突发公共事件总体应急预案(全文)[EB/0L].北京,国务院,[2006-01-09]
    275.《海洋环境质量公报》http://Www.coi.gov.cn/hygb/ 中国海洋信息网
    276.《中国海洋灾害公报》http://www.soa.gov.cn/hyjww/index.htm国家海洋局(外网)
    277.中国气象局网站http://www.cma.gov.cn/
    278.中国天气网http://www.weather.com.cn/
    279.中国台风网http://www.typhoon.gov.cn

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700