双功能HPV治疗性融合蛋白疫苗的抗癌作用实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人乳头瘤病毒(human papillomaviruse,HPV),特别是高危型HPV16,的持续感染与宫颈癌等多种肿瘤的发生与演进密切相关。由于预防性疫苗对已感染者无效,所以研制高效、安全的治疗性疫苗,对于HPV相关肿瘤的治疗将具有十分重要的意义。HPV治疗性蛋白疫苗由于具有安全、可重复用药和制备较简单等诸多优点,已经成为十分吸引人的策略。目前如何进一步提高疫苗的疗效仍是各国学者关注的热点。热休克蛋白(Heat shock proteins,HSP)家族,包括钙网蛋白(calreticulin,CRT)和HSP70,已被证明是一类强有力的免疫佐剂,它能够有效的增强抗原特异性的抗肿瘤免疫。以往的研究表明,钙网蛋白的N端(NCRT)或HSP70的C端的功能片段(hsp)与HPV16 E7联接后能诱导小鼠产生抗原特异性的CTL活性。
     为此,本研究构建了NCRT/E7/hsp重组融合蛋白疫苗,利用NCRT抗肿瘤血管生成和抗原递呈作用联合hsp较强的佐剂功能协同增强HPV16 E7治疗性疫苗的效果。并评价此疫苗诱导的免疫反应和抗肿瘤血管生成作用。我们的研究结果表明,NCRT与hsp不仅能协同增强E7特异性的CD8~+T细胞免疫反应,还能产生更强的抗肿瘤效应。此外,NCRT/E7/hsp融合蛋白具有较强的抗血管生成作用,并能由此增强其抗肿瘤效应。到目前为此,尚未见到类似的报道。因此,NCRT/ET/hsp能通过抗原特异性的抗肿瘤免疫和抗肿瘤血管生成两方面功能更有效抑制HPV相关肿瘤,可能具有良好的应用前景。
Human papillomaviruses (HPV), particularly HPV 16, is not only causally linked to cervical cancers but also play an important role in the development of other cancers.The prophylactic HPV vaccine cannot control already-established HPV infections, thus it is very important to develop the efficient and safe HPV therapeutic vaccine for the treatment of HPV-associated cancer. Protein-based HPV therapeutic vaccines are an appealing strategy because of their simplicity, safety and capacity for repeated administration. Researcher is focus on developing new approaches to further enhance vaccine efficacy. Heat shock proteins (HSP), including calreticulin (CRT) and HSP70, have been shown to act as potent immunoadjuvant to enhance antigen-specific anti-tumor immunity, respectively. Futhermore, Previous studies have shown that N domain CRT (NCRT) or C-terminal half of HSP70 (hsp) linked with HPV 16 E7 are capable of inducing potent antigen-specific CTL activity in experimental animal models.
     Therefore, we have developed a recombinant NCRT/E7/hsp fusion protein to investigate the synergistic effects of NCRT and hsp for enhancing the potency of HPV16 E7 therapeutic vaccine and evaluated the immune responses induced by this fusion protein. In addition, given the potential benefit of NCRT inhibition of angiogenesis, we also determined the antiangiogenic effect of NCRT/E7/hsp fusion protein. Our results demonstrated that NCRT and hsp synergistically exhibited significant increases in E7-specific CD8~+ T cell responses and impressive antitumor effects against E7-expressing tumors. Furthermore, the NCRT/E7/hsp fusion protein also generates potent antiangiogenic effects. These results indicate that NCRT/E7/hsp fusion protein is a promising therapeutic vaccine for treatment of HPV-associated cancer through a combination of antigen-specific immunotherapy and antiangiogenesis, with possible therapeutic potential in clinical settings.
引文
[1] Schiffman M., P. E. Castle, J. Jeronimo, et al. Human Papillomavirus and Cervical Cancer[J]. Lancet, 2007, 370 (9590): 890-907.
    [2] Walboomers J. M., M. V. Jacobs, M. M. Manos, et al. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide [J]. J Pathol, 1999, 189 (1): 12-19.
    [3] Anaya-Saavedra G., V. Ramirez-Amador, M. E. Irigoyen-Camacho, et al. High Association of Human Papillomavirus Infection with Oral Cancer: A Case-Control Study[J]. Arch Med Res, 2008, 39(2): 189-197.
    [4] Schlecht N. F., R. D. Burk, L. Adrien, et al. Gene Expression Profiles in Hpv-Infected Head and Neck Cancer[J].J Pathol, 2007, 213(3): 283-293.
    [5] Shuyama K., A. Castillo, R Aguayo, et al. Human Papillomavirus in High-and Low-Risk Areas of Oesophageal Squamous Cell Carcinoma in China[J]. Br J Cancer, 2007, 96 (10): 1554-1559.
    [6] Cheng Y. W., M. F. Wu, J. Wang, et al. Human Papillomavirus 16/18 E6 Oncoprotein Is Expressed in Lung Cancer and Related with P53 Inactivation[J]. Cancer Res, 2007, 67 (22): 10686-10693.
    [7] Kamangar R, Y. L. Qiao, J. T. Schiller, et al. Human Papillomavirus Serology and the Risk of Esophageal and Gastric Cancers: Results from a Cohort in a High-Risk Region in China[J]. Int J Cancer, 2006, 119 (3): 579-584.
    [8] Molho-Pessach V., M. Lotem. Viral Carcinogenesis in Skin Cancer[J]. Curr Probl Dermatol, 2007, 35: 39-51.
    [9] Yasmeen A., T. A. Bismar, M. Kandouz, et al. E6/E7 of Hpv Type 16 Promotes Cell Invasion and Metastasis of Human Breast Cancer Cells[J]. Cell Cycle, 2007, 6 (16): 2038-2042.
    [10] Moonen P. M., J. M. Bakkers, L. A. Kiemeney, et al. Human Papilloma Virus DNA and P53 Mutation Analysis on Bladder Washes in Relation to Clinical Outcome of Bladder Cancer[J]. Eur Urol, 2007, 52 (2): 464-468.
    [11] Atalay R, C. Taskiran, M. Z. Taner, et al. Detection of Human Papillomavirus DNA and Genotyping in Patients with Epithelial Ovarian Carcinoma[J]. J Obstet Gynaecol Res, 2007, 33 (6): 823-828.
    [12] Korodi Z., J. Dillner, E. Jellum, et al. Human Papillomavirus 16, 18, and 33 Infections and Risk of Prostate Cancer: A Nordic Nested Case-Control Study[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(12): 2952-2955.
    [13] Heideman D. A., T. Waterboer, M. Pawlita, et al. Human Papillomavirus-16 Is the Predominant Type Etiologically Involved in Penile Squamous Cell Carcinoma[J].J Clin Oncol, 2007, 25 (29): 4550-4556.
    [14] Kong C. S., M. L. Welton, T. A. Longacre. Role of Human Papillomavirus in Squamous Cell Metaplasia-Dysplasia-Carcinoma of the Rectum[J]. Am J Surg Pathol, 2007, 31 (6): 919-925.
    [15] Gnanamony M., A. Peedicayil, P. Abraham. An Overview of Human Papillomaviruses and Current Vaccine Strategies [J]. Indian J Med Microbiol, 2007, 25 (1): 10-17.
    [16] Bonnez W. Human Papillomavirus Vaccine-Recent Results and Future Developments[J]. Curr Opin Pharmacol, 2007, 7 (5): 470-477.
    [17] Herrington C. S. Human Papillomaviruses and Cervical Neoplasia. I. Classification, Virology, Pathology, and Epidemiology[J]. J Clin Pathol, 1994, 47 (12): 1066-1072.
    [18] Stanley M. Hpv Vaccines[J]. Best Pract Res Clin Obstet Gynaecol, 2006, 20 (2): 279-293.
    [19] de Villiers E. M., C. Fauquet, T. R. Broker, et al. Classification of Papillomaviruses[J]. Virology, 2004, 324 (1): 17-27.
    [20] Munoz N., F. X. Bosch, S. de Sanjose, et al. Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer[J]. N Engl J Med, 2003, 348 (6): 518-527.
    [21] Munoz N., X. Castellsague, A. B. de Gonzalez, et al. Chapter 1: Hpv in the Etiology of Human Cancer[J]. Vaccine, 2006, 24S3 (23): S1-S10.
    [22] Lo K. W., Y. F. Wong, M. K. Chan, et al. Prevalence of Human Papillomavirus in Cervical Cancer: A Multicenter Study in China[J]. Int J Cancer, 2002, 100 (3): 327-331.
    [23] D'Souza G, A. R. Kreimer, R. Viscidi, et al. Case-Control Study of Human Papillomavirus and Oropharyngeal Cancer[J]. N Engl J Med, 2007, 356 (19): 1944-1956.
    [24] Frazer I. H. Prevention of Cervical Cancer through Papillomavirus Vaccination[J]. Nat Rev Immunol, 2004, 4 (1): 46-54.
    [25] Roden R. B., R. Kirnbauer, A. B. Jenson, et al. Interaction of Papillomaviruses with the Cell Surface[J]. J Virol, 1994, 68( 11): 7260-7266.
    [26] Evander M., I. H. Frazer, E. Payne, et al. Identification of the Alpha6 Integrin as a Candidate Receptor for Papillomaviruses[J]. J Virol, 1997, 71 (3): 2449-2456.
    [27] White A. E., E. M. Livanos, T. D. Tlsty. Differential Disruption of Genomic Integrity and Cell Cycle Regulation in Normal Human Fibroblasts by the Hpv Oncoproteins[J]. Genes Dev, 1994, 8 (6): 666-677.
    [28] Zhou X. B., N. Z. Xu. Current Advances in the Mechanic Studies of Human Papillomavirus-Induced Oncogenesis[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2007, 29 (5): 673-677.
    [29] Chu N. R. Therapeutic Vaccination for the Treatment of Mucosotropic Human Papillomavirus-Associated Disease[J]. Expert Opin Biol Ther, 2003, 3 (3): 477-486.
    [30] Roden R., T. C. Wu. Preventative and Therapeutic Vaccines for Cervical Cancer[J]. Expert Rev Vaccines, 2003, 2 (4): 495-516.
    [31] Monie A., C. F. Hung, T. C. Wu. Preventive and Therapeutic Hpv Vaccines[J]. Curr Opin Investig Drugs, 2007, 8 (12): 1038-1050.
    [32] Charo R. A. Politics, Parents, and Prophylaxis—Mandating Hpv Vaccination in the United States[J].N Engl J Med, 2007, 356 (19): 1905-1908.
    [33] Vonka V, E. Hamsikova. Vaccines against Human Papillomaviruses--a Major Breakthrough in Cancer Prevention [J]. Cent Eur J Public Health, 2007, 15 (4): 131-139.
    [34] Hung C. F., B. Ma, A. Monie, et al. Therapeutic Human Papillomavirus Vaccines: Current Clinical Trials and Future Directions[J]. Expert Opin Biol Ther, 2008, 8 (4): 421-439.
    [35] Roden R., T. C. Wu. How Will Hpv Vaccines Affect Cervical Cancer?[J]. Nat Rev Cancer, 2006, 6 (10): 753-763.
    [36] Parkin D. M, F. Bray. Chapter 2: The Burden of Hpv-Related Cancers[J]. Vaccine, 2006, 24 Suppl 3 (24): S11-25.
    [37] Wise-Draper T. M., S. I. Wells. Papillomavirus E6 and E7 Proteins and Their Cellular Targets[J]. Front Biosci, 2008, 13: 1003-1017.
    [38] zur Hausen H. Human Papillomaviruses and Their Possible Role in Squamous Cell Carcinomas[J]. Curr Top Microbiol Immunol, 1977,78:1-30.
    [39] Meisels A., R. Fortin. Condylomatous Lesions of the Cervix and Vagina. I. Cytologic Patterns[J].Acta Cytol, 1976, 20 (6): 505-509.
    [40] zur Hausen H. Papillomaviruses and Cancer: From Basic Studies to Clinical Application[J]. Nat Rev Cancer, 2002, 2 (5): 342-350.
    [41] Boyer S. N., D. E. Wazer, V. Band. E7 Protein of Human Papilloma Virus-16 Induces Degradation of Retinoblastoma Protein through the Ubiquitin-Proteasome Pathway [J]. Cancer Res, 1996, 56(20): 4620-4624.
    [42] Mahdavi A., B. J. Monk. Vaccines against Human Papillomavirus and Cervical Cancer: Promises and Challenges [J]. Oncologist, 2005, 10(7): 528-538.
    [43] Maciag P. C, Y. Paterson. Technology Evaluation: Hspe7 (Stressgen)[J]. Curr Opin Mol Ther, 2005, 7 (3): 256-263.
    [44] Pietersz G. A., D. S. Pouniotis, V. Apostolopoulos. Design of Peptide-Based Vaccines for Cancer[J]. Curr Med Chem, 2006, 13 (14): 1591-1607.
    [45] Wang R. F. Enhancing Antitumor Immune Responses: Intracellular Peptide Delivery and Identification of Mhc Class Ii-Restricted Tumor Antigens[J]. Immunol Rev, 2002, 188: 65-80.
    [46] Palefsky J. M., J. M. Berry, N. Jay, et al. A Trial of Sgn-00101 (Hspe7) to Treat High-Grade Anal Intraepithelial Neoplasia in Hiv-Positive Individuals[J]. Aids, 2006, 20 (8): 1151-1155.
    [47] Einstein M. H., A. S. Kadish, R. D. Burk, et al. Heat Shock Fusion Protein-Based Immunotherapy for Treatment of Cervical Intraepithelial Neoplasia Iii[J]. Gynecol Oncol, 2007, 21: 21.
    [48] Qian X., Y. Lu, Q. Liu, et al. Prophylactic, Therapeutic and Anti-Metastatic Effects of an Hpv-16me6delta/Me7/Tbhsp70delta Fusion Protein Vaccine in an Animal Model[J]. Immunol Lett, 2006, 102 (2): 191-201.
    [49] Segal B. H., X. Y. Wang, C. G. Dennis, et al. Heat Shock Proteins as Vaccine Adjuvants in Infections and Cancer[J]. Drug Discov Today, 2006, 11 (11-12): 534-540.
    [50] Takakura Y., S. Takemoto, M. Nishikawa. Hsp-Based Tumor Vaccines: State-of-the-Art and Future Directions [J]. Curr Opin Mol Ther, 2007, 9(4): 385-391.
    [51] Calderwood S. K., D. R. Ciocca. Heat Shock Proteins: Stress Proteins with Janus-Like Properties in Cancer[J]. Int J Hyperthermia, 2008, 24 (1): 31-39.
    [52] Srivastava P. Interaction of Heat Shock Proteins with Peptides and Antigen Presenting Cells: Chaperoning of the Innate and Adaptive Immune Responses[J]. Annu Rev Immunol, 2002, 20: 395-425.
    [53] Voellmy R., F. Boellmann. Chaperone Regulation of the Heat Shock Protein Response[J].Adv Exp Med Biol, 2007, 594: 89-99.
    [54] Njemini R., I. Bautmans, M. Lambert, et al. Heat Shock Proteins and Chemokine/Cytokine Secretion Profile in Ageing and Inflammation[J]. Mech Ageing Dev, 2007, 128 (7-8): 450-454.
    [55] Udono H., P. K. Srivastava. Heat Shock Protein 70-Associated Peptides Elicit Specific Cancer Immunity[J]. J Exp Med, 1993, 178 (4): 1391-1396.
    [56] Binder R. J. Heat Shock Protein Vaccines: From Bench to Bedside[J]. Int Rev Immunol, 2006, 25 (5-6): 353-375.
    [57] Cheng W. F., C. F. Hung, C. A. Chen, et al. Characterization of DNA Vaccines Encoding the Domains of Calreticulin for Their Ability to Elicit Tumor-Specific Immunity and Antiangiogenesis[J]. Vaccine. 2005, 23 (29): 3864-3874.
    [58] Gelebart P., M. Opas, M. Michalak. Calreticulin, a Ca2+-Binding Chaperone of the Endoplasmic Reticulum[J].Int J Biochem Cell Biol, 2005, 37 (2): 260-266.
    [59] Michalak M., P. Mariani, M. Opas. Calreticulin, a Multifunctional Ca2+ Binding Chaperone of the Endoplasmic Reticulum[J]. Biochem Cell Biol, 1998, 76 (5): 779-785.
    
    [60] Michalak M., E. F. Corbett, N. Mesaeli, et al. Calreticulin: One Protein, One Gene, Many Functions[J]. Biochem J, 1999, 344 Pt 2: 281-292.
    [61] Basu S., P. K. Srivastava. Calreticulin, a Peptide-Binding Chaperone of the Endoplasmic Reticulum, Elicits Tumor- and Peptide-Specific Immunity[J]. J ExpMed, 1999, 189 (5): 797-802.
    [62] Pike S. E., L. Yao, K. D. Jones, et al. Vasostatin, a Calreticulin Fragment, Inhibits Angiogenesis and Suppresses Tumor Growth[J]. J Exp Med, 1998, 188 (12): 2349-2356.
    [63] Pike S. E., L. Yao, J. Setsuda, et al. Calreticulin and Calreticulin Fragments Are Endothelial Cell Inhibitors That Suppress Tumor Growth[J]. Blood, 1999, 94 (7): 2461-2468.
    
    [64] Papetti M., I. M. Herman. Mechanisms of Normal and Tumor-Derived Angiogenesis[J].Am J Physiol Cell Physiol, 2002, 282 (5): C947-970.
    [65] Pandya N. M., N. S. Dhalla, D. D. Santani. Angiogenesis—a New Target for Future Therapy [J]. Vascul Pharmacol, 2006, 44 (5): 265-274.
    [66] Moniz M., J. Yeatermeyer, T. C. Wu. Control of Cancers by Combining Antiangiogenesis and Cancer Immunotherapy [J]. Drugs Today (Barc), 2005, 41 (7): 471-494.
    [67] Nakamura K., A. Zuppini, S. Arnaudeau, et al. Functional Specialization of Calreticulin Domains[J].J Cell Biol, 2001, 154 (5): 961-972.
    [68] Barrios C, C. Georgopoulos, P. H. Lambert, et al. Heat Shock Proteins as Carrier Molecules: In Vivo Helper Effect Mediated by Escherichia Coli Groel and Dnak Proteins Requires Cross-Linking with Antigen[J]. Clin Exp Immunol, 1994, 98 (2): 229-233.
    [69] Suzue K., R. A. Young. Adjuvant-Free Hsp70 Fusion Protein System Elicits Humoral and Cellular Immune Responses to Hiv-1 P24[J]. J Immunol, 1996, 156 (2): 873-879.
    [70] Casey D. G, J. Lysaght, T. James, et al. Heat Shock Protein Derived from a Non-Autologous Tumour Can Be Used as an Anti-Tumour Vaccine[J]. Immunology, 2003, 110 (1): 105-111.
    [71] Del Giudice G. Hsp70: A Carrier Molecule with Built-in Adjuvanticity[J]. Experientia, 1994, 50 (11-12): 1061-1066.
    [72] Heike M., B. Noll, K. H. Meyer zum Buschenfelde. Heat Shock Protein-Peptide Complexes for Use in Vaccines[J]. J Leukoc Biol, 1996, 60 (2): 153-158.
    [73] Kuppner M. C, R. Gastpar, S. Gelwer, et al. The Role of Heat Shock Protein (Hsp70) in Dendritic Cell Maturation: Hsp70 Induces the Maturation of Immature Dendritic Cells but Reduces Dc Differentiation from Monocyte Precursors[J].EurJ Immunol, 2001, 31 (5): 1602-1609.
    [74] Basu S., R. J. Binder, R. Suto, et al. Necrotic but Not Apoptotic Cell Death Releases Heat Shock Proteins, Which Deliver a Partial Maturation Signal to Dendritic Cells and Activate the Nf-Kappa B Pathway [J]. Int Immunol, 2000, 12 (11): 1539-1546.
    [75] Goloubinoff P., P. De Los Rios. The Mechanism of Hsp70 Chaperones: (Entropic) Pulling the Models Together[J]. Trends Biochem Sci, 2007, 32 (8): 372-380.
    [76] Huang Q., J. F. Richmond, K. Suzue, et al. In Vivo Cytotoxic T Lymphocyte Elicitation by Mycobacterial Heat Shock Protein 70 Fusion Proteins Maps to a Discrete Domain and Is Cd4(+) T Cell Independent[J]. J Exp Med, 2000, 191 (2): 403-408.
    [77] Bontkes H. J., J. M. Walboomers, C. J. Meijer, et al. Specific Hla Class I Down-Regulation Is an Early Event in Cervical Dysplasia Associated with Clinical Progression[J]. Lancet, 1998, 351 (9097): 187-188.
    [78] Qian J., Y. Dong, Y. Y. Pang, et al. Combined Prophylactic and Therapeutic Cancer Vaccine: Enhancing Ctl Responses to Hpv16 E2 Using a Chimeric Vlp in Hla-A2 Mice[J]. Int J Cancer, 2006, 118 (12): 3022-3029.
    [79] Zhou X., X. Qian, Q. Zhao, et al. Efficient Expression of Modified Human Papillomavirus 16 E6/E7 Fusion Protein and the Antitumor Efficacy in a Mouse Model[J]. Biol Pharm Bull, 2004, 27 (3): 303-307.
    [80] Wu P. C, L. C. Yang, H. K. Kuo, et al. Inhibition of Corneal Angiogenesis by Local Application of Vasostatin[J]. Mol Vis, 2005, 11: 28-35.
    [81] Atreya C. D., N. K. Singh, H. L. Nakhasi. The Rubella Virus Rna Binding Activity of Human Calreticulin Is Localized to the N-Terminal Domain [J]. J Virol, 1995, 69 (6): 3848-3851.
    [82] Wu X., X. Li, Z. Su, et al. Expression and Purification of Soluble Non-Fusion Vasostatin in Escherichia Coli[J]. Protein Pept Lett, 2005, 12(7): 659-661.
    [83] Li Y, J. Subjeck, G. Yang, et al. Generation of Anti-Tumor Immunity Using Mammalian Heat Shock Protein 70 DNA Vaccines for Cancer Immunotherapy [J]. Vaccine, 2006, 24 (25): 5360-5370.
    [84] Murakami M., K. J. Gurski, F. M. Marincola, et al. Induction of Specific Cd8+ T-Lymphocyte Responses Using a Human Papillomavirus-16 E6/E7 Fusion Protein and Autologous Dendritic Cells[J]. Cancer Res, 1999, 59(6): 1184-1187.
    [85] Aguilar J. C, E. G. Rodriguez. Vaccine Adjuvants Revisited[J]. Vaccine, 2007, 25 (19): 3752-3762.
    [86] Swartz J. R. Advances in Escherichia Coli Production of Therapeutic Proteins[J]. Curr Opin Biotechnol, 2001, 12 (2): 195-201.
    [87] Baneyx F. Recombinant Protein Expression in Escherichia Coli[J]. Curr Opin Biotechnol, 1999, 10 (5): 411-421.
    [88] Michalewicz J., A. W. Nicholson. Molecular Cloning and Expression of the Bacteriophage T7 0.7(Protein Kinase) Gene[J]. Virology, 1992, 186 (2): 452-462.
    [89] Studier F. W., A. H. Rosenberg, J. J. Dunn, et al. Use of T7 Rna Polymerase to Direct Expression of Cloned Genes[J]. Methods Enzymol, 1990, 185: 60-89.
    [90] Davanloo P., A. H. Rosenberg, J. J. Dunn, et al. Cloning and Expression of the Gene for Bacteriophage T7 Rna Polymerase[J]. Proc Natl Acad Sci U S A, 1984, 81 (7): 2035-2039.
    [91] Lin K. Y., F. G. Guarnieri, K. F. Staveley-O'Carroll, et al. Treatment of Established Tumors with a Novel Vaccine That Enhances Major Histocompatibility Class Ii Presentation of Tumor Antigen[J]. Cancer Res, 1996, 56 (1): 21-26.
    [92] He Z., A. P. Wlazlo, D. W. Kowalczyk, et al. Viral Recombinant Vaccines to the E6 and E7 Antigens of Hpv-16[J]. Virology, 2000, 270 (1): 146-161.
    [93] Villaverde A., M. M. Carrio. Protein Aggregation in Recombinant Bacteria: Biological Role of Inclusion Bodies[J]. Biotechnol Lett, 2003, 25 (17): 1385-1395.
    [94] Fahnert B., H. Lilie, P. Neubauer. Inclusion Bodies: Formation and Utilisation[J]. Adv Biochem Eng Biotechnol, 2004, 89: 93-142.
    [95] Liu H., B. H. Wu, G. J. Rowse, et al. Induction of Cd4-Independent E7-Specific Cd8+ Memory Response by Heat Shock Fusion Protein[J]. Clin Vaccine Immunol, 2007, 14 (8): 1013-1023.
    [96] van der Burg S. H., K. M. Kwappenberg, T. O'Neill, et al. Pre-Clinical Safety and Efficacy of Ta-Cin, a Recombinant Hpv16 L2e6e7 Fusion Protein Vaccine, in Homologous and Heterologous Prime-Boost Regimens [J]. Vaccine, 2001, 19 (27): 3652-3660.
    [97] Folkman J. Tumor Angiogenesis: Therapeutic Implications [J]. N Engl J Med, 1971, 285 (21): 1182-1186.
    
    [98] Folkman J. Angiogenesis[J]. Annu Rev Med, 2006, 57: 1-18.
    [99] Folkman J. Tumor Angiogensis: Role in Regulation of Tumor Growth[J]. Symp Soc Dev Biol, 1974, 30 (0): 43-52.
    [100] Folkman J. Tumor Angiogenesis[J]. Adv Cancer Res, 1974, 19(0): 331-358.
    [101] Folkman J. Tumor Angiogenesis: A Possible Control Point in Tumor Growth[J]. Ann Intern Med, 1975, 82 (1): 96-100.
    [102] Jain R. K., K. Schlenger, M. Hockel, et al. Quantitative Angiogenesis Assays: Progress and Problems[J]. Nat Med, 1997, 3 (11): 1203-1208.
    [103] Ribatti D., A. Vacca. Models for Studying Angiogenesis in Vivo[J]. Int J Biol Markers, 1999, 14 (4): 207-213.
    [104] Ucuzian A. A., H. P. Greisler. In Vitro Models of Angiogenesis[J]. World J Surg, 2007, 31 (4): 654-663.
    [105] Auerbach R., N. Akhtar, R. L. Lewis, et al. Angiogenesis Assays: Problems and Pitfalls[J]. Cancer Metastasis Rev, 2000, 19(1-2): 167-172.
    [106] Tufan A. C, N. L. Satiroglu-Tufan. The Chick Embryo Chorioallantoic Membrane as a Model System for the Study of Tumor Angiogenesis, Invasion and Development of Anti-Angiogenic Agents[J]. Curr Cancer Drug Targets, 2005, 5 (4): 249-266.
    [107] Chu N. R., H. B. Wu, T. Wu, et al. Immunotherapy of a Human Papillomavirus (Hpv) Type 16 E7-Expressing Tumour by Administration of Fusion Protein Comprising Mycobacterium Bovis Bacille Calmette-Guerin (Bcg) Hsp65 and Hpvl6 E7[J]. Clin Exp Immunol, 2000, 121 (2): 216-225.
    [108] Huang C. Y., C. A. Chen, C. N. Lee, et al. DNA Vaccine Encoding Heat Shock Protein 60 Co-Linked to Hpv16 E6 and E7 Tumor Antigens Generates More Potent Immunotherapeutic Effects Than Respective E6 or E7 Tumor Antigens[J]. Gynecol Oncol, 2007, 107 (3): 404-412.
    [109] Di Paolo N. C, S. Tuve, S. Ni, et al. Effect of Adenovirus-Mediated Heat Shock Protein Expression and Oncolysis in Combination with Low-Dose Cyclophosphamide Treatment on Antitumor Immune Responses[J]. Cancer Res, 2006, 66 (2): 960-969.
    [110] Enomoto Y., A. Bharti, A. A. Khaleque, et al. Enhanced Immunogenicity of Heat Shock Protein 70 Peptide Complexes from Dendritic Cell-Tumor Fusion Cells[J].J Immunol, 2006, 177 (9): 5946-5955.
    [111] Zhang X., C. Yu, J. Zhao, et al. Vaccination with a DNA Vaccine Based on Human Psca and Hsp70 Adjuvant Enhances the Antigen-Specific Cd8+ T-Cell Response and Inhibits the Psca+ Tumors Growth in Mice[J]. J Gene Med, 2007, 9 (8): 715-726.
    [112] Zhang H., W. Huang. Fusion Proteins of Hsp70 with Tumor-Associated Antigen Acting as a Potent Tumor Vaccine and the C-Terminal Peptide-Binding Domain of Hsp70 Being Essential in Inducing Antigen-Independent Anti-Tumor Response in Vivo[J]. Cell Stress Chaperones, 2006, 11 (3): 216-226.
    [113] Harmala L. A., E. G. Ingulli, J. M. Curtsinger, et al. The Adjuvant Effects of Mycobacterium Tuberculosis Heat Shock Protein 70 Result from the Rapid and Prolonged Activation of Antigen-Specific Cd8+ T Cells in Vivo[J]. J Immunol, 2002, 169 (10): 5622-5629.
    [114] Tobian A. A., D. H. Canaday, C. V. Harding. Bacterial Heat Shock Proteins Enhance Class Ii Mhc Antigen Processing and Presentation of Chaperoned Peptides to Cd4+T Cells[J].J Immunol, 2004, 173 (8): 5130-5137.
    [115] Wang Y., C. G. Kelly, J. T. Karttunen, et al. Cd40 Is a Cellular Receptor Mediating Mycobacterial Heat Shock Protein 70 Stimulation of Cc-Chemokines[J]. Immunity, 2001, 15 (6): 971-983.
    [116] Moser B., M. Loetscher, L. Piali, et al. Lymphocyte Responses to Chemokines[J]. Int Rev Immunol, 1998, 16 (3-4): 323-344.
    [117] Piali L., C. Weber, G. LaRosa, et al. The Chemokine Receptor Cxcr3 Mediates Rapid and Shear-Resistant Adhesion-Induction of Effector T Lymphocytes by the Chemokines Ip10 and Mig[J]. Eur J Immunol, 1998, 28 (3): 961-972.
    [118] Kunz M., A. Toksoy, M. Goebeler, et al. Strong Expression of the Lymphoattractant C-X-C Chemokine Mig Is Associated with Heavy Infiltration of T Cells in Human Malignant Melanoma[J]. J Pathol, 1999, 189 (4): 552-558.
    [119] Bulut Y., K. S. Michelsen, L. Hayrapetian, et al. Mycobacterium Tuberculosis Heat Shock Proteins Use Diverse Toll-Like Receptor Pathways to Activate Pro-Inflammatory Signals[J]. J Biol Chem, 2005, 280(22): 20961-20967.
    [120] Ponomarev E. D., T. N. Tarasenko, A. M. Sapozhnikov. Splenic Cytotoxic Cells Recognize Surface Hsp70 on Culture-Adapted El-4 Mouse Lymphoma Cells[J]. Immunol Lett, 2000, 74(2): 133-139.
    [121] Gastpar R., C. Gross, L. Rossbacher, et al. The Cell Surface-Localized Heat Shock Protein 70 Epitope Tkd Induces Migration and Cytolytic Activity Selectively in Human Nk Cells[J].J Immunol, 2004, 172 (2): 972-980.
    [122] Prohaszka Z., M. Singh, K. Nagy, et al. Heat Shock Protein 70 Is a Potent Activator of the Human Complement System [J]. Cell Stress Chaperones, 2002, 7(1): 17-22.
    [123] de Jong A., M. I. van Poelgeest, J. M. van der Hulst, et al. Human Papillomavirus Type 16-Positive Cervical Cancer Is Associated with Impaired Cd4+ T-Cell Immunity against Early Antigens E2 and E6[J]. Cancer Res, 2004, 64 (15): 5449-5455.
    [124] Ackerman A. L., P. Cresswell. Cellular Mechanisms Governing Cross-Presentation of Exogenous Antigens [J]. Nat Immunol, 2004, 5 (7): 678-684.
    [125] Binder R. J., P. K. Srivastava. Peptides Chaperoned by Heat-Shock Proteins Are a Necessary and Sufficient Source of Antigen in the Cross-Priming of Cd8+T Cells[J]. Nat Immunol, 2005, 6 (6): 593-599.
    [126] Tobian A. A., D. H. Canaday, W. H. Boom, et al. Bacterial Heat Shock Proteins Promote Cd91-Dependent Class I Mhc Cross-Presentation of Chaperoned Peptide to Cd8+ T Cells by Cytosolic Mechanisms in Dendritic Cells Versus Vacuolar Mechanisms in Macrophages[J]. J Immunol, 2004,172 (9): 5277-5286.
    [127] Tobian A. A., C. V. Harding, D. H. Canaday. Mycobacterium Tuberculosis Heat Shock Fusion Protein Enhances Class I Mhc Cross-Processing and -Presentation by B Lymphocytes[J]. J Immunol, 2005, 174(9): 5209-5214.
    [128] Basu S., R. J. Binder, T. Ramalingam, et al. Cd91 Is a Common Receptor for Heat Shock Proteins Gp96, Hsp90, Hsp70, and Calreticulin[J]. Immunity, 2001, 14 (3): 303-313.
    [129] Becker T., F. U. Hartl, F. Wieland. Cd40, an Extracellular Receptor for Binding and Uptake of Hsp70-Peptide Complexes[J]. J Cell Biol, 2002, 158 (7): 1277-1285.
    [130] Delneste Y, G. Magistrelli, J. Gauchat, et al. Involvement of Lox-1 in Dendritic Cell-Mediated Antigen Cross-Presentation[J]. Immunity, 2002, 17 (3): 353-362.
    [131] Berwin B., J. P. Hart, S. Rice, et al. Scavenger Receptor-a Mediates Gp96/Grp94 and Calreticulin Internalization by Antigen-Presenting Cells[J]. Embo J, 2003, 22 (22): 6127-6136.
    [132] Lange-Asschenfeldt B., P. Velasco, M. Streit, et al. The Angiogenesis Inhibitor Vasostatin Does Not Impair Wound Healing at Tumor-Inhibiting Doses[J].J Invest Dermatol, 2001, 117 (5): 1036-1041.
    [133] Coppolino M. G, M. J. Woodside, N. Demaurex, et al. Calreticulin Is Essential for Integrin-Mediated Calcium Signalling and Cell Adhesion[J]. Nature, 1997, 386 (6627): 843-847.
    [134] Yao L., S. E. Pike, J. Setsuda, et al. Effective Targeting of Tumor Vasculature by the Angiogenesis Inhibitors Vasostatin and Interleukin-12[J]. Blood, 2000, 96 (5): 1900-1905.
    [135] Xiao F., Y Wei, L. Yang, et al. A Gene Therapy for Cancer Based on the Angiogenesis Inhibitor, Vasostatin[J]. Gene Ther, 2002, 9(18): 1207-1213.
    [136] Yao L., S. E. Pike, S. Pittaluga, et al. Anti-Tumor Activities of the Angiogenesis Inhibitors Interferon-Inducible Protein-10 and the Calreticulin Fragment Vasostatin[J]. Cancer Immunol Immunother, 2002, 51 (7): 358-366.
    [137] Cadden I. S., B. T. Johnston, R. Connolly, et al. An Investigation into the Role of Bcl-2 in Neuroendocrine Differentiation [J]. Biochem Biophys Res Commun,2005,326(2):442-448.
    [138]Chen C.H.,T.L.Wang,C.F.Hung,et al.Boosting with Recombinant Vaccinia Increases Hpv-16 E7-Specific T Cell Precursor Frequencies of Hpv-16 E7-Expressing DNA Vaccines[J].Vaccine,2000,18(19):2015-2022.
    [139]Feltkamp M.C.,H.L.Smits,M.P.Vierboom,et al.Vaccination with Cytotoxic T Lymphocyte Epitope-Containing Peptide Protects against a Tumor Induced by Human Papillomavirus Type 16-Transformed Cells[J].Eur J Immunol,1993,23(9):2242-2249.
    [140]Blezinger P.,J.Wang,M.Gondo,et al.Systemic Inhibition of Tumor Growth and Tumor Metastases by Intramuscular Administration of the Endostatin Gene[J].Nat Biotechnol,1999,17(4):343-348.
    [141]Du G.J.,H.H.Lin,Q.T.Xu,et al.Thalidomide Inhibits Growth of Tumors through Cox-2 Degradation Independent of Antiangiogenesis[J].Vascul Pharmacol,2005,43(2):112-119.
    [142]Ji H.,E.Y.Chang,K.Y.Lin,et al.Antigen-Specific Immunotherapy for Murine Lung Metastatic Tumors Expressing Human Papillomavirus Type 16E7 Oncoprotein[J].Int J Cancer,1998,78(1):41-45.
    [143]Gilboa E.The Promise of Cancer Vaccines[J].Nat Rev Cancer,2004,4(5):401-411.
    [144]Berke G.T-Cell-Mediated Cytotoxicity[J].Curt Opin Immunol,1991,3(3):320-325.
    [145]Lancki D.W.,F W.Fitch.Cytolytic T Lymphocytes:An Overview of Their Characteristics[J].Biotherapy,1992,5(1):71-81.
    [146]Atkinson E.A.,R.C.Bleackley.Mechanisms of Lysis by Cytotoxic T Cells[J].Crit Rev Immunol,1995,15(3-4):359-384.
    [147]Kagi D.,F.Vignaux,B.Ledermann,et al.Fas and Perforin Pathways as Major Mechanisms of T Cell-Mediated Cytotoxicity[J].Science,1994,265(5171):528-530.
    [148]Ishiwatari-Hayasaka H.,H.Kawashima,T.Osawa,et al.Induction of Cell Death by Chimeric L-Selectin-Fas Receptors[J].Int Immunol,1997,9(4):627-635.
    [149]Hanahan D.,J.Folkman.Patterns and Emerging Mechanisms of the Angiogenic Switch During Tumorigenesis[J].Cell,1996,86(3):353-364.
    [150]Moehler T.M.,A.D.Ho,H.Goldschmidt,et al.Angiogenesis in Hematologic Malignancies[J].Crit Rev Oncol Hematol,2003,45(3):227-244.
    [151]Lien S.,H.B.Lowman.Therapeutic Anti-Vegf Antibodies[J].Handb Exp Pharmacol,2008,181(181):131-150.
    [152]Ruegg C.,N.Mutter.Anti-Angiogenic Therapies in Cancer:Achievements and Open Questions[J].Bull Cancer,2007,94(9):753-762.
    [153]Hayes D.F.K.Miller,G.Sledge.Angiogenesis as Targeted Breast Cancer Therapy[J].Breast,2007,16 Suppl 2(2):S17-19.
    [154]Carmeliet P.,R.K.Jain.Angiogenesis in Cancer and Other Diseases[J].Nature,2000,407(6801):249-257.
    [155]Singh S.,A.Sadanandam,R.K.Singh.Chemokines in Tumor Angiogenesis and Metastasis[J].Cancer Metastasis Rev,2007,26(3-4):453-467.
    [156]Cavallaro U.,G.Christofori.Molecular Mechanisms of Tumor Angiogenesis and Tumor Progression[J].J Neurooncol,2000,50(1-2):63-70.
    [157]Hillen F,A.W.Griffioen.Tumour Vascularization:Sprouting Angiogenesis and Beyond[J].Cancer Metastasis Rev,2007,26(3-4):489-502.
    [158]Zou W.Immunosuppressive Networks in the Tumour Environment and Their Therapeutic Relevance[J].Nat Rev Cancer,2005,5(4):263-274.
    [159]Yang L.,D.P.Carbone.Tumor-Host Immune Interactions and Dendritic Cell Dysfunction[J].Adv Cancer Res,2004,92:13-27.
    [160]Ohm J.E.,D.P.Carbone.Vegf as a Mediator of Tumor-Associated Immunodeficiency[J].Immunol Res,2001,23(2-3):263-272.
    [161]Nagaraj S.,D.I.Gabrilovich.Tumor Escape Mechanism Governed by Myeloid-Derived Suppressor Cells[J].Cancer Res,2008,68(8):2561-2563.
    [162]Noonan D.M.,A.De Lerma Barbaro,N.Vannini,et al.Inflammation, Inflammatory Cells and Angiogenesis: Decisions and Indecisions[J]. Cancer Metastasis Rev, 2008, 27 (1): 31-40.
    [163] Yang L., L. M. DeBusk, K. Fukuda, et al. Expansion of Myeloid Immune Suppressor Gr+Cdllb+ Cells in Tumor-Bearing Host Directly Promotes Tumor Angiogenesis[J]. Cancer Cell, 2004, 6 (4): 409-421.
    [164] Jung Y. D., S. A. Ahmad, Y. Akagi, et al. Role of the Tumor Microenvironment in Mediating Response to Anti-Angiogenic Therapy[J]. Cancer Metastasis Rev, 2000, 19 (1-2): 147-157.
    [165] Lu Y, Z. Zhang, Q. Liu, et al. Immunological Protection against Hpvl6 E7-Expressing Human Esophageal Cancer Cell Challenge by a Novel Hpvl6-E6/E7 Fusion Protein Based-Vaccine in a Hu-Pbl-Scid Mouse Model[J]. Biol Pharm Bull, 2007, 30 (1): 150-156.
    [166] Lee H., S. Baek, S. J. Joe, et al. Modulation of Ifn-Gamma Production by Tnf-Alpha in Macrophages from the Tumor Environment: Significance as an Angiogenic Switch[J]. Int Immunopharmacol, 2006, 6 (1): 71-78.
    [167] Dai J., A. B. Rabie. Vegf: An Essential Mediator of Both Angiogenesis and Endochondral Ossification[J]. J Dent Res, 2007, 86 (10): 937-950.
    [168] Voest E. E., B. M. Kenyon, M. S. O'Reilly, et al. Inhibition of Angiogenesis in Vivo by Interleukin 12[J]. J Natl Cancer Inst, 1995, 87 (8): 581-586.
    [169] Airoldi I., E. Di Carlo, C. Cocco, et al. Endogenous 11-12 Triggers an Antiangiogenic Program in Melanoma Cells[J]. Proc Natl Acad Sci U S A, 2007, 104 (10): 3996-4001.
    [170] Fathallah-Shaykh H. M., L. J. Zhao, A. I. Kafrouni, et al. Gene Transfer of Ifn-Gamma into Established Brain Tumors Represses Growth by Antiangiogenesis[J].J Immunol, 2000, 164 (1): 217-222.
    [171] Angiolillo A. L., C. Sgadari, D. D. Taub, et al. Human Interferon-Inducible Protein 10 Is a Potent Inhibitor of Angiogenesis in Vivo[J]. J Exp Med, 1995, 182 (1): 155-162.
    [172] Liao F., R. L. Rabin, J. R. Yannelli, et al. Human Mig Chemokine: Biochemical and Functional Characterization[J]. J Exp Med, 1995, 182 (5): 1301-1314.
    [173] Young R. A. Stress Proteins and Immunology[J]. Annu Rev Immunol, 1990, 8: 401-420.
    [174] Salvetti M., G. Ristori, C. Buttinelli, et al. The Immune Response to Mycobacterial 70-Kda Heat Shock Proteins Frequently Involves Autoreactive T Cells and Is Quantitatively Disregulated in Multiple Sclerosis[J]. J Neuroimmunol, 1996, 65 (2): 143-153.
    [175] Derkay C. S., R. J. Smith, J. McClay, et al. Hspe7 Treatment of Pediatric Recurrent Respiratory Papillomatosis: Final Results of an Open-Label Trial[J].Ann Otol Rhinol Laryngol, 2005, 114 (9): 730-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700