个性化人体模型与肢体协同运动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,三维个性化人体生成和肢体的协同运动已经成为虚拟现实领域的重要发展方向,作为三维虚拟服装CAD系统核心的组成部分,它允许用户直接对服装的款式和尺寸进行选择和修改,并通过三维显示的方式呈现给用户。另外,不同人体姿态的三维重构也会给服装的动态展示和舒适性评价打下坚实的基础。个性化生成和肢体协同运动后的三维人体模型能否准确反映人体的体型指标和姿态参数取决于生成原理和重构方法。因此,对个性化人体生成和肢体协同运动理论与方法的研究对于加快虚拟现实和三维服装CAD技术的发展有着重要的理论意义和应用价值。
     三维个性化人体生成和肢体协同运动包括人体模型数据库的建立、个性化人体生成、线状骨架提取和人体姿态的三维重构理论与方法,整体目标在于构建面向互联网的用户服装个性化定制和展示平台,并在此基础上实现相关算法的研究。
     提出基于三维图元的多方向协同变形的不同体型生成方法。首先通过现有模型库选择所使用的模板人体模型和目标人体模型,随后利用人体造型设计软件对模型进行了三维图元划分;利用不同图元的共性,抽象得到三维图元的各种参数,提取获得了模板图元的形状特征和目标图元的变化范围,提出图元曲线插值算法以生成图元方向截线;进而提出了最小距离准则的方法得到人体的不同图元,从而获得准确的不同人体体型。
     提出基于三维图元和多方向轮廓线的个性化人体生成方法。阐述了参照法提取图像像素尺寸的原理和方法;根据不同方向的人体图像轮廓线;将部分分块和人体骨架相结合,提取图元方向尺寸;通过身高和图元方向尺寸分级匹配对人体图元数据库进行搜索,以确定相似的人体图元,从而为模型的变形提供依据;利用定位的人体轮廓线和关键特征点,提出了多方向轮廓线驱动变形的方法,生成了具有目标体型特征的三维人体模型。
     提出基于改进Hopfield神经网络和方向特征的人体线状骨架提取方法。根据人体模型冠状面的定义,针对模型三角片提出了深度信息的概念,用以定位人体的躯干部位;提出了改进Hopfield神经网络和方向特征相结合的特征点定位方法,实现目标人体的躯干特征点定位;介绍了模型的斜截线原理,并提出利用肢体方向特征获取准确的人体肢体特征点的方法;基于人体的骨架模型,给出了准确的目标人体线状骨架。
     提出基于共形变换的人体肢体的协同运动方法。提出了颜色直方图和距离分类相结合的方法,实现了对目标人体关节特征点的定位;阐述了人体骨架点和骨架段模型,并通过相互连接骨架点迭代计算尺度因子的方法,得到了骨架点的三维信息;在对运动方向与角度进行计算的基础上,提出了基于共形变换的人体肢体的协同运动方法,从而实现了人体肢体的协同运动以及人体姿态的三维重构。
     最后,对三维个性化人体生成和肢体的协同运动两个模块进行了实现,并给出了图元方向截线的生成、基于图像的人体轮廓线提取、三维个性化人体生成、三维人体线状骨架提取和重构三维人体姿态等的实例,进一步验证了所提出的方法的正确性和有效性。
In recent years, the generation of3D personalized human body and the cooperative motion of human limb have become the important development direction for the Virtual Reality field. As a core part of3D virtual garment CAD system, it allows user to select and modify the styles and sizes of garments, and presents to the user by using the method of3D display. In addition,3D reconstruction of different human poses will lay a solid foundation for dynamic display and comfort evaluation on garments. If the3D human models obtained by the method of personalized generation and cooperative motion of limb can accurately reflect shape indicators and posture parameters depends on the generation principle and reconstruction method. Therefore, to research theories and methods of personalized human body generation and cooperative motion of human limb for speeding up the development of virtual reality and3D garment CAD technology has important theoretical significance and application value.
     3D personalized human body generation and cooperative motion of human limb include the theories and methods of the establishment of human models database, generation of personalized human body, extraction of human fringe skeleton and3D reconstruction of human poses. Our overall aim is to construct the platform of Internet-oriented customization and display garments, and research related algorithms on the basis of it.
     The generation method of different human shapes based on3D entity's multi-direction cooperative deformation is proposed. The used template and target human models are firstly selected in the existed database of human models, and then the models are segmented into3D entities by using figure design modeling software. Various parameters are demonstrated by using the common properties of various entities. Shape characteristics of template entity and variation range of target entity are then extracted. Subsequently, direction curves of entities are generated using proposed entity curve interpolation algorithm. Various entities are obtained by the proposed method of minimum distance criterion, and accurate different human shapes are then generated.
     The generation method of personalized human model based on3D entities and multi-direction human contours is proposed. The principle of pixel size on human body image using the method of reference is firstly demonstrated. Based on the multi-direction human body contours, entity direction measurements are extracted by the proposed method combining part partitioning with human skeleton segment. The similar human entities are determined by searching for the human entity database using the graded matching based on height and entity direction measurements, and they can provide a basis for the deformation of human models. The3D human models with the shape characteristics of target model are generated by the proposed deformation method based on multi-direction human body contours using the located critical feature points and contours.
     The extraction method of human fringe skeleton based on the improved Hopfield neural network and direction features is proposed. The torso of human model is firstly located using the depth direction feature of model's triangle meshes based on the definition of coronal plane. The feature points of torso on target human body are located using the feature points'location method combining the improved Hopfield neural network with direction feature. Subsequently, the feature points of limb are extracted accurately by the proposed limb direction feature using the algorithm of inclined section lines. Finally, the accurate fringe skeleton of target human body is extracted precisely based on human skeleton model.
     The cooperative motion method of human limb based on conformal transformation is proposed. The joint feature points of target human body are located by the proposed method combining color histogram with distance classification. The3D coordinates of skeleton points are obtained by the method of iterative calculating scale factor based on interconnected skeleton segment using the model of human skeleton points and segments. Then, the cooperative motion method of human limb based on conformal transformation is proposed based on calculation of direction and perspective of limb motion. Therefore, the limb cooperative motion and3D human posture reconstruction can be obtained by the above methods.
     The two modules of the generation of3D personalized human models and cooperative motion of human limb have been developed. Using the above modules, a lot of examples including the generation of entity direction curve, the extraction of human body contours based on human body images, the generation of3D personalized human model, the extraction of3D human fringe skeleton and the reconstruction of3D human posture are given. Furthermore, it also proves the correctness and efficiency of the proposed methods.
引文
[1]崔树芹,余胜生,胡新荣.3D试衣系统中个性化人体建模方法[J].华中科技大学学报(自然科学版),2009,37(10):25-28.
    [2]Cordier F, Seo H, Thalmann N M. Made-to-Measure Technologies for Online Clothing Store[J]. IEEE Computer Graphics and Applications,2003,23(1):38-48.
    [3]李惠敏,方建安,陈家训.Matlab和Web应用相结合及其在eMTM在线系统中的应用[J].计算机仿真,2005,22(5):56-59.
    [4]任利锋,潘志庚,朱杰杰,杨宏伟.虚拟环境中化身技术的研究与进展[J].计算机工程与应用,2008,44(10):1-5.
    [5]陈姝.基于视频的人体运动跟踪与重构方法研究[D].中南大学博士学位论文.中南大学,长沙:2008.
    [6]陆永良,李汝勤,胡金莲.虚拟服装的发展历史和现状[J].纺织学报,2005,26(1):132-134.
    [7]徐爱国.虚拟人动画中的三维服装仿真技术研究[D].浙江大学博士学位论文.浙江大学,杭州:2007.
    [8]陆永良.计算机虚拟现实环境三维服装设计[D].东华大学博士学位论文.东华大学,上海:2005.
    [9]李静.服装三维CAD应用与发展趋势[J].青年文学家,2010,1:172.
    [10]何贵良,戴鸿.当今服装CAD/CAM使用现状及其发展动态研究[J].河北纺织,2008,2:1-6.
    [11]Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models[A]. ACM SIGGRAPH Computer Graphics[C],1987,21(4):205-214.
    [12]Carignan M, Yang Y, Thalmann N M, Thalmann D. Dressing animated synthetic actors with complex deformable clothes[J]. Computer Graphics,1992,26(2):99-104.
    [13]Yang Y, Thalmann N M, Thalmann D. Three-Dimensional garment design and animation, a new design tool for the garment industry[J]. Computers in Industry,1992,19(3):185-191.
    [14]Volino P, Thalmann N M, Shen J, Thalmann D. An evolving system for simulating clothes on virtual actors[J]. IEEE Computer Graphics and Applications,1996,16(5):42-51.
    [15]Volino P, Thalmann N M. Implementing fast cloth simulation with collision response[A]. Proceedings of the International Conference on Computer Graphics[C],2000,257-266.
    [16]Okabe H, Imaoka H, Tomiha T, Niwaya H. Three dimensional apparel CAD system[J]. Computer Graphics,1992,26(2):105-110.
    [17]Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shape design[A]. ACM SIGGRAPH Computer Graphics[C],1991,25(4):257-266.
    [18]Eischen J W, Deng S, Clapp T G. Finite-Element modeling and control of flexible fabric parts[J]. IEEE Computer Graphics and Applications,1996,16(5):71-80.
    [19]Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behavior[A]. Proceedings of the Graphics Interface Conference[C],1995,147-154.
    [20]Howlett P, Hewitt W T. Mass-Spring simulation using adaptive non-active points[J]. Computer Graphics Forum,1998,17(3):345-354.
    [21]韩煦,胡勇,李祖华.三维服装CAD技术[J].广西纺织科技,2008,37(2):58-60.
    [22]胡新荣.服用织物动态仿真关键技术的研究[D].华中科技大学博士学位论文.华中科技大学,武汉:2008.
    [23]刘卉.虚拟服装设计及其色彩要素的研究[D].浙江大学博士学位论文.浙江大学,杭州:2001.
    [24]樊劲,周济,王启付,袁铭辉.基于弹簧质点模型的二维/三维映射算法[J].软件学报,1999,10(2):140-148.
    [25]陈日午,徐乃平.采用能量法进行真实感布仿真[J].软件学报,2001,12(2):303-308.
    [26]方金,任立红,丁永生,郝矿荣.一种采用单照相机的三维人体测量方法[J].东华大学学报(自然科学版),2010,36(5):536-540.
    [27]杨子田,张文斌,张渭源.我国华东地区成年男子体型分析[J].纺织学报,2006,27(8):53-56.
    [28]夏平,孟凡鹃,姚进.三维服装CAD技术研究综述[J].成都纺织高等专科学校学报,2005,22(2):11-14.
    [29]Clarke J. E-TAILOR:Integration of 3D Body Measurement, Advanced CAD, and E-Commerce Technologies in the European Fashion Industry [J]. International Journal of e-Business Strategy Management,2001,2(3):201-209.
    [30]Dekker L.3D Human Body Modeling from Range Data[D]. [PhD thesis]. University College London,2000.
    [31]Istook C, Simmons K. Comparison Of Three-Dimensional Body Scanning Technologies[J]. Journal of Fashion Marketing and Management,2002,17(13):67-73.
    [32]Li J, Liu S, Zhang Y. Application of three-dimensional body measurement system[J]. Journal of Donghua University (English Edition),2005,22(4):134-138.
    [33]彭荣华,钟约先.人体三维无接触测量系统的研究[J].计量技术,2004,(2):36-38.
    [34]朱辉,杨建国,张瑞云.电脑服装设计(第2版)[M].上海:复旦大学出版社,1997.
    [35]陈伟伟,陈雁.非接触式三维人体测量技术的进展及应用[J].纺织科技进展,2010,(6):88-90.
    [36]杨云涛,石志勇,吕建刚,关贞珍.非接触式人体三维测量系统的研究[J].计算机测量与控制,2007,15(9):1135-1137.
    [37]刘冠彬,邓志飞.三维人体照片建模的理论研究与实践[J].纺织科学研究,2004,(3):52-56.
    [38]Lee W, Gu J, Thalmann N M. Generating animatable 3D virtual humans from photographs[J]. Computer Graphics Forum,2000,19(3):1-10.
    [39]刘雁.基于原型的三维服装款式智能设计研究[D].东华大学博士学位论文.东华大学:上海,2003.
    [40]李旭.三维人台、服装造型及衣片展开CAD技术的探讨[J].浙江工程学院学报,2002,19(3):175-179.
    [41]侯卫生,吴信才,刘修国,陈国良.基于线框模型的复杂断层三维建模方法[J].地质科技情报,2006,25(5):109-112.
    [42]谷林,张欣.服装CAD中三维人体建模方法综述[J].纺织工业,2006,5:36-38.
    [43]徐继红.三维服装CAD技术现状综述[J].扬州职业大学学报,2002,6(1):38-40.
    [44]赵锘平,张渭源,张鸿志.服装CAD技术发展与展望[J].天津纺织工学院学报,2000,19(5):70-73.
    [45]朱李丽,邓中民,李刚炎.三维服装CAD中人体建模综述[J].武汉科技学院学报,2004,17(1):19-21.
    [46]李勇,胡敏,付小莉.三维人体建模方法的研究[J].纺织学报,2002,23(5):416-418.
    [47]李红燕,卢习林.基于特征线的三维人体分片重构技术[J].北京服装学院学报,2004,24(3):9-16.
    [48]石教英.虚拟现实基础及实用算法[M].北京:科学出版社,2002.
    [49]韦争亮,钟约先,袁朝龙.散乱三维测量数据构建三角形网格模型的研究[J].机械设计与研究,2008,24(1):61-63.
    [50]秦可,庄越挺,吴飞.服装CAD中三维人体模型的参数化研究[J].计算机辅助设计与图形学学报,2004,16(7):918-922.
    [51]顾耀林,周军.插值细分曲面三角剖分研究[J].计算机应用,2006,26(1):146-148.
    [52]Dyn N, Levine D, Gregory J. A Butterfly Subdivision Scheme for Surface Interpolation with tension control[J]. ACM Transactions on Graphics,1990,9(2):160-169.
    [53]陈云翔,刘文杰,丁永生,汤兵勇.基于蝶形细分自适应算法的三维地形仿真[J].计算机仿真,2009,26(1):229-232.
    [54]唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999.
    [55]Jones M W, Chen M. A New Approach to the Construction of Surfaces from Contour Data [J]. Computer Graphics Forum,1994,13(3):75-84.
    [56]Newman T, Yi H. A survey of the marching cubes algorithm[J]. Computers & Graphics,2006, 30(5):854-879.
    [57]Li C, Li Z, Wang Y, Hao X. Some improvements of the marching cubes algorithm for the rendering of an orebody[J]. Journal of China University of Mining and Technology,2008,18(2): 194-198.
    [58]Wang Z L, Teo J C M, Chui C K, Ong S H, Yan C H, Wang S C, Wong H K, Teoh S H. Computational biomechanical modeling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing[J]. Computer Methods and Programs in Biomedicine, 2005,80(1):25-35.
    [59]Bertsch C, Cisilino A P, Calvo N. Topology optimization of three-dimensional load-bearing structures using boundary elements[J]. Advances in Engineering Software,2010,41(5): 694-704.
    [60]Lohou C, Bertrand G. A 3D 6-subiteration curve thinning algorithm based on P-simple points[J]. Discrete Applied Mathematics,2005,151(1-3):198-228.
    [61]Wang Y S, Lee T Y. Curve skeleton extraction using iterative least squares optimization[J]. IEEE Transactions on Visualization and Computer Graphics,2008,14(4):926-936.
    [62]Hassouna M S, Farag A A. Robust centerline extraction framework using level sets[A]. In Proceedings on Computer Vision and Pattern Recognition[C],2005(1):458-465.
    [63]Zhou Y, Toga A W. Efficient skeletonization of volumetric objects[J]. IEEE Transactions on Visualization and Computer Graphics,1999,5(3):196-209.
    [64]Wade L. Automated generation of control skeletons for use in animation[D]. PhD thesis. Adviser-Richard E. Parent,2000.
    [65]Bitter I, Kaufman A E, Sato M. Penalized-distance volumetric skeleton algorithm[J]. IEEE Transactions on Visualization and Computer Graphics,2001,7(3):195-206.
    [66]Cornea N D, Silver D, Yuan X, Balasubramanian R. Computing hierarchical curve-skeletons of 3D objects[J]. The Visual Computer,2005,21(11):945-955.
    [67]Ma W C, Wu F C, Ouhyoung M. Skeleton extraction of 3D objects with radial basis functions[A]. In Proceedings of the Shape Modeling International[C],2003,207-215.
    [68]Amenta N, Choi S, Kolluri R K. The power crust, unions of balls, and the medial axis transform[J]. Computational Geometry,2001,19(2-3):127-153.
    [69]Dey T K, Sun J. Defining and computing curve-skeletons with medial geodesic function[A]. In Proceedings of the fourth Eurographics symposium on Geometry Processing[C],2006: 143-152.
    [70]Pascucci V, Scorzelli G, Bremer P T, Mascarenhas A. Robust on-line computation of Reeb graphs:simplicity and speed[J]. ACM Transaction on Graphics,2007,26(3):Article 58.
    [71]Hilaga M, Shinagawa Y, Kohmura T, Kunii T L. Topology matching for fully automatic similarity estimation of 3D shapes[A]. In proceedings of the 28th annual conference on Computer Graphics and Interactive Techniques[C],2001:203-212.
    [72]Aujay G, Hetroy F, Lazarus F, Depraz C. Harmonic skeleton for realistic character animation[A]. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation[C],2007:151-160.
    [73]Au O K C, Tai C L, Chu H K, Cohen-Or D, Lee T Y. Skeleton Extraction by Mesh Contraction[J]. ACM Transactions on Graphics,2008:1-10.
    [74]Sharf A, Lewiner T, Shamir A, Kobbelt L. On-the-fly curve-skeleton computation for 3D shapes[J]. Computer Graphics Forum,2007,26(3):323-328.
    [75]Chuang J H, Tsai C H, Ko M C. Skeletonization of three-dimensional object using generalized potential field[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(11):1241-1251.
    [76]Katz S, Tal A. Hierarchical mesh decomposition using fuzzy clustering and cuts[J]. ACM Transactions on Graphics,2003,22(3):954-961.
    [77]Li X, Woon T W, Tan T S, Huang Z. Decomposing polygon meshes for interactive applications[A]. In Proceedings of symposium on Interactive 3D graphics[C],2001:35-42.
    [78]Igarashi T, Matsuoka S, Tanaka H. Teddy:a sketching interface for 3D freeform design[A]. In Proceedings of ACM SIGGRAPH'07[C],2007:Article 21.
    [79]Tai C L, Zhang H, Fong C K. Prototype Modeling from Sketched Silhouettes based on Convolution Surfaces[J]. Computer Graphics Forum,2004,23(1):71-83.
    [80]Mortara M, Patane G, Spagnuolo M. From geometric to semantic human body models[J]. Computers & Graphics,2006,30(2):185-196.
    [81]Yu Y, Wang Z, Xia S, Mao T. Automatic joints extraction of scanned human body[J]. Digital Human Modeling, HCII 2007, (12):286-293.
    [82]于勇,王兆其,夏时洪,毛天露.一种姿态无关的人体模型骨骼提取方法[J].计算机研究与发展,2008,45(7):1249-1258.
    [83]Thalmann M N, Thalmann D. The direction of synthetic actors in the film Rendez-vous a Montreal[J]. IEEE Computer Graphics and Application,1987,7(12):9-19.
    [84]Sloan P, Rose C, Cohen M. Shape and animation by example[J]. Microsoft Research TechReport,2000, MSR-TR-2000-79.
    [85]Lewis J P, Cordner M, Fong N. Pose space deformation:A unified approach to shape interpolation and skeleton-driven deformation[A]. In Proceedings of SIGGRAPH'00[C],2000: 165-171.
    [86]Weber J, Gleicher M. Run-Time Skin Deformation[A]. In Proceedings of Game Developers Conference[C],2000.
    [87]叶大海,庄越挺,刘丰.骨粒串主导的自曲面变形算法[J].计算机辅助设计与图形学学报,2004,16(12):1719-1723.
    [88]Chadwick J E, Haumann D R, Parent R E. Layered construction for deformable animated characters[A]. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques[C],1989:243-252.
    [89]Singh K, Kokkevis E. Skinning characters using surface oriented free-form deformations[J]. In Graphics Interface,2000:35-42.
    [90]Thalmann N M, Cordier F, Seo H, Papagianakis G. Modeling of bodies and clothes for virtual environments[A]. In Proceedings of the 2004 International Conference on Cyberworlds[C], 2004:201-208.
    [91]Alexa M. Linear combination of transformations[J]. ACM Transactions on Graphics,2002, 21(3):380-387.
    [92]Kavan L, Zara J. Real time skin deformation with bones blending[A]. In proceedings of WSCG'2003 Short papers[C],2003:69-74.
    [93]Mao C, Qin S, Wright D. A sketch-based approach to human body modeling[J]. Computers & Graphics,2009,33(4):521-541.
    [94]Werghi N. Segmentation and modeling of full human body shape from 3-D scan data:a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2007,37(6):1122-1136.
    [95]Laws J, Bauernfeind N, Cai P. Feature hiding in 3D human body scans[J]. Information Visualization,2006,5(4):271-278.
    [96]James D L, Twigg C D. Skinning mesh animations[J]. ACM Transactions on Graphics,2005, 24(3):399-407.
    [97]Wang Z, Mao T, Xia S. A fast and handy method for skeleton-driven body deformation[J]. ACM Computers in Entertainment,2006,4(4):1-11.
    [98]Teran J, Sifakis E, Blemker S S, Ng-Thow-Hing V, Lau C, Fedkiw R. Creating and simulating skeletal muscle from the visible human data set[J]. IEEE Transaction on Visualization and Computer Graphics,2005,11(3):317-328.
    [99]Jung K, Kwon O, You H. Development of a digital human model generation method for ergonomic design in virtual environment J]. International Journal of Industrial Ergonomics, 2009,39:744-748.
    [100]Zhou X, Zhao Z. The skin deformation of a 3D virtual human[J]. International Journal of Automation and Computing,2009,6(4):344-350.
    [101]Boisvert J, Shu C, Wuhrer S, Xi P. Three-dimensional human shape inference from silhouettes: reconstruction and validation[J]. Machine Vision and Applications,2011, (21 July):1-13.
    [102]Allen B, Curless B, Popovic Z. The space of human body shapes:reconstruction and parameterization from range scans[J]. ACM Transactions on Graphics,2003,22(3):587-594.
    [103]Seo H, Thalmann N M. An example-based approach to human body manipulation[J]. Graphical Models,2004,66(1):1-23.
    [104]Jang I Y, Lee K H. Depth Video based Human Model Reconstruction Resolving Self-Occlusion[J]. IEEE Transactions on Consumer Electronics,2010,56(3):1933-1941.
    [105]Chou Y F, Shih Z C. A nonparametric regression model for virtual humans generation[J]. Multimedia Tools and Applications,2010,47(1):163-187.
    [106]Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J. Scape:shape completion and animation of people[J]. ACM Transaction on Graphics,2005,24(3):408-416.
    [107]Li J, Zhou S K, Chellappa R. Appearance Modeling Using a Geometric Transform[J]. IEEE Transactions on Image Processing,2009,18(4):889-902.
    [108]Ilic S, Fua P. Implicit Meshes for Surface Reconstruction[J]. IEEE Transactions on pattern analysis and machine intelligence,2006,28(2):328-333.
    [109]Mori G, Malik J. Recovering 3D Human Body Configurations Using Shape Contexts[J]. IEEE Transactions on pattern analysis and machine intelligence,2006,28(7):1052-1062.
    [110]Azouz Z B, Rioux M, Shu C, Lepage R. Characterizing human shape variation using 3D anthropometric data[J]. The Visual Computer,2006,22(5):302-314.
    [111]Starck J, Hilton A. Model-based human shape reconstruction from multiple views[J]. Computer Vision and Image Understanding,2008,111(2):179-194.
    [112]Rhee T, Lewis J, Neumann U. Real-time weighted pose-space deformation on the GPU[J]. Computer Graphics Forum,2006,25(3):439-448.
    [113]Hyun D E, Yoon S H, Chang J W, Seong J K, Kim M S, Juttler B. Sweep-based human deformation[J]. The Visual Computer,2005,21:542-550.
    [114]Marinov M, Botsch M, Kobbelt L. Gpu-based multiresolution deformation using approximate normal field reconstruction[J]. Journal of graphics tools,2007,12(1):27-46.
    [115]Feng J, Shao J, Jin X, Peng Q, Forrest A R. Multiresolution free-form deformation with subdivision surface of arbitrary topology[J]. The Visual Computer,2006,22(1):28-42.
    [116]Xie X, Cao Z, Weng X, Jin D. Estimating intrinsic dimensionality of fMRI dataset incorporating an AR(1) noise model with cubic spline interpolation[J]. Neurocomputing,2009, 72(4-6):1042-1055.
    [117]Shih F, Fu C, Zhang K. Multi-view face identification and pose estimation using B-spline interpolation [J]. Information Science,2005,169(3-4):189-204.
    [118]Free 3D models database, http://artist-3d.com/free 3d.com/free_3d_ models.
    [119]Li J, Wang Y. Automatically construct skeletons and parametric structures for polygonal human bodies[J]. Computer Graphics International,2007.
    [120]Sela G, Elber G. Discontinuous Free Form Deformations[A]. The 12th Pacific Conference on Graphics and Applications[C], Seoul, Korea,2004:227-236.
    [121]Amstutz E, Teshima T, Kimura M, Mochimaru M, Saito H. PCA-based 3D shape reconstruction of human foot using multiple viewpoint cameras[J]. International Journal of Automation and Computing,2008,5(3):217-225.
    [122]Seo H, Thalmann N M. An Example-Based Approach to Human Body Manipulation[J]. Graphical Models,2004,66(1):1-23.
    [123]Seo H, Thalmann N M. An Automatic Modeling of Human Bodies from Sizing Parameters [A]. ACM SIGGRAPH Symposium on Interactive 3D Graphics Proc.[C],2003:19-26.
    [124]Seo H, Cordier F, Thalmann N M. Synthesizing animatable body models with parameterized shape modifications[A]. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation[C], San Diego, CA, USA,2003,120-125.
    [125]James D L, Twigg C D. Skinning mesh animations[A]. In SIGGRAPH'05:ACM SIGGRAPH 2005 Papers[C], New York, NY, USA,2005:399-407.
    [126]Li J, Lu G, Ye J. Automatic skinning and animation of skeletal models[J]. The Visual Computer,2011,27(6-8):585-594.
    [127]Maurice X, Sandholm A, Pronost N, Boulic R, Thalmann D. A subject-specific software solution for the modeling and the visualization of muscles deformations[J]. The Visual Computer,2009,25(9):835-842.
    [128]Larboulette C, Cani M P, Amaldi B. Dynamic skinning:adding real-time dynamic effects to an existing character animation[A]. In SCCG'05:Proceedings of the 21st spring conference on Computer graphics[C], New York, NY, USA,2005,87-93.
    [129]Capell S, Burkhart M, Curless B, Duchamp T, Popovic Z. Physically based rigging for deformable characters[A]. In SCA '05:Proceedings of the 2005 ACM SIGGRAPH /Eurographics symposium on Computer animation[C], New York, NY, USA,2005,301-310.
    [130]Chen C H, Lin I C, Tsai M H, Lu P H. Lattice-based skinning and deformation for real-time skeleton-driven animation[A].12th International Conference on Computer-Aided Design and Computer Graphics[C],2011:306-312.
    [131]Wang J, Saito H, Kimura M, Mochimaru M, Kanade T. Shape reconstruction of human foot from multi-camera images based on PC A of human shape database[A]. Fifth International conference on 3D digital imaging and modeling[C],2005,424-431.
    [132]Xu X, Leng C, Wu Z. Rapid 3D human modeling and animation based on sketch and motion database[A]. Workshop on Digital Media and Digital Content Management[C],2011, 121-124.
    [133]Wang C, Dai S. Muscle pushing based skin deformation on GPU[A]. International Conference on Computer Design and Applications[C],2010,1:V1-585-V1-591.
    [134]Shi X, Ke Y. An automatic method of generating examples used in dynamic deformation of 3D personalized human body [A]. Intelligent Computing and Intelligent Systems (ICIS)[C], 2010,3:284-288.
    [135]Zou Y, Huang P, Gu L, Wu J, Yan Z, Lv S, Chen F, Song J, Zhou H, Duan Q. Deformation modeling using global medial representation structures and evaluation by biset mesh matching[A]. IEEE International Conference on Multimedia and Expo[C],2008:937-940.
    [136]Zhong Y, Liu H, Jinag J, Liu L.3D Human Body Morphing Based on Shape Interpolation[A]. Information Science and Engineering (ICISE)[C],2009:1027-1030.
    [137]Kakuta N, Yokoyama S, Nakamura M, Mabuchi K. Estimation of radiative heat transfer using a geometric human model[J]. IEEE Transactions on Biomedical Engineering,2001,48(3): 324-331.
    [138]Rickel J, Marsella S, Gratch J, Hill R, Traum D, Swartout W. Toward a new generation of virtual humans for interactive experiences[J]. IEEE on Intelligent Systems,2002,17(4): 32-38.
    [139]Paquet E, Viktor H L. Adjustment of Virtual Mannequins Through Anthropometric Measurements, Cluster Analysis, and Content-Based Retrieval of 3-D Body Scans[J]. IEEE Transactions on instrumentation and measurement,2007,56(5):1924-1929.
    [140]Lu J M, Wang M J. Automated anthropometric data collection using 3D whole body scanners[J]. Expert Systems with Applications,2008,35:407-414.
    [141]Zhao X, Liu Y. Generative tracking of 3D human motion by hierarchical annealed genetic algorithm[J]. Pattern Recognition,2008,41(8):2470-2483.
    [142]Torsello A, Hancock E R. Correcting Curvature-Density Effects in the Hamilton-Jacobi Skeleton[J]. IEEE Transactions on Image Processing,2006,15(4):877-891.
    [143]Reniers D, van Wijk J J, Telea A. Computing multiscale curve and surface skeletons of genus 0 shapes using a global importance measure[J]. IEEE Transactions on Visualization and Computer Graphics,2008,14(2):355-368.
    [144]He Y, Xiao X, Seah H S. Harmonic 1-form based skeleton extraction from examples[J]. Graphical Models,2009,71(2):49-62.
    [145]Cornea N, Silver D, Yuan X, Balasubramanian R. Computing hierarchical curve-skeletons of 3D objects[J]. The Visual Computer,2005,21(11):945-955.
    [146]Wang Y S, Lee T Y. Curve-skeleton extraction using iterative least squares optimization[J]. IEEE Transaction on Visualization and Computer Graphics,2008,14(4):926-936.
    [147]Xie W, Thompson R P, Perucchio R. A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton[J]. Pattern Recognition,2003,36(7):1529-1544.
    [148]Choi W P, Lam K M, Siu W C. Extraction of the Euclidean skeleton based on a connectivity criterion[J]. Pattern Recognition,2003,36(3):721-729.
    [149]Tai C L, Zhang H, Fong C K. Prototype modeling from sketched silhouettes based on convolution surfaces[J]. Computer Graphics Forum,2004,23(1):71-83.
    [150]Tagliasacchi A, Zhang H, Cohen-Or D. Curve skeleton extraction from incomplete point cloud[J]. ACM Transactions on Graphics,2009,28(3):71:1-9.
    [151]Yang C, Wang Z, Gao W, Chen Y. Skeleton building of individual virtual human model[J]. Journal of Computer-Aided Design & Computer Graphics,2004,16(1):67-78.
    [152]Li S S M, Wang C C L, Hui K C. Bending-Invariant correspondence matching on 3D human bodies for feature point extraction[J]. IEEE Transactions on Automation Science and Engineering,2011,1:1-10.
    [153]Yu Y, Wang Z, Xia S, Mao T. Pose-independent joint extraction from scanned human body[J]. Journal of Computer Research and Development,2008,45(7):1249-1258.
    [154]Mortara M, Patane G, Spagnuolo M. From geometric to semantic human body models[J]. Computers & Graphics,2006,30(2):185-196.
    [155]Leong I F, Fang J J, Tsai M J. Automatic body feature extraction from a marker-less scanned human body[J]. Computer-Aided Design,2007,39(7):568-582.
    [156]Werghi N. Segmentation and modeling of full human body shape from 3D scan data:A survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2007,37(6):1122-1136.
    [157]Reniers D, Telea A. Hierarchical part-type segmentation using voxel-based curve skeletons[J]. The Visual Computer,2008,24(6):383-395.
    [158]Tang Y M, Hui K C. The effect of tendons on foot skin deformation[J]. Computer-Aided Design,2007,39(7):583-597.
    [159]Cheng Y, Hu Y, Wang Y. Defect detection and characteristics description of auto hub radiographic image based on SUSAN operation[J]. WSEAS Transactions on Mathematics, 2009,8(7):289-298.
    [160]Shrivastava Y, Dasgupta S, Reddy S M. Guaranteed convergence in a class of Hopfield networks[J]. IEEE Transacitons on Neural Networks,1992,3:951-961.
    [161]Galan G, Merida E, Munoz J. Modeling competitive Hopfield networks for the maximum clique problem[J]. Computers & Operations Research,2003,30(4):603-624.
    [162]Parari A E C, Esperanca C, Oliveira A A F. Shape-sensitive MLS deformation[J]. The Visual Computer,2009,25(10):911-922.
    [163]Achour K, Mahiddine L. Hopfield neural network based stereo matching algorithm[J]. Journal of Mathematical Imaging and Vision,2002,16(1):17-29.
    [164]Krosshaug T, Bahr R. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences[J]. Journal of biomechanics,2005,38:919-929.
    [165]Chen C, Yang Y, Nie F, Odobez J M.3D human pose recovery from image by efficient visual feature selection[J]. Computer Vision and Image Understanding,2011,115(3):290-299.
    [166]Lao W, Han J, de With P H N. Automatic Video-Based Human Motion Analyzer for Consumer Surveillance System[J]. IEEE Transactions on Consumer Electronics,2009,55(2):591-598.
    [167]Theobalt C, Carranza J, Magnor M A, Seidel H P. Combining 3D flow fields with silhouette-based human motion capture for immersive video[J]. Graphical Models,2004,66: 333-351.
    [168]Sigal L, Balan A O, Black M J. HumanEva:Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion[J]. International Journal of Computer Vision,2010,87(1-2):4-27.
    [169]Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic bayesian networks[J]. Computer Vision and Image Understanding,2003,92:196-216.
    [170]Green R D, Guan L. Quantifying and recognizing human movement patterns from monocular video images-part I:a new framework for modeling human motion[J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(2):179-190.
    [171]Babu R V, Ramakrishnan K R. Recognition of human actions using motion history information extracted from the compressed video[J]. Image and Vision Computing,2004,22:597-607.
    [172]Yang H D, Lee S W. Reconstruction of 3D human body pose from stereo image sequences based on top-down learning[J]. Pattern Recognition,2007,40:3120-3131.
    [173]Cerveri P, Pedotti A, Ferrigno G. Robust recovery of human motion from video using Kalman filters and virtual humans[J]. Human Movement Science,2003,22:377-404.
    [174]Marti-Puig P, Rodriguez S, De Paz J F, Reig-Bolano R, Rubio M P, Bajo J. Stereo video surveillance multi-agent system:new solutions for human motion analysis[J]. Journal of Mathematical Imaging and Vision,2011,42(2-3):176-195.
    [175]Tresadern P A, Reid I D. Video synchronization from human motion using rank constraints[J]. Computer Vision and Image Understanding,2009,113:891-906.
    [176]Wei X, Chai J. VideoMocap:Modeling physically realistic human motion from monocular video sequences[J]. ACM Transactions on Graphics,2010,29(4), Article 42:1-10.
    [177]Toyama K, Blake A. Probabilistic tracking with exemplars in a metric space[J]. International Journal of Computer Vision,2002,48(1):9-19.
    [178]Taylor C J. Reconstruction of articulated objects from point correspondences in a single uncalibrated image[J]. Computer Vision and Image Understanding,2000,80:349-363.
    [179]Zhao J, Li L, Keong K C.3D posture reconstruction and human animation from 2D feature points[J]. Computer Graphics Forum,2005,24(4):759-771.
    [180]Barron C, Kakadiaris I A. On the improvement of anthropometry and pose estimation from a single uncalibrated image[J]. Machine Vision and Applications,2003,14:229-236.
    [181]Zou B, Chen S, Shi C, Providence U M. Automatic reconstruction of 3D human motion pose from uncalibrated monocular video sequences based on markerless human motion tracking[J]. Pattern Recognition,2009,42(7):1559-1571.
    [182]Badler N I, Phillips C B, Webber B L. Simulating Humans:Computer Graphics Animation and Control [M]. Oxford University Press, New York,1993.
    [183]Li H, Hestenes D, Rockwood A. Generalized Homogeneous Coordinates for Computational Geometry[A]. In:Geo2metric Computing with Clifford Algebras[C], Berlin Heidelberg: Springer,2001.1:27-60.
    [184]Hildenbrand D, Fontijne D, Perwass C, Dorst L. Geometric algebra and its application to computer graphics[A]. Tutorial notes of the Eurographics conference 2004 in Grenoble[C].
    [185]Hu L, Hao K, Huang X, Ding Y. Individual three-dimensional human model animation based on conformal geometric algebra[A]. KESE 2010[C].
    [186]李洪波.共形几何代数与运动和形状的刻画[J].计算机辅助设计与图形学学报,2006,18(7):24-27.
    [187]邢燕.四元数及其在图形图像处理中的应用研究[D].合肥工业大学博士学位论文.合肥工业大学,合肥:2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700