沙蚕毒素类杀虫剂对斑马鱼的发育和生殖毒性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙蚕毒素类杀虫剂是应用最为广泛的一类杀虫剂之一。本论文以斑马鱼为模式生物,系统研究了沙蚕毒素类杀虫剂对成鱼的急性毒性以及对胚胎的发育毒性和致畸效应。试验结果表明:98%杀螟丹原药、18%杀虫双水剂、90%杀虫胺原药、83.7%杀虫环原药和沙蚕毒素对成鱼的96小时急性毒性LCso分别为0.280、28.8、36.7、0.172和0.444mg/L。98%杀螟丹原药、95.5%杀虫双纯品、18%杀虫双水剂、99%杀虫单纯品、90%杀虫胺原药、83.7%杀虫环原药和沙蚕毒素染毒都能抑制胚胎孵化,并且产生脊索弯曲、胚胎白化等相同表型,并且随着浓度的增加,各个部位异常症状出现的先后顺序具有很强的相似性。同时这几种杀虫剂都能抑制鱼鳔的正常充气膨大。对胚胎96小时致死中浓度分别为0.459、>128、12.5、>128、19.4、0.0879和0.119mg/L。对胚胎脊索形成抑制中浓度分别为0.0300、63.0、0.532、>128、0.578、0.00244和0.0127mg/L。脊索弯曲基本上是评价沙蚕毒素系列杀虫剂的最敏感指标,部分最低作用浓度甚至达到ppb级甚至更低,抑制中浓度相比于成鱼急性毒性致死中浓度普遍低两个数量级左右。因此根据成鱼急性毒性试验得到的结果是沙蚕毒素系列杀虫剂(包括沙蚕毒素)对鱼类普遍低毒,而据胚胎试验表明这类农药对鱼类普遍高毒.
     由于沙蚕毒素类农药本身分子结构的相似性和该类农药对斑马鱼胚胎造成相同的表型,作者认为该类农药具有相同的作用方式。故选用了杀螟丹作为典型进一步研究了其作用机制。脊索弯曲的试验结果表明,胚胎自发运动在脊索弯曲形成过程中起着重要作用,并且脊索弯曲部位和敏感性与染毒阶段相关。0.0250mg/L及以上浓度的杀螟丹抑制赖氨酰氧化酶活性,并呈剂量-效应关系。而0.100mg/L及以上浓度染毒上调了该基因的表达水平。由于本研究中脊索弯曲表型与文献中赖氨酰氧化酶基因沉默后表型相似,因此推测赖氨酰氧化酶是本论文中导致脊索弯曲的靶标。胚胎白化试验结果表明,0.0500mg/L及以上浓度的杀螟丹染毒抑制酪氨酸酶活性,并呈浓度-效应关系,并且在相同浓度下染毒,该基因表达水平上调。基于酪氨酸酶在黑色素形成过程中的关键作用,作者认为酪氨酸酶是本论文中导致胚胎白化的靶标。胚胎孵化试验结果表明,杀螟丹对胚胎孵化腺形成和孵化酶的活性无影响,而影响卵膜的消解,同时在胚胎孵化前去除杀螟丹可有效提高胚胎孵化率,因此作者认为本论文中胚胎孵化受阻是因为孵化酶的释放受抑制所导致。
     通过测定杀螟丹对斑马鱼一些重要器官形态发生的影响,结果表明,0.100mg/L及以上浓度的杀螟丹染毒影响斑马鱼胚胎中枢神经神经元的分化增殖,造成胚胎体节间血管变细并且排列混乱。0.0500mg/L及以上浓度杀螟丹处理抑制胚胎颅面软骨形成,造成部分软骨组成变得短小,并且影响胚胎肝脏和肠道的形态发生。
     本研究还测定了杀螟丹和沙蚕毒素对斑马鱼生殖的影响。试验结果表明,0.0150mg/L及以上浓度的杀螟丹和沙蚕毒素染毒轻微提高了雄鱼性腺指数,而0.0250mg/L及以上浓度的杀螟丹染毒降低了雄鱼精子活力三成以上,并且0.0150mg/L及以上浓度的杀螟丹降低亲鱼的繁殖力,对亲鱼交配次数和总产卵量都有明显影响。
Nereistoxins are one of the widely used insecticidal classes. This thesis took the advantages of zebrafish model to investigate the developmental toxicity and its mechanisms of nereistoxins. The results of adult fish acute toxicity test showed that LC50 values of 98% Cartap Technical,18% Bisultap AS,90% Profurite-aminium Technical,83.7% Thiocyclam Technical and Nereistoxin were 0.280,28.8,36.7,0.172 and 0.444mg/L respectively. With exception of 99% Monosultap Standardal, embryos exposed to 98% Cartap Technical,95.5% Bisultap Technical,18% Bisultap AS,90% Profurite-aminium Technical,83.7% Thiocyclam Technical or Nereistoxin all exhibited similar defect phenotypes including wavy notochord, less melanin pigmentation, hatching failure and inflation failure of swimming bladder, and almost all of these abnormalities displayed a dose-dependent manner. Among these abnormalities, notochord was the most sensitive endpoint. The EC50 values for notochord defect were 0.0300,63.0,0.532,0.578,0.00244 and 0.0127mg/L respectively, comparing with the 96h LC50 values of embryo test which were 0.459, >128,12.5,19.4,0.0879 and 0.119mg/L respectively. These results indicated that most insecticides of nereistoxins were highly toxic to fish rather than lowly toxic as the adult fish acute toxicity test suggested.
     As these nereistoxins were with similar chemical structures, and for above defects, they also shared with the similar hierarchies of concentration thresholds, suggesting that they assaulted the same targets which resulted in the same defect phenotypes. Thus, the cartap was adopted as a typical drug to investigate the underlying mechanisms. The results showed that the wavy location of notochord was close related to the exposure period and the spontaneous movement of embryo was essential in the formation of notochord waviness. Cartap of 0.0250mg/L and above inhibited the activity of lysyl oxidase in a dose-dependent manner, whereas emryos exposed to concentrations of 0.100mg/L and above displayed an upregulated expression of lysyl oxidase gene. Considering on the notochord defect here being a phenocopy of morpholino knockdown of lysyl oxidase gene in the studies of some other researchers, nereistoxins were supposed to affect notochord morphogenesis via targeting this enzyme. The results also showed that embryos exposed to cartap at concentrations of 0.0500mg/L and above lost tyrosinase activity in a dose-dependent manner, whereas the expression of tyrosinase gene was upregulated. Given the essential role of tyrosinase in melanin pigmentation, the tyrosinase was supposed to be targeted by nereitoxins which resulted in less melanin pigmentation of embryos. For embyos of hatching failure, no digestion of chorion was observed during the whole exposure period, whileas, microscopic observation indicated that the formation of hatching gland seemed not to be affected and getting rid of cartap at pre-hatching stage could significantly rescue hatching failure. Besides, in vitro test indicated no effect of cartap on the activity of hatching enzyme, suggesting that nereitoxins arrested embryos from hatching via blocking the secretion of hatching enzyme.
     The effects of cartap on the morphogenesis of some organs were also examined. The results showed that cartap at concentrations of 0.100mg/L and above significantly reduced the proliferation of neurons in middle neural system and caused abnormal arrangement and thinning of intersegmental blood vessels. Moreover, the resulted also indicated that cartap at concentrations of 0.0500mg/L and above shortened some components of facial cartilage and inhibited the morphogenesis of liver and intestine.
     In this thesis, the author also investigated the effects of cartap and nereistoxin on the sperm quality of male fish and the effects of cartap on reproductivity. The results indicated that 0.0150 mg/L and above concentrations of both drug could slightly increase the GSI while, cartap of 0.0250 mg/L and obove could obviously reduced sperm activity by more than thirty percents. Moreover, parent fish exposed to cartap of 0.0150 mg/L and above became relative infertility by more than fourty percents.
引文
1.王运浩,第八届农药发展年会.2006.江西南昌.
    2. Miller, G. T., Sustaining the Earth.6th ed. Chapter 9.2004, Pacific Grove, California:Thompson Learning, Inc.
    3. Kellogg, R. L., Nehring R., Grube A., Goss D. W., and Plotkin S. Environmental Indicators of Pesticide Leaching and Runoff from Farm Fields. in Agricultural Productivity:Data, Methods, and Measures.2000. Washington DC.
    4. Geological Survey U.S., The quality of our nation's waters, nutrients and pesticides. 1999.
    5. Donald, D. B., Cessna A. J., Sverko E., and Glozier N. E., Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains. Environ. Health Perspect.,2007.115:p.1183-1191.
    6.Bingham, S., Pesticides in rivers and groundwater, USA Environment Agency, Editor.2007.
    7. Feng, K., Yu B. Y., Gea D. M., Wong M. H., Wang X. C., and Cao Z. H., Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system:I. Field survey of DDT and HCH residues in ecosystem of the region Chemosphere,2003.50:p.683-687.
    8.吕景才,赵元凤,张启华,齐红莉,徐恒振,周传光,李洪,大连湾海域有机氯农药污染状况及测定方法研究.中国水产学会学术年会中国水产学会学术年会论文集,2002:p.320-327.
    9.万译文,康天放,周忠亮,雁张。,北京官厅水库有机氯农药分布特征及健康风险评价.农业环境科学学报,2009.28:p.803-807.
    10.孙剑辉,王国良,张干,李军,柴艳,王景芝,段廷佩,黄河中下游表层沉积物中有机氯农药含量及分布.环境科学,2007.28:p.1332-1338.
    11.王凌,黎先春,殷月芬,徐晓琴,周文辉,王小如,菜州湾水体中有机磷农药的残留监测与风险影响评价.安全与环境学报,2007.7:p.83-85.
    12.李永玉,洪华生,王新红,洪丽玉,叶翠杏,厦门海域有机磷农药污染现状与来源分析.环境科学学报,2005.25:p.1071-1077.
    13. Zhang, Z., Dai M., Hong H., Zhou J. L., and Yu G., Dissolved insecticides and polychlorinated biphenyls in the Pearl River Estuary and South China Sea J. Environ. Monit.,2002.4:p.922-928.
    14.程燕,周军英,单正军,美国农药水生生态风险评价研究进展.农药学学报,2005.7:p.293-298.
    15. Sparling, D. W., Fellers G. M., and McConnell L. L., Pesticides and amphibian population declines in California, USA. Environ. Toxicol. Chem.,2001.20:p. 1591-1595.
    16. Guillette, L. J., Jr, Gross T. S., Masson G R., Matter J. M., Percival H. F., and Woodward A. R., Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in FloridaL J Guillette, Jr, T S Gross, G R Masson, J M Matter, H F Percival, and A R Woodward. Environ. Health Perspect.,1994.102:p. 680-688.
    17. Ewing, R. D., Diminishing returns:Salmon decline and pesticides.1999, Eugene, OR:Oregon Pesticide Education. Network.
    18.石志猛,鱼类多样性丧失和保护的经济分析.淡水渔业,2005.增刊:p.76-78.
    19.费梁,叶昌媛,黄永昭,中国两栖动物检索及图解.2004,四川科学技术出版社:成都.
    20. Kegley, S., Neumeister L., and Martin T., Ecological Impacts of Pesticides in California Pesticide Action Network, California, USA,1999:p.99.
    21. Scott, G. R. and Sloman K. A., The effects of environmental pollutants on complex fish behaviour:integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol.,2004.68:p.369-392
    22. Wells, D. E. and Cowan A. A., Vertebral dysplasia in salmonids caused by the herbicide trifluralin. Envir. Pollut.,1982.29:p.249-260.
    23. Bridges, C. M., Effects of a pesticide on tadpole activity and predator avoidance behavior. J. Herpetol.,1999.33:p.303-306.
    24. Saglio, P. and Trijasse S., Behavioral responses to atrazine and diuron in goldfish Arch. Environ. Contam. Toxicol.,1998.35:p.484-491.
    25. Dodson, J. J. and Mayfield C. I., The dynamics of and behavioral toxicology of Aqua-Kleen (2,4-D butoxyethanol ester) as revealed by the modification of rheotropism in rainbow trout Trans Am Fis. Soc.,1979.108:p.632-640.
    26. Moore, A. and Waring C. P., Sublethal effects of the pesticide Diazinon on olfactory function in mature male Atlantic salmon parr. J. Fish Bio.,1996.48: p.758-775.
    27. Pesticide-Action-Network-North-America, Pesticides threaten birds and fish in California PANUPS,1999.
    28. Kettle, W. D., deNoyelles J. r. F., Heacock B. D., and Kadoum A. M., Diet and reproductive success of bluegill recovered from experimental ponds treated with atrazine. Bull. Environ. Contam. Toxicol.,1987.38:p.47-52.
    29. Helfrich, L. A., Weigmann D. L., Hipkins P., and Stinson E. R., Pesticides and aquatic animals:a guide to reducing impacts on aquatic systems. Virginia Cooperative Extension,1996.
    30.黄宁,陈学群,浅谈鱼类免疫系统.福建畜牧兽医,2005.27:p.20-22.
    31. Johnson, P. T. J., Lunde K. B., Thurman E. M., Ritchie E. G., Wray S. N., Sutherland D. R., Kapfer J. M., Frest T. J., Bowerman J., and Blaustein A. R., Parasite (Ribeiroia ondatrae) Infection Linked to Amphibian Malformations in the Western United States Ecol. Monogr.,2002.72:p.151-168
    32. Kiesecker, J. M., Synergism between trematode infection and pesticide exposure: A link to amphibian limb deformities in nature? PNAS USA,2002.99:p. 9900-9904.
    33. Zelikoff, J. T., Li Y., Carlson E., and Raymond A., The immune response of fish:a sensitive indicator of permethrin toxicity. Soc. Environ. Toxicol. Chem.,1998. 19:p.249-255.
    34. Gendy, K. S., Aly N. M., and Sebae A. H., Effects of edifenphos and glyphosate on the immune response and protein biosynthesis of bolti fish (Tilapia nilotica). J. Environ. Sci. Health B.,1998.33:p.135-149.
    35. Galloway, T. and Handy R., Immunotoxicity of organophosphorous pesticides Ecotoxicology,2004.12:p.345-363.
    36. Lyons, G., Pesticides posing hazards to reproduction, WWF, Editor.1999: Godalming, UK.
    37. Hayes, T., Haston K., Tsui M., Hoang A., Haeffele C., and Vonk A., Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens):laboratory and field evidence. Environ. Health Perspect 2003. 111:p. 568-575.
    38. Singh, P. B., Kime D. E., and Chyb P. E. J., Impact of y-hexachlorocyclohexane exposure on plasma gonadotropin levels and in vitro stimulation of gonadal steroid production by carp hypophyseal homogenate in Carassius auratus. J. Fish Biol.,1994.44:p.195-204.
    39. Matthews, J., Celius T., Halgren R., and Zacharewski T., Differential estrogen receptor binding of estrogenic substances:a species comparison. J. Steroid Biochem. Mol. Biol.,2000.74:p.223-234.
    40.盂紫强,生态毒理学原理与方法.2000,科学出版社:北京.1-7.
    41. Nagel, R., DarT:The embryo test with the zebrafish danio rerio--a general model in ecotoxicology and toxicology. ALTEX,2002.19:p.38-48.
    42. Peakall, D. B., The role of biomarkers in environmental assessment (1). Introduction Ecotoxicology 1994.3:p.157-160.
    43. Anon, Biomarkers in risk assessment:validity and validation. WHO Task group on environmental health criteria for biomarkers in risk assessment.2001, WHO:Geneva.
    44.李少南,樊德方,生化参数与淡水鱼马拉硫磷敏感性的关系生化参数与淡水鱼马拉硫磷敏感性的关系.毒理学与环境健康杂志[英],1996.48:p.413-419.
    45. Fulton, M. H. and Key P. B., Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effect Environ. Toxicol. Chem.,2001.20:p.37-45.
    46. Tortellia, V., Colares E. P., Robaldo R. B., Nery L. E. M., Pinho G. L. L.
    Bianchini A., and Monserrat J. M., Importance of cholinesterase kinetic parameters in environmental monitoring using estuarine fish Chemosphere, 2006.65:p.560-566.
    47. Torre, F. R. D. L., Ferrari D., and Salibian A., Freshwater pollution biomarker: response of brain acetylcholinesterase activity in two fish species. Comp. Biochem. Phys,2002.131:p.271-280.
    48. Curtis, L. R., Carpenter H. M., Donohoe R. M., Williams D. E., Hedstrom O. R., Deinzer M. L., Beilstein M. A., Foster E., and Gates R., Sensitivity of cytochrome P450-1A1 induction in fish as a biomarker for distribution of TCDD and TCDF in the Willamette River, Oregon. Environ. Sci. Technol., 1993.27:p.2149-2157.
    49. Egaas, E., Sandvik M., Fjeld E., Kallqvist T., Goks(?)yr A., and Svensen A., Some effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta). Comp. Biochem. Physiol. C,1999. 122:p.337-344.
    50. Snyder, M. J., Cytochrome P450 enzymes in aquatic invertebrates:recent advances and future directions Aquat. Toxicol.,2000.48:p.529-547.
    51. Agrahari, S. and Gopal K., Inhibition of Na+-K+-ATPase in different tissues of freshwater fish Channa punctatus (Bloch) exposed to monocrotophos. Pestic. Biochem. Phys.,2008.92:p.57-60.
    52. Monteiro, D. A., Almeida J. A. d., Rantin F. T., and Kalinin A. L., Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). comp. Biochem. Phys. C,2006.143:p.141-149.
    53. Banerjee, B. D., Seth V., Bhattacharya A., Pasha S. T., and Chakraborty A. K., Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett.,1999.107:p.33-47.
    54. Mohammad, A., Ranjbar A., Shahin S., Nikfar S., and Rezaie A., Pesticides and oxidative stress:a review. Med. Sci. Monit.,2004.10:p.141-147.
    55. Sayeed, I., Parvez S., Pandey S., Bin-Hafeez B., Haque R., and Raisuddin S., Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol. Environ. Saf.,2003.56:p.295-301.
    56. Soumis, N., Lucotte M., Sampaio D., Almeida D. C., Giroux D., Morais S., and Pichet P., Presence of organophosphate insecticides in fish of the Amazon river. Acta Amazon,2003.33:p.325-338.
    57. Lee, R. F. and Steinert S., Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals Mutat. Res-Rev. Mutat.,2003.544:p.43-64.
    58. (?)ava, T. and Konen S., Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis, 2007.22:p.263-268.
    59. Whitehead, A., Kuivila K. M., Orlando J. L., Kotelevtsev S., and Anderson S. L., Genotoxicity in native fish associated with agricultural runoff events. Environ. Toxicol. Chem.,2004.23:p.2868-2877.
    60. van der Oost, R., Beyer J., and Vermeulen N. P. E., Fish bioaccumulation and biomarkers in environmental risk assessment:a review Environ. Toxicol. Pharmacol.,2003.13:p.57-149.
    61. Hamers, T., van-den-Brink P. J., Mos L., van der Linden S. C., Legler J., Koeman J. H., and Murk A. J., Estrogenic and esterase-inhibiting potency in rainwater in relation to pesticide concentrations, sampling season and location. Environ. Pollut.,2003.123:p.47-65.
    62. Singh, P. B. and Singh V., Pesticide bioaccumulation and plasma sex steroids in fishes during breeding phase from north India. Environ. Toxicol. Pharm.,2008. 25:p.342-350.
    63. Singh, P. B., Singh V., and Nayak P. K., Pesticide residues and reproductive dysfunction in different vertebrates from north India Food Chem. Toxicol., 2008.46:p.2533-2539.
    64. Pant, N., Mathur N., Banerjee A. K., Srivastava S. P., and Saxen D. K., Correlation of chlorinated pesticides concentration in semen with seminal
    vesicle and prostatic markers. Reprod. Toxicol.,2004.19 p.209-214.
    65. Toft, G. and Guillette L. J. J., Decreased sperm count and sexual behavior in mosquitofish exposed to water from a pesticide-contaminated lake. Ecotox. Environ. Safe.,2004.60:p.15-20.
    66. Adhikari, S., Biplab S., Amita C., Chattopadhyay D. N., Sarkar S. K., and Ayyappan S., Carbofuran induced changes in breeding of a freshwater fish, Labeo rohita (Hamilton) Toxicol. Environ. Chem.,2008.90:p.457-465.
    67. Matthiesssen, P. and Logazn J. W. M., The effects of low concentrations of endosulfan insecticide on reproductive behaviour in the tropical cichlid fish Sarothemdon mossambicus. Bull. Environ. Contam. Toxicol.,1984.33:p. 575-583.
    68. Cook, L. W., C. J. Paradise, and Lom B., The pesticide malathion reduces survival and growth. Environ. Toxicol. Chem.,2005.24:p.1745-1750.
    69. Herrmann, K., Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish(Brachydanio rerio) as assessed by a novel scoring system.. Toxic. in Vitro,1995.9:p.267-283.
    70. Samson, J. C. and Shenker J., The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquat. Toxicol.,2000.48:p. 343-354.
    71. Levin, E. D., Swain H. A., Donerly S., and Linney E., Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol. Teratol., 2004.26:p.719-723.
    72. Steinberg, C. E. W., Lorenz R., and Spieser O. H., Effects of atrazine on swimming behavior of zebrafish, Brachdanio Rerio. Wat. Res.,1995.29:p. 981-985.
    73. Peden-Adams, M. M., Eudaly J. G., Heesemann L. M., Smythe J., Miller J., Gilkeson G. S., and Keil D. E., Developmental immunotoxicity of trichloroethylene (TCE):studies in B6C3F1 mice. J. Environ. Sci. Health, 2006.41 p.249-271.
    74. Rowe, A. M., Brundage K. M., and Barnett J. B., Developmental immunotoxicity of atrazine in rodents. Basic Clin. Pharmacol. Toxicol.,2008.102:p.139-145.
    75. Ankley, G. T., Degitz S. J., Diamond S. A., and Tietge J. E., Assessment of environmental stressors potentially responsible for malformations in North American anuran amphibians. Ecotoxicol. Environ. Saf.,2004.58:p.7-16.
    76.秦晓飞,秦占芬,徐晓白,前哨动物在环境污染物人体健康风险评价中的应用.生态毒理学报,2007.2:p.476-480.
    77. Tyl, R. W., Developmental toxicology, in General and Applied Toxicology, B. Ballantyne and T.M. Syversen, Editors.2000, Grove's Dictionaries Inc.:New York.
    78. Papis, E., Bernardini G., Gornati R., and Prati M., Triadimefon causes branchial arch malformations in Xenopus laevis embryos. Environ Sci Pollut Res Int., 2006.13:p.251-255.
    79. Metcalfe, T. L., Dillon P. J., and Metcalfe C. D., Effects of formulations of the fungicide, pentachloronitrobenzene on early life stage development of the Japanese medaka (Oryzias latipes) Chemosphere,2008.71:p.1957-1962.
    80. Bacchetta, R., Mantecca P., Andrioletti M., Vismara C., and Vailati G., Axial-skeletal defects caused by Carbaryl in Xenopus laevis embryos. Sci. Total Environ.,2008.392:p.110-118
    81. Arellano-Aguilar, O. and Garcia C. M., Effects of methyl parathion exposure on development and reproduction in the viviparous fish Girardinichthys multiradiatus. Enviro. Toxicol.,2008.24:p.178-186.
    82. Klump, D. W., Humphrey C., Huasheng H., and Tao F., Toxic contaminants and their biological effects in coastal waters of Xiamen, China.:Ⅱ. Biomarkers and embryo malformation rates as indicators of pollution stress in fish Mar. Pollut. Bull.,2002.44 p.761-769
    83. Wilson, J. G., ed. Environment and birth defects.1973, Academic Press Inc:New York.
    84. Baligar, P. N. and Kaliwal. B. B., Reproductive toxicity of carbofuran to the female mice:effects on estrous cycle and follicles. Ind. Health.,2002.40:p. 345-352.
    85. Kinnberg, K., Holbech H., Petersen G. I., and Bjerregaard. P., Effects of the fungicide prochloraz on the sexual development of zebrafish(Danio rerio). Comp. Biochem. Physiol.,2007.145:p.165-170.
    86. Johnsona, L., Staub C., Silage R. L., Harris M. W., and Chapin R. E., The pesticide methoxychlor given orally during the perinatal/juvenile period, reduced the spermatogenic potential of males as adults by reducing their Sertoli cell number. Reprod. Nutr. Dev.,2002.42:p.573-580.
    87. Maack, G. and Segner H., Morphological development of the gonads in zebrafish. J. Fish Biol.,2003.62:p.895-906.
    88. Grunwald, D. J. and Eisen J. S., Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat. Rev. Genet.,2002.3:p.717-724.
    89. Chen, J. N. and Fishman M. C., Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development,1996.122:p. 3809-3816.
    90. Langheinrich, U., Zebrafish:a new model on the pharmaceutical catwalk Bio. Essays,2003.25:p.904-912.
    91. Dooley, K. and Zon L. I., Zebrafish:a model system for the study of human disease. Curr. Opin. Genet. Dev.,2000.10:p.252-256.
    92. Haffter, P., Odenthal J., Mullins M. C., Lin S., M. F. J., Vogelsang E., Haas F., Brand M., F. J. M. vanEeden, Furutani-Seiki M., Granato M., Hammerschmidt M., Heisenberg C. P., Jiang Y. J., Kane D. A., Kelsh R. N., Hopkins N., and Niisslein-Volhard C., Mutations affecting pigmentation and shape of the adult zebrafish. Dev. Genes Evol.,1996.206:p.260-276.
    93. van Eeden, F. J. M., Granato M., Schach U., Brand M., Furutani-Seiki M., Haffter P., Hammerschmidt M., Heisenberg C. P., Jiang Y. J., Kane D. A., Kelsh R. N., Mullins M. C., Odenthal J., Warga R. M., Allende M. L., Weinberg E. S., and Nusslein-Volhard C., Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development,1996.123:p.153-164.
    94. Lele, Z. and Krone P. H., The zebrafish as a model system in developmental toxicological and transgenic research. Biotech. Adv.,1996.14:p.57-72.
    95. Carvan, M. J., Dalton T. P., Stuart G. W., and Nebert D. W., Transgenic zebrafish as sentinels for aquatic pollution. Ann. NY. Acad. Sci.,2000.919:p.133-147.
    96. Chow, E. S. H., Hui M. N. Y., Lin C. C., and Cheng S. H., Cadmium inhibits neurogenesis in zebrafish embryonic brain development Aquat. Toxicol.,2008. 87:p.157-169.
    97. Tsay, H.-J., Wang Y H., Chen W. L., Huang M. Y., and Chen Y H., Treatment with sodium benzoate leads to malformation of zebrafish larvae. Neurotoxicol. Teratol.,2007.29:p.562-569
    98. Dong, W., Teraoka H., Kondo S., and Hiraga T.,2,3,7, 8-tetrachlorodibenzo-p-dioxin induces apoptosis in the dorsal midbrain of zebrafish embryos by activation of arylhydrocarbon receptor. Neurosci. Lett., 2001.303:p.169-172.
    99. Parng, C., Ton C., Lin Y X., Roy N. M., and McGrath P., A zebrafish assay for identifying neuroprotectants in vivo. Neurotoxicol. Teratol.,2006.28:p.509-516.
    100. Raldua, D. and Babin P. J., BLT-1, a specific inhibitor of the HDL receptor SR-BI, induces a copper-dependent phenotype during zebrafish development Toxicol. Lett.,2007.175:p.1-7
    101. Anichtchik, O. V., Kaslin J., Peitsaro N., Scheinin M., and Panula P., Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem,2004.88:p. 443-453.
    102. Baraban, S. C., Taylor M. R., Castro P. A., and Baier H., Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience,2005.131:p.759-768.
    103. Levin, E. D., Chrysanthis E., Yacisin K., and Linney E., Chlorpyrifos exposure of developing zebrafish:effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol. Teratol.,2003.25:p.51-57.
    104. Gerlai, R., Lee V., and Blaser R., Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol. Biochem. Be., 2006.85 p.752-761.
    105. Lema, S. C., Schultz I. R., Scholz N. L., Incardona J. P., and Swanson P., Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) Aquat. Toxicol.,2007.82:p. 296-307.
    106. Incardona, J. P., Collier T. K., and Scholz N. L., Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharm.,2004.196:p.191-205.
    107. Lin, C. C., Hui M. N. Y., and Cheng S. H., Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol. Appl. Pharm.,2007.222:p.159-168.
    108. Holbech, H., Kinnberg K., Petersen G. I., Jackson P., Hylland K., Norrgren L. and Bjerregaard P., Detection of endocrine disrupters:evaluation of a fish sexual development test (FSDT) Comp. Biochem. Physiol. C 2006.144 p. 57-66.
    109. Carlssona, G., Orn S., Andersson P. L., Soderstrom H., and Norrgren L., The impact of musk ketone on reproduction in zebrafish (Danio rerio). Mar. Environ. Res.,2000.50:p.237-241.
    110. Roex, E. W. M., Giovannangelo M., and vanGestel C. A. M., Reproductive Impairment in the Zebrafish, Danio rerio, upon Chronic Exposure to 1,2,3-Trichlorobenzene Ecotoxicol. Environ. Safe.,2001.48:p.196-201.
    111. Nakari, T. and Erkomaa K., Effects of phytosterols on zebrafish reproduction in multigeneration test Environ. Pollut.,2003.123:p.267-273
    112. Ree, G. E. F.-V. and Payne J. F., Effect of toxaphene on reproduction of fish Chemosphere,1997.34:p.855-867.
    113. Heiden, T. K., Hutz R. J., and Carvan M. J., Accumulation, tissue distribution, and maternal transfer of dietary 2,3,7,8,-tetrachlorodibenzo-p-dioxin:impacts on reproductive success of zebrafish Toxicol. Sci.,2005.87:p.497-507.
    114. Belta, K. V. d., Verheyen R., and Witters H., Effects of 17a-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio):effects on growth, gonads and female reproductive success Sci. Total Environ.,2003.309:p.127-137.
    115. Andersen, L., Goto-Kazeto R., Trant J. M., Nash J. P., Korsgaard B., and Bjerregaard P., Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio) Aquat. Toxicol.,2006.76:p.343-352
    116. McAllister, B. G. and Kime D. E., Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat. Toxicol.,2003.65:p. 309-316.
    117. Liu, C., Yu L., Deng J., Lam P. K. S., Wu R. S. S., and Zhou B., Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic-pituitary-gonadal (HPG) axis of zebrafish. Aquat. Toxicol.,2009.93:p.131-137.
    118. Njiwa, J. R. K. and Paul Muller a. R. K., Binary mixture of DDT and Arochlor1254:effects on sperm release by Danio rerio. Ecotox. Environ. Safe., 2004.58:p.211-219.
    119. Christianson-Heiska, I.-L., Haavisto T., Paranko J., Bergelin E., and Isomaa B., Effects of the wood extractives dehydroabietic acid and betulinol on reproductive physiology of zebrafish (Danio rerio)-A two-generation study. Aquat. Toxicol.,2008.86 p.388-396.
    120. Christianson-Heiska, I., Smeds P., Granholm N., Bergelin E., and Isomaa B., Endocrine modulating actions of a phytosterol mixture and its oxidation products in zebrafish (Danio rerio). Comp. Biochem. Physiol. C,2007.145:p. 518-527.
    121. Legler, J., Broekhof J. L. M., Brouwer A., Lanser P. H., Murk A. J., Saag P. T. v. d., Vethaak A. D., Wester P., Zivkovic D., and Burg B. v. d., A novel in vivo bioassay for (xeno)estrogens using transgenic zebrafish. Environ. Sci. Technol.,2000.34:p.4439-4444.
    122. Nagata, K., Iwanaga Y., Shono T., and Narahashi T., Modulation of the neuronal
    nicotinic acetylcholine receptor channel by imidacloprid and cartap. Pestic. Biochem. Physiol.,1997.59:p.119-128.
    123. Ray, D. E., ed. Insecticides derived from plants and other organisms. In:Hand Book of Insecticide Toxicology, Class of Insectides., ed. W.J.Hayes and E.R.Laws.1991, Accademic Press:New York.
    124. Queiroz, M. L. S., Fernandes M. D., and Valadares M. C., Neutrophil function in workers exposed to organophosphate and carbamate insecticides. Int. J. Immunopharmacol.,1999.21:p.263-270.
    125. Liao, J. W., Pang V. F., Jeng C. R., Chang S. K., Hwang J. S., and Wang S. C., Susceptibility to cartap-induced lethal effect and diaphragmatic injury via ocular exposure in rabbits. Toxicology,2003.192 p.139-148.
    126.武红叶,曾明,关岚,陈东方,廖春华,钟才高,杀螟丹对小鼠精子的毒性作用.毒理学杂志,2006.10:p.110-112.
    127.陈叙龙,张毓琪,周爱莲,张文成,杀虫双对鲤鱼的亚急性毒性研究.环境科学学报,1994.14:p.255-259.
    128.张晶,徐以平,石年,朱克京,杀虫丁对小鼠免疫功能的影响.卫生毒理学杂志,2002.16:p.111-113.
    129.朱延韦,蒋宪瑶,张爱华,蒙顺松,龙曼海,谢亚雄,多噻烷慢性毒性/致癌与致畸性研究.卫生毒理学杂志,1994.1:p.39-41.
    130.蒋宪瑶,龙曼海,张爱华,吴应宽,罗鹏,邱燕,多噻烷的迟发神经毒性研究.贵阳医学院学报,2004.29:p.510-511.
    131.沈根祥,黄沈发,陆贻通,张大弟,唐浩,水溶性农药稻田流失特性研究.农村生态环境,2005.21:p.43-46.
    132.欧盟禁用的64种农药.农药学学报,2004.43:p.63-63.
    133.农业部办公厅,第八届全国农药登记评审委员会第四次全体会议纪要.2008:北京.
    134. Lee, S.-J., Caboni P., Tomizawa M., and Casida J. E., Cartap hydrolysis relative to its action at the insect nicotinic channel. J. Agric. Food Chem.,2004.52:p. 95-98.
    135.孙惠青,徐光军,李义强,曹爱华,郑晓,徐金丽,烟草中杀虫单残留分析方法研究.中国烟草科学,2009.30:p.35-37.
    136.农业部农药检定所,农药安全评价实验准则.2004:北京.
    137. Winata, C. L., Korzh S., Kondrychyn I., Zheng W., Korzh V., and Gong Z., Development of zebrafish swimbladder:The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev. Biol., 2009.331:p.222-236.
    138. Goolish, E. M. and Okutake K., Lack of gas bladder inflation by the larvae of zebrafish in the absence of an air-water interface. J. Fish Biol.,1999.55:p. 1054-1063.
    139. Lammer, E., Carr G J., Wendler K., Rawlings J. M., Belanger S. E., and Braunbeck T., Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp. Biochem. Physiol. C,2009.149:p.196-209.
    140. Anderson, C., Bartlett S. J., Gansner J. M., Wilson D., He L., Gitlin J. D., Kelsh R. N., and Dowden J., Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis. Mol. Biosyst.,2007.3:p. 51-59.
    141. Wrathall, J. R., Oliver C., Silagi S., and Essner E., Suppression of pigmentation in mouse melanoma cells by 5-bromodeoxyuridine:effects on tyrosinase activity and melanosome formation J. Cell Biol.,1973.57:p.406-423.
    142. Sharma, R., Kramer J. A., and Krawetz S. A., Lysyl oxidase, cellular senescence and tumor suppression Biosci. Rep.,2004:p.409-414.
    143. Hein, S., Yamamoto S. Y., Okazaki K., Jourdan-LeSaux C., Csiszar K., and Bryant-Greenwood G. D., Lysyl oxidases:expression in the fetal membranes and placenta. Placenta,2001 22:p.49-57.
    144. Pokharna, H. K., Monnier V., Boja B., and Moskowitz R. W., Lysyl oxidase and Maillard reaction-mediated crosslinks in aging and osteoarthritic rabbit cartilage. J. Orthop. Res.,1995.13:p.13-21.
    145. Thomas, K. A. and Stemple D. L., eds. Development of the zebrafish organizer and notochord. In:Gong, Z., Korzh, V. (Eds.), Fish Development and Genetics: The Zebrafish and Medaka Models.2004, World Scientific Publishing Co. Pte. Ltd.:Singapore.
    146. Reynaud, C., Baas D., Gleyzal C., Guellec D. L., and Sommer P., Morpholino knockdown of lysyl oxidase impairs zebrafish development, and reflects some aspects of copper metabolism disorders. Matrix Biol.,2008.27:p.547-560.
    147. Gansner, J. M., Mendelsohn B. A., Hultman K. A., Johnson S. L., and Gitlin J. D., Essential role of lysyl oxidases in notochord development Dev Biol.,2007. 307:p.202-213.
    148. Glickman, N. S., Kimmel C. B., Jones M. A., and Adams R. J., Shaping the zebrafish notochord. Development,2003.130:p.873-887.
    149. Kimmel, C. B., Ballard W. W., Kimmel S. R., Ullmann B., and Schilling T. F., Stages of embryonic development of the zebrafish. Dev. Dyn.,1995.203:p. 253-310.
    150. Snawder, J. E. and Chambers J. E., Osteolathyrogenic effects of malathion in Xenopus embryos. Toxicol. Appl. Pharmacol.,1993.121 p.210-216.
    151. Haendel, M. A., Tilton F., Bailey G. S., and Tanguay R. L., Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol. Sci.,2004.81:p.390-400.
    152. Birch, W. X. and Prahlad K. V., Effects of minute doses of ethylenebisdithio-carbamate disodium salt (nabam) and its degradative products on connective tissue envelopes of the notochord in Xenopus:an ultrastructural study. Cytobios,1986.48:p.175-184.
    153. Ghate, H. V., Dithiocarbamate induced teratogenesis in frog embryo. Riv. Biol. 1985.78:p.288-291.
    154. Van Leeuwen, C. J., Espeldoorn A., and Mol F., Aquatic toxicological aspects of dithiocarbamates and related compounds. III. Embryolarval studies with rainbow trout (Salmo gairdneri). Aquat. Toxicol.,1986a.9:p.129-145.
    155. Van Leeuwen, C. J., Helder T., and Seinen W., Aquatic toxicological aspects of dithiocarbamates and related compounds. Ⅳ. Teratogeneicity and
    histopathology in rainbow trout (Salmo gairdneri). Aquat. Toxicol,1986b.9:p. 147-159.
    156. Boxtel, A. L. v., Kamstra J. H., Fluitsma D. M., and Leglera J., Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity. Toxicol. Appl. Pharm.,2010.244:p.156-161.
    157. Milos, N. and Dingle A. D., Dynamics of pigment pattern formation in the zebrafish, Brachydanio rerio. Ⅰ. Establishment and regulation of the lateral line melanophore stripe during the first eight days of development J. Exp. Zool., 1978.205:p.205-216.
    158. Kelsh, R. N., Brand M., Jiang Y.-J., Heisenberg C.-P., Lin S., Haffter P., Odenthal J., Mullins M. C., van-Eeden F. J. M., Furutani-Seiki M., Granato M., Hammerschmidt M., Kane D. A., Warga R. M., Beuchle D., Vogelsang L., and Nusslein-Volhard C., Zebrafish pigmentation mutations and the processes of neural crest development Development,1996.123:p.369-389.
    159. Camp, E., Badhwar P., J.Mann G., and Lardelli M., Expression analysis of a tyrosinase promoter sequence in zebrafish. Pigment Cell Res.,2003.16:p. 117-126.
    160. Korner, A. and Pawelek J., Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin Science,1982.217:p.1163-1165.
    161. Lister, J. A., Robertson C. P., Lepage T., Johnson S. L., and Raible D. W., nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development,1999.126:p.3757-3767.
    162. Tilton, F., Du J. K. L., Vue M., Alzarban N., and Tanguay R. L., Dithiocarbamates have a common toxic effect on zebrafish body axis formation. Toxicol. Appl. Pharm.,2006.216:p.55-68.
    163. Winnicki, A., Radziun M. S., and Radziun K., Structural and mechanical changes in the egg membranes of Salmo gairdneri Rich. during the period of hatching of the larvas. Acta Ichth. Piscat.,1970.1:p.7-18.
    164. Yamamoto, M., ed. Hatching gland and hatching enzyme. Medaka (Killifish): Biology and Strains, ed. T. Yamamoto.1975, Keigaku Pub. Co.:Tokyo.73-79.
    165. Hagenmaier, H. E., The hatching process in fish embryos V. Characterization of the Hatching Protease (Chorionase) from the Perivitelline Fluid of the Rainbow Trout, Salmo gairdneri Rich, as a Metalloenzyme Wilhelm Roux' Archiv,1974.175:p.157-162.
    166. Sano, K., Inohaya K., Kawaguchi M., Yoshizaki N., Iuchi I., and Yasumasu S., Purification and characterization of zebrafish hatching enzyme-an evolutionary aspect of the mechanism of egg envelope digestion. FEBS J.,2008.275:p. 5934-5946.
    167. Bonsignorio, D., Perego L., Giacco L. D., and Cotelli F., Structure and macromolecular composition of the zebrafish egg chorion. Zygote 1996.4:p. 101-108.
    168. Shi, Z.-P., Fan T.-J., Cong R.-S., Wang X.-F., Sun W.-J., and Yang L.-L., Purification and characterization of hatching enzyme from flounder Paralichthys olivaceus. Fish Physiol. Biochem.,2006.32:p.35-42.
    169. Schoots, A. F., Meijer R. C., and Denuce J. M., Dopaminergic regulation of hatching in fish embryos. Dev. Biol.,1983.100:p.59-63.
    170. Gili, A., Thomas P. D., Ota M., and Jimbow K., Comparison of in vitro cytotoxicity of N-acetyl and N-propionyl derivatives of phenolic thioether amines in melanoma and neuroblastoma cells and the relationship to tyrosinase and tyrosine hydroxylase enzyme activity. Melanoma Res.,2000. 10:p.9-15.
    171. Kim, C.-H., Ueshima E., Muraoka O., Tanaka H., Yeo S.-Y, Huh T.-L., and Miki N., Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci. Lett.,1996.216:p.109-112.
    172. Isogai, S., Horiguchi M., and Weinstein B. M., The vascular anatomy of the developing zebrafish:an atlas of embryonic and early larval development Dev. Biol.,2001.230:p.278-301.
    173. Siekmann, A. F., Covassin L., and Lawson N. D., Modulation of VEGF signalling output by the Notch pathway. Bioessays,2008.30:p.303-313.
    174. Brown, L. A., Rodaway A. R. F., Schilling T. F., Jowett T., Ingham P. W., Patient R. K., and Sharrocks A. D., Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech. Develop.,2000.90:p.237-252.
    175. Neuhauss, S. C. F., Solnica-Krezel L., Schier A. F., Zwartkruis F., Stemple D. L., Malicki J., Abdelilah S., Stainier D. Y. R., and Driever W., Mutations affecting craniofacial development in zebrafish Development,1996.123:p.357-367.
    176. Orkin, S. H., GATA-binding transcription factors in hematopoietic cells. Blood, 1992.80:p.575-581.
    177. de-Jong, J. L. O. and Zon L. I., Use of the Zebrafish to study primitive and definitive hematopoiesis. Annu. Rev. Genet.,2005.39 p.481-501.
    178. Stainier, D. Y. R., Weinstein B. M., Detrich H. W., Zon L. I., and Fishman M. C., cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development,1995.121:p.3141-3150.
    179. Lyons, S. E., Lawson N. D., Lei L., Bennett P. E., Weinstein B. M., and Liu P. P., A nonsense mutation in zebrafish gatal causes the bloodless phenotype in vlad tepes. PNAS USA,2002.99:p.5454-5459.
    180. Glatz, J. F. C. and van-der-Vusse G. J., Cellular fatty acid-binding proteins:their function and physiological significance. Prog. Lipid Res.,1996.35:p. 243-282.
    181. Andre, M., Ando S., Ballagny C., Durliat M., Poupard G, Brian(?)on C., and Babin P. J., Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int. J. Dev. Biol.,2000.44:p.249-252.
    182. Rottbauer, W., Saurin A. J., Lickert H., Shen X., Burns C. G., Wo Z. G., Kemler R., Kingston R., Wu C., and Fishman M., Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell,2002. 111:p.661-672.
    183. Pietsch, J., Delalande J.-M., Jakaitis B., Stensby J. D., Dohle S., Talbot W. S., Raible D. W., and Shepherd I. T., lessen encodes a zebrafish trap100 required for enteric nervous system development. Development,2006.133:p.395-406.
    184. Ward, A. B., Warga R. M., and Prince V. E., Origin of the zebrafish endocrine and exocrine pancreas. Dev. Dyn.,2007.236:p.1558-1569.
    185. Field, H. A., Ober E. A., Roeser T., and Stainier D. Y. R., Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol.,2003.253:p. 279-290.
    186. Her, G. M., Chiang C.-C., Chen W.-Y., and Wu J.-L., In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett.,2003.538:p.125-133
    187. Fraenkel, P. G., Gibert Y, Holzheimer J. L., Lattanzi V. J., Burnett S. F., Dooley K. A., Wingert R. A., and Zon L. I., Transferrin-a modulates hepcidin expression in zebrafish embryos. Blood,2009.19:p.2843-2850.
    188. Hernandez, P. P., Moreno V., Olivari F. A., and Allende M. L., Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish(Danio rerio). Hear. Res.,2006.213:p.1-10.
    189. Gilad, G M., Kagan H. M., and Gilad V. H., Evidence for increased lysyl oxidase, the extracellular matrix-forming enzyme, in Alzheimer's disease brain Neurosci. Lett.,2005.376:p.210-214
    190. Saude, L., Woolley K., Martin P., Driever W., and Stemple D. L., Axis-inducing activities and cell fates of the zebrafish organizer. Development,2000.127:p. 3407-3417.
    191. Smith, J. L. and Schoenwolf G C., Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J. Exp. Zool.,1989. 250:p.49-62.
    192. van Straaten, H. W. M. and Hekking J. W. M., Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord deficient chick embryo. Anat. Embryol.,1991.184:p.55-63.
    193. Yamada, T., Pfaff S. L., Edlund T., and Jessell T. M., Control of cell pattern in the neural tube:motor neuron induction by diffusible factors from notochord and floor plate. Cell,1993.73:p.673-686.
    194. Yamada, T., Placzek M., Tanaka H., Dodd J., and Jessell T. M., Control of cell pattern in the developing nervous system:polarizing activity of the floor plate and notochord. Cell Tissue Res.,1991.64:p.635-647.
    195. Dong, W., Teraoka H., Yamazaki K., Tsukiyama S., Imani S., Imagawa T., Stegeman J. J., Peterson R. E., and Hiraga T., 2,3,7,8-Tetrachlorodibenzo-p-dioxin Toxicity in the Zebrafish Embryo:Local Circulation Failure in the Dorsal Midbrain Is Associated with Increased Apoptosis. Toxicol. Sci.,2002.69:p.191-201.
    196. Teraoka, H., Dong W., Ogawa S., Tsukiyama S., Okuhara Y., Niiyama M., Ueno N., Peterson R. E., and Hiraga T.,2,3,7,8-Tetrachlorodibenzo-p-dioxin Toxicity in the Zebrafish Embryo:Altered Regional Blood Flow and Impaired Lower Jaw Development Toxicol. Sci.,2002.65:p.192-199.
    197. Rodriguez, C., Martinez-Gonzalez J., Raposo B., Alcudia J. F., Guadall A., and Badimon L., Regulation of lysyl oxidase in vascular cells:lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc. Res.,2008.79:p.7-13.
    198. Maki, J. M., Rasanen J., Tikkanen H., Sormunen R., Makikallio K., Kivirikko K. I., and Soininen R., Inactivation of the lysyl oxidase gene lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation,2002.106:p.2503-2509.
    199. Hill, A., Howard V., and Cossins A., Characterization of TCDD-induced craniofacial malformations and retardation of zebrafish growth. J. Fish Biol., 2004.64:p.911-922.
    200. Whorton, D., Krauss R. M., Marshall S., and Milby T. H., Infertility in male pesticide workers. Lancet,1977.310:p.1259-1261.
    201. Purdom, C. E., Hardiman P. A., Bye V. J., Eno N. C., Tyler C. R., and Sumpter J. P., Estrogenic effects of effluents from sewage treatment works. Chem. Ecol., 1994.8:p.275-285.
    202. Jobling, S., Nolan M., Tyler C. R., Brighty G., and Sumpter J. P., Widespread sexual disruption in wild fish. Environ. Sci. Technol.,1998.32:p.2498-2506.
    203. Kime, D. E., A strategy for assessing the effects of xenobiotics on fish reproduction. Sci. Total Environ.,1999.225 p.3-11.
    204.张玉博,孙继洲,周蓉蓉,李铭,胡家会,有机磷农药对鲫鱼精子运动的影响.经济动物学报,2009 13:p.46-50.
    205.胡家会,张士璀,张永忠,许玉艳,王勇军,水胺硫磷对玫瑰无须鲃精子的体外毒性作用.高技术通讯,2005 15:p.104-107.
    206. Waring, C. P. and Moore A., Sublethal effects of a carbamate pesticide on pheromonal mediated endocrine function in mature male Atlantic salmon (Salmo salar L.) parr. Fish Physiol. Biochem.,1997.17:p.203-211.
    207. Singh, P. B., Sahu V., Singh V., Nigam S. K., and Singh H. K., Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India. Food Chem. Toxicol.,2008.46:p.3764-3769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700