窄带雷达体制下弹道中段目标微动参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹道中段的目标存在微动,对微动特征的提取为弹道导弹防御目标识别提供了新的解决手段。本文针对弹道中段旋转对称的目标,深入研究了窄带雷达体制下目标微动特征的提取,改进了进动周期和章动角的估计方法,提出了目标质心位置的估计方法。研究成果主要包括如下几个方面:
     1.研究了基于自相关函数凸包的目标进动周期估计方法。自相关法可用于估计目标的进动周期,它需要预先给出进动周期的上下限。然而进动周期下限可能远小于真实进动周期,此时自相关法的估计性能将严重下降。本文首先定义了自相关函数的凸包,然后在此基础上提出了一种改进的自相关法。当进动周期下限和真实进动周期相差倍数不大时,该方法的估计性能接近传统的自相关法;当进动周期下限和真实进动周期相差倍数很大时,它仍然具有良好的估计性能。该方法原理简单,对先验信息的要求非常宽松,且计算量增大的倍数通常很小。因此它具有广泛的适用性。
     2.研究了基于相关匹配的目标章动角估计方法。将观测的RCS序列与RCS序列模板进行最小二乘匹配,可以得到目标章动角的估计值,但由于未考虑RCS测量的系统误差,最小二乘匹配的估计性能得不到保证。本文提出了基于相关匹配的目标章动角估计方法,并给出了具体的实现算法。该方法考虑了RCS测量的系统误差,其估计性能远优于最小二乘匹配。本文分析了全姿态RCS数据的角度采样间隔对相关匹配估计性能的影响,并比较了多层相关匹配和单层相关匹配的估计性能和计算量,最后比较了进动周期已知和未知情况下相关匹配的估计性能。
     3.研究了基于相位特性的目标质心位置估计方法。本文首次提出了目标质心位置估计方法:平动补偿法和非线性变换法。它们都基于窄带雷达回波的相位特性。仿真结果表明:平动补偿法和非线性变换法都是有效的质心位置估计方法;前者估计性能优于后者,但其计算量远大于后者。本文分析了全姿态散射系数数据的角度采样间隔对两种方法估计性能的影响,分别就不同方法比较了姿态角序列已知和未知情况下的估计性能。
     本文提出的弹道中段目标微动参数估计方法,丰富了微动特征提取的理论体系,对弹道中段目标识别具有重要的理论意义和应用价值。
The ballistic target in midcourse undergoes micro-motion. The extraction of the micro-motion feature offers new measures for target recognition in ballistic missile defense. In this dissertation, the micro-motion feature extraction is investigated using narrow-band radar systems for rotationally symmetric ballistic target in midcourse. Precession period and nutation angle estimation methods are improved, and target centroid position estimation method is proposed. Main contributions can be summarized as follows:
     1. Target precession period estimation method is studied based on the convex hull of autocorrelation function. The autocorrelation method can be used to estimate the precession period of the target, for which it is necessary that the upper and lower bounds of the precession period be given in advance. However, the lower bound of the precession period provided may be far less than the true precession period, which will seriously degrade the estimation performance. An improved autocorrelation method is proposed by defining the convex hull of the autocorrelation function (ACF). The estimation performance of the proposed method is close to that of the autocorrelation method when the lower bound is not far less than the true precession period. Moreover, the proposed method has good estimation performance when the lower bound is far less than the true precession period. The principle of the proposed method is simple. And it is very easy to meet the prior information requirement for the proposed method. Usually the increase of the computational burden of the proposed method over the autocorrelation method is small. Therefore the proposed method can be used widely.
     2. Target nutation angle estimation method is studied based on correlation matching. The least square matching is performed with the measured radar cross section (RCS) series and the RCS series templates, and then the nutation angle of the target is estimated. But the estimation peformance of the least square matching cannot be guaranteed because of the systematic errors in the RCS measurement. A correlation matching based nutation angle estimation method is proposed. Also the implementation of the proposed method is detailed. The proposed method takes into consideration of the systematic errors in the RCS measurement, and the estimation performance is far superior to that of the least square matching. The angle sampling interval for the all-attitude RCS data can affect the estimation performance of the correlation matching, and its effect is analyzed. Also, the estimation performance and computational burden of the multi-stage correlation matching is compared with that of the one-stage correlation matching. Finally, the correlation matching estimation performance with priorlily known precession period is compared with that with unknown precession period.
     3. Target centroid position estimation method is studied based on phase signature. Target centroid position estimation method is proposed for the first time: translation compensation method and nonlinear transform method. The proposed methods are both based on the phase signature of the narrow-band radar echo. Simulation results show that translation compensation method and nonlinear transform method are both effective centroid position estimation method. The estimation performance of the former method is superior to that of the the latter method, but the computational burden of the former method is much heavier than that of the latter method. The angle sampling interval for the all-attitude scattering coefficient data can affect the estimation performance of both methods, and its effect is analyzed. Finally, for both methods the estimation performance with known or unknown attitude angle series is compared.
     These micro-motion parameter estimation methods enrich the theory system of micro-motion feature extraction, and have great values in theory and application for ballistic target recognition in midcourse.
引文
[1]刘石泉.弹道导弹突防技术导论[M].北京:宇航出版社, 2003.
    [2]刘永样.导弹防御系统中的雷达目标综合识别研究[D].长沙:国防科技大学, 2004.
    [3]张健志,何玉彬.争夺制天权——太空的探研、开发与争夺[M].北京:解放军出版社, 2007.
    [4] Tanks D R. National missile defense: policy issues and technological capabilities[M]. Cambridge, MA: Svec Conway Printing, Inc., 2000.
    [5]马骏声.目标识别与GBR地基成像雷达[J].航天电子对抗, 1996, 12(4): 32-35.
    [6] Lemnios W Z, Grometstein A A. Overview of the Lincoln laboratory ballistic missile defense program[J]. Lincoln Laboratory Journal, 2002, 13(1): 9-32.
    [7]庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报, 2007, 35(3): 520-525.
    [8]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科技大学, 2006.
    [9]刘延柱.陀螺力学[M].北京:科学出版社, 1986: 7-10,51.
    [10]李洲,尹照平.美国弹道导弹目标特性测量雷达的发展[J].飞行器测控学报, 2001, 20(1): 42-49.
    [11] Stone M L, Banner G P. Radars for the detection and tracking of ballistic missiles, satellites, and planets[J]. Lincoln Laboratory Journal, 2000, 12(2): 217-244.
    [12] Camp W W, Mayhan J T, O’donnell R M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000, 12(2): 267-280.
    [13] Ingwersen P A, Lemnios W Z. Radars for ballistic missile defense research[J]. Lincoln Laboratory Journal, 2000, 12(2): 245-266.
    [14]李永祯,王雪松,肖顺平,等. GBR防御系统有源假目标极化鉴别能力分析[C].第九届全国雷达年会.烟台, 2004年8月: 900-904.
    [15] Chen V C, Li F, Ho S S, et al. Analysis of micro-Doppler signatures[J]. IEE Proceedings - Radar, Sonar and Navigation, 2003, 150(4): 271-276.
    [16] Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
    [17] Chen V C. Micro-Doppler effect of micro-motion dynamics: A review[C]. Proc. SPIE, Vol. 5102. Independent Component Analyses, Wavelets, and Neural Networks. Orlando, FL, USA , April 2003: 240-249.
    [18] Chen V C, Ling H. Time-frequency transforms for radar imaging and signalanalysis[M]. Boston: Artech House, 2002: 173-192.
    [19]李康乐.雷达目标微动特征提取与估计技术研究[D].长沙:国防科技大学, 2010.
    [20] Chen V C, Miceli W J, Himed B. Micro-Doppler analysis in ISAR - review and perspectives[C]. 2009 International Radar Conference. Bordeaux, France, Oct. 2009.
    [21] Ghaleb A, Vignaud L, Nicolas J M. Micro-Doppler analysis of wheels and pedestrians in ISAR imaging[J]. IET Signal Processing, 2008, 2(3): 301-311.
    [22] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J]. IET Radar, Sonar & Navigation, 2007, 1(4): 289-299.
    [23] Setlur P, Amin M, Ahmad F. Analysis of micro-Doppler signals using linear FM basis decomposition[C]. Proc. SPIE, Vol. 6210. Radar Sensor Technology X. May 2006.
    [24]贺思三.微动目标高分辨雷达信号建模及特征提取[D].长沙:国防科技大学, 2010.
    [25]刘进.微动目标雷达信号参数估计与物理特征提取[D].长沙:国防科技大学, 2010.
    [26]张翼.人体微动雷达特征研究[D].长沙:国防科技大学, 2009.
    [27]贺峰.宽带/超宽带雷达运动人体目标检测与特征提取关键技术研究[D].长沙:国防科技大学, 2011.
    [28] Thayaparan T, Stankovic L, Djurovic I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6): 700-722.
    [29] Liu Z, Sun H. Micro-Doppler analysis and application of radar targets[C]. 2008 IEEE International Conference on Information and Automation. Zhangjiajie, June 2008: 1343-1347.
    [30] Luo Y, Chi L, Zhang Q, et al. A novel method for extraction of micro-Doppler signal[C]. IEEE 2007 International Symposium on Microwave, Antenna, Propagation, and EMC Technologies For Wireless Communications. 2007: 1458-1462.
    [31] Li K, Luo Y, Chi L, et al. A new separation method for micro-Doppler information of a target with rotating parts[C]. 2008 International Conference on Communications, Circuits and Systems. Fujian , May 2008: 1365-1369.
    [32] Chen V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2(3): 291-300.
    [33] Chen V C, Lin C, Pala W P. Time-varying Doppler analysis of electromagnetic backscattering from rotating object[C]. 2006 IEEE Conference on Radar. April2006: 807-812.
    [34] Hai Y, Pala W, Chen V C. RCS model of EM backscattering from objects with nonlinear motion dynamics[C]. 2006 IEEE Antennas and Propagation Society International Symposium. Albuquerque, NM, July 2006: 3263-3266.
    [35]孙照强,李宝柱,鲁耀兵.弹道目标章动特性及其微多普勒研究[J].现代雷达, 2009, 31(4): 24-27.
    [36]高红卫,谢良贵,文树梁,等.基于微多普勒分析的弹道导弹目标进动特性研究[J].系统工程与电子技术, 2008, 30(1): 50-52.
    [37]高红卫,谢良贵,文树梁,等.基于微多普勒特征的真假目标雷达识别研究[J].电波科学学报, 2008, 23(4): 775-780.
    [38]孙慧霞,刘峥,薛宁.自旋进动目标的微多普勒特征分析[J].系统工程与电子技术, 2009, 31(2): 357-360.
    [39]高红卫,谢良贵,文树梁,等.摆动锥体目标微多普勒分析和提取[J].电子学报, 2008, 36(12): 2497-2502.
    [40]孙照强,李宝柱,鲁耀兵.弹道中段进动目标的微多普勒研究[J].系统工程与电子技术, 2009, 31(3): 538-540, 587.
    [41]高红卫,谢良贵,文树梁,等.加速度对微多普勒的影响及其补偿研究[J].宇航学报, 2009, 30(2): 705-711.
    [42]刘进,王雪松,马梁,等.空间进动目标动态散射特性的实验研究[J].航空学报, 2010, 31(5): 1014-1023.
    [43] van Dorp P, Groen F C A. Human walking estimation with radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 2003, 150(5): 356-365.
    [44] van Dorp P. Real-time human walking estimation with radar[C]. 2003 International Radar Symposium. Dresden,Germany, September-October 2003: 645-649.
    [45] Otero M. Application of a continuous wave radar for human gait recognition[C]. Proc. SPIE, Vol. 5809. Signal Processing, Sensor Fusion, and Target Recognition XIV. Bellingham, WA, USA , May 2005: 538-548.
    [46] F?lster F, Rohling H, Ritter H. Observation of a walking pedestrian with a 24GHz automotive radar sensor[C]. 2006 German Microwave Conference. Karlsruhe, Germany, March 2006.
    [47] Setlur P, Amin M, Ahmad F. Optimal and suboptimal micro-Doppler estimation schemes using carrier diverse Doppler radars[C]. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, 2009: 3265-3268.
    [48]罗迎,张群,柏又青,等.线性调频步进信号雷达微多普勒效应分析及目标特征提取[J].电子学报, 2009, 37(12): 2741-2746.
    [49]刘丽华,王壮,胡卫东,等.弹道导弹进动周期雷达测量提取方法研究[J].现代雷达, 2008, 30(1): 26-33.
    [50]胡杰民,付耀文,黎湘.空间锥体目标进动周期估计[J].电子与信息学报, 2008, 30(12): 2849-2853.
    [51]王涛,周颖,王雪松,等.雷达目标的章动特性与章动频率估计[J].自然科学进展, 2006, 16(3): 344-350.
    [52]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展, 2004, 14(11): 1329-1332.
    [53]陈行勇,黎湘,郭桂蓉,等.微进动弹道导弹目标雷达特征提取[J].电子与信息学报, 2006, 28(4): 643-646.
    [54]朱玉鹏,王宏强,黎湘,等.基于一维距离像序列的空间弹道目标微动特征提取[J].宇航学报, 2009, 30(3): 1133-1140.
    [55]金光虎,朱玉鹏,高勋章,等.基于一维像序列的中段雷达目标进动特征提取[J].信号处理, 2009, 25(5): 771-776.
    [56]贺思三,周剑雄,付强.利用一维距离像序列估计弹道中段目标进动参数[J].信号处理, 2009, 25(6): 925-929.
    [57]金光虎,高勋章,黎湘,等.基于ISAR像序列的弹道目标进动特征提取[J].电子学报, 2010, 38(6): 1233-1238.
    [58] Knott E F. Simulation of reentry vehicle motion during laboratory measurements of radar cross section[J]. IEEE Transactions on Antennas and Propagation, 1969, 17(2): 242-244.
    [59] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2): 383-396.
    [60] Schultz K, Davidson S, Stein A, et al. Range Doppler laser radar for midcourse discrimination: the Firely experiments[C]. 2nd Annual AIAA SDIO Interceptor Technology Conference. Albuquerque, NM, June 1993.
    [61] Cuomo K M, Piou J E, Mayhan J T. Ultra-wideband coherent processing[J]. The Lincoln Laboratory Journal, 1997, 10(2): 203-222.
    [62] Nunn E C. Target motion resolution and its impact on the US Army White Sands Missile Range[C]. 13th Asilomar Conference on Circuits, Systems & Computers. Pacific Grove, CA, USA, 1979: 589-593.
    [63] Nunn E C. The US Army White Sands Missile Range development of target motion resolution[C]. EASCON80. Arlington, Va, 1980: 346-352.
    [64] Baker B D, Kendall W B. TMR processing procedures for GSRS spin and attitude measurements[R]. ADA074947, Marina del Rey, CA: Mark Resources, Inc., 1979.
    [65] Rihaczek A W, Hershkowitz S J. Theory and practice of radar target identification[M]. Boston: Artech House, 2000: 581-626.
    [66] Rihaczek A W, Hershkowitz S J. Radar Resolution and Complex-ImageAnalysis[M]. Boston: Artech House, 1996.
    [67]陈建文,李士国.基于目标运动分辨技术提取导弹目标运动特征[J].现代雷达, 2003, 25(6): 5-7, 23.
    [68]单荣光.目标运动分辨与轨迹运动补偿[J].现代雷达, 1989, (4): 26-30, 35.
    [69]任群书,单荣光.应用轨迹估值和相位补偿提高距离精度[J].现代雷达, 1988, (6): 123-129.
    [70] Jaenisch H. Discrimination via phased derived range[R]. Missile Defense Agency Small Business Innovation Research Program, 2002.
    [71] Holzrichter J F. S-band radar micro-Doppler signatures for BMD discrimination[R]. MDA04-137, Missile Defense Agency Small Business Innovation Research Program, 2004.
    [72] Naval Forces' Capability for Theater Missile Defense[M]. Washington, D.C: National Academy Press, 2001.
    [73] Quinn B G, Hannan E J. The Estimation and Tracking of Frequency[M]. Cambridge, U.K.: Cambridge University Press, 2001.
    [74]冯康,时慧琨.语音信号基音检测的现状及展望[J].微机发展, 2004, 14(3): 95-98.
    [75]朱小燕,王昱,刘俊.汉语声调识别中的基音平滑新方法[J].中文信息学报, 2001, 15(2): 45-50.
    [76] de Cheveigne A, Kawahara H. YIN, a fundamental frequency estimator for speech and music[J]. Journal of the Acoustical Society of America, 2002, 111(4): 1917-1930.
    [77]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005: 86-90.
    [78]王国雄.弹头技术(中)[M].北京:宇航出版社, 1989: 331-334.
    [79] Hanson F E, Beaghler G W. Discriminating interceptor technology program (DITP) laser radar[C]. Proc. SPIE, Vol. 3707. Laser Radar Technology and Applications IV. Orlando, FL, USA, April 1999: 372-380.
    [80]黄培康.雷达目标特征信号[M].北京:宇航出版社, 1993: 217-222,320.
    [81]王德纯,丁家会,程望东,等.精密跟踪测量雷达技术[M].北京:电子工业出版社, 2006: 388.
    [82] Preparata F P, Shamos M I.计算几何导论[M].庄心谷译.北京:科学出版社, 1990: 131.
    [83] Deshmukh O, Espy-Wilson C Y, Salomon A, et al. Use of temporal information: Detection of periodicity, aperiodicity, and pitch in speech[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 776-786.
    [84] Rabiner L, Cheng M, Rosenberg A, et al. A comparative performance study ofseveral pitch detection algorithms[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976, 24(5): 399-418.
    [85]程佩青.数字信号处理教程[M].第二版.北京:清华大学出版社, 2001: 105-110.
    [86] Sorensen H V, Jones D L, Heideman M T, et al. Real-valued fast Fourier transform algorithms[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, ASSP-35(6): 849-863.
    [87]王国雄.弹头技术(上)[M].北京:宇航出版社, 1993: 321.
    [88] Gonzalez R C, Woods R E.数字图像处理[M].第二版.阮秋琦,阮宇智,等译.北京:电子工业出版社, 2003: 571-572.
    [89] Li H, Yang S. Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 261-268.
    [90]陈建平,曹清林,沈世德.共轭对称数据的DFT及其FFT算法[J].电子与信息学报, 2001, 23(2): 197-202.
    [91] Peleg S, Porat B. Estimation and classification of polynomial-phase signals[J]. IEEE Transactions on Information Theory, 1991, 37(2): 422-430.
    [92] Peleg S, Friedlander B. The discrete polynomial-phase transform[J]. IEEE Transactions on Signal Processing, 1995, 43(8): 1901-1914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700