Genistein对大鼠血管紧张素转化酶作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统性高血压(Systemic hypertension)是一种复杂的病理生理状态,其主要原因是由机体长期处于高血压所导致,它是引发中风、缺血性心脏病、外周血管性疾病和进行性肾损害的主要危险因素。肾素一血管紧张素系统(renin-angiotensin system,RAS)活动的亢进在原发性高血压的发展中起了关键性作用,有机构估计,在促成各种类型高血压的因素中,RAS至少占了百分之十到百分之三十的比例。因此众多研究已经直接面向RAS及其与控制血压之间的关系。阻断RAS会降低血压,减轻高血压的病理生理影响,同时编码RAS的一些基因同高血压具有相关性。因此可以断定RAS是调节正常血压和原发性高血压病理生理状况的基本要素。
     Genistein是一种异黄酮类的植物雌激素,与17β-estradiol结构相似。它是天然植物雌激素,可以选择性与雌激素受体结合。Genistein可以预防心血管疾病因而近几年来受到广泛的关注。它可以降低胆固醇浓度,降低血压,增加高密度胆固醇,抑制血管平滑肌增殖,增加动脉顺应性和抗氧化作用。因此,食用植物雌激素可能是通过这些作用来降低心血管疾病发病率。
     血管紧张素转换酶(angiotensin-converting enzyme,ACE)是羧基末端二肽基肽链端解酶,在RAS中发挥了重要作用。ACE是存在于肉皮细胞细胞膜的(胞)外酶,调控血管紧张度和渗透性,将血管紧张素Ⅰ(angiotensinⅠ,AngⅠ)转化成血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)并降解缓激肽(bradykinin,BK)。血管紧张素转换酶抑制剂(angiotensin-converting enzyme inhibitor,ACEI)已经在治疗大部分心血管疾病的临床试验中取得成功。
     本研究探讨了genistein对于大鼠ACE活性及ACE mRNA表达的影响,进一步拓展对genistein血压调节作用机制的认识。
     本研究内容包括离体和在体两部分实验,概述如下:
     第一部分Genistein对Sprague-Dawley(SD)大鼠主动脉肉皮细胞(rat aortic endothelial cells,RAECs)ACE水平及ACE mRNA表达的影响
     RAECs随机分成以下几组:(1)对照组;(2)genistein 10μM,50μM,100μM and 200μM四个不同浓度组;(3)17β-estradiol 100μM;(4)captopril 1 mM;(5)tamoxifen 100μM;(6)genistein 100μM+ta-moxifen 100μM;(7)17β-estradiol 100μM+tamoxifen 100μM;(8)PD98059 10μM和(9)genistein 100μM+PD98059 10μM。孵育48 h。在以上(6,7,9)组的细胞先给予tamoxifen或PD98059一小时后给予genistein或17β-estradiol处理。免疫荧光及逆转录酶-多聚酶链式反应(reverse transcript polymerase chain reaction,RT-PCR)方法用于检测ACE水平及ACE mRNA表达情况。
     Genistein浓度依赖性的降低RAECs的ACE水平。Genistein对RAECs的ACE mRNA表达的影响与免疫荧光结果极为相似。此外,genistein对RAECs的ACE水平的影响被证明是通过雌激素受体(estrogen receptor)及细胞外信号调节激酶1/2(extracellular signal-regulated kinase 1/2,ERK 1/2)通路来发挥作用的。
     第二部分Genistein对Sprague-Dawley(SD)大鼠ACE水平及ACE mRNA表达的影响
     大鼠被随机分成以下几组:(1)对照组;(2) genistein(2.5 mg/kg/day,10 mg/kg/day,25 mg/kg/day,50 mg/kg/day)四个浓度组;(3)17β-estradiol(0.5 mg/kg/day);(4) captopril(8 mg/kg/day);(5) tamoxifen(5 mg/kg/day);(6) genistein(25 mg/kg/day)+tamoxifen(5 mg/kg/day);(7) 17β-estradiol(0.5 mg/kg/day)+tamoxifen(5 mg/kg/day);(8)PD98059(4 mg/kg/day);(9) genistein(25 mg/kg/day)+PD98059(4 mg/kg/day);(10) 17β-estradiol(0.5 mg/kg/day)+PD98059(4 mg/kg/day)。在以上相关组中先注射tamoxifen或PD98059十分钟后注射genistein或17β-estradiol。药物均采取尾静脉注射方式,连续注射两天,第二天给药一小时后从大鼠胸主动脉收集血样测血清ACE水平。同时,取胸主动脉测定组织ACE水平及组织ACE mRNA表达情况。
     注射不同浓度genistein可以剂量依赖性的降低血清ACE水平。在组织ACE水平及组织ACE mRNA表达情况与其类似。实验进一步证明,注射genistein对大鼠ACE的影响是通过雌激素受体及ERK1/2通路发挥作用的。
     综上所述,在体试验及离体试验均显示,genistein可以剂量依赖性的降低ACE的水平,该影响是通过雌激素受体及激活ERK1/2通路发挥作用的。我们的研究结果拓展了对于genistein在心血管方面的作用机制的理解,对今后心血管疾病的治疗具有潜在价值,同时给那些患有雌激素替代疗法禁忌症及希望自然疗法的妇女带来了希望。
Systemic hypertension is a complex pathophysiological state that isprimarily manifested as chronic high blood pressure and is a major riskfactor for stroke, ischemic heart disease, peripheral vascular disease, andprogressive renal damage. It is well established that a hyperactiverenin-angiotensin system (RAS) plays a key role in the development andmaintenance of human primary hypertension and, by some estimates,contributes to at least 10% to 30% of all cases of hypertension. It is notsurprising that tremendous efforts have been directed toward the under-standing of the RAS and its involvement in the control of blood pressure.The interruption of the RAS attenuates high blood pressure and manypathophysiological aspects of hypertension. Also, some genes encodingmembers of the RAS are associated with hypertension. Thus, it is rea-sonable to conclude that the RAS is essential in the normal regulation ofblood pressure and pathophysiology of systemic hypertension.
     Genistein is a principal isoflavone found in soy phytoestrogen, and ithas structural similarity with 17β-estradiol. It is a naturally occurringplant estrogen with selective estrogen receptor modulator properties. Genistein has received a great deal of attention over the last few yearsbecause of its potentially preventive roles against cardiovascular diseases.It decreases cholesterol concentration, lowers blood pressure and in-creases HDL cholesterol. Genistein inhibits vascular smooth muscle cellproliferation, improves arterial compliance and it has an antioxidant ac-tion. Therefore, dietary phytoestrogen may contribute to a low incidenceof heart disease through these actions.
     Angiotensin-converting enzyme (ACE) is a carboxyl-terminaldipeptidyl exopeptidase that plays a pivotal role in the RAS. ACE is anecto-enzyme anchored in plasma membrane of endothelial cells control-ling vascular tone and permeability by converting angiotensinⅠ(AngⅠ)into angiotensinⅡ(AngⅡ) and by degrading bradykinin (BK). Angio-tensin-converting enzyme inhibitors (ACEI) have been an increasinglyand impressively successful approach for a wide range of patients withvascular disease.
     The objective of present study is to investigate the relationship be-tween genistein and ACE in rats.
     Present study can be divided into two parts, in vitro and in vivo.
     PartⅠEffects of genistein on ACE activity and ACE expression inrat aortic endothelial cells (RAECs)
     RAECs were randomly divided and subjected to different treatmentsfor 48 h as follows: (1) control; (2) genistein at four concentrations (10 μM, 50μM, 100μM and 200μM); (3) 17β-estradiol 100μM; (4) capto-pril 1 mM; (5) tamoxifen 100μM; (6) genistein 100μM + tamoxifen 100μM; (7) 17β-estradiol 100μM + tamoxifen 100μM; (8) PD98059 10μM;and (9) genistein 100μM + PD98059 10μM. In relevant groups above (6,7, 9), cells were pretreated with tamoxifen or PD98059 for 60 min beforegenistein or 17β-estradiol treatment. ACE expression was assessed by theimmunofluorescence and the reverse transcriptase-polymerase chain re-action (RT-PCR) assay.
     Genistein decreased ACE activity on RAECs in a concentra-tion-dependent manner. The effects of genistein on ACE mRNA expres-sion in RAECs were highly consistent with the data in the immunofluo-rescence analysis. Furthermore, our data showed that genistein exertedthe effect on ACE activity and ACE expression by activating the estrogenreceptor and extracellular signal-regulated kinase 1/2 (ERK1/2) pathway.
     PartⅡEffects of genistein on ACE activity and ACE expression inSprague-Dawley (SD) rats
     SD rats were randomly divided into the following groups: (1) control;(2) genistein at four concentrations (2.5 mg/kg/day, 10 mg/kg/day, 25mg/kg/day, and 50 mg/kg/day); (3) 17β-estradiol (0.5 mg/kg/day); (4)captopril (8 mg/kg/day); (5) tamoxifen (5 mg/kg/day); (6) genistein (25mg/kg/day) + tamoxifen (5 mg/kg/day); (7) 17β-estradiol (0.5 mg/kg/day)+ tamoxifen (5 mg/kg/day); (8) PD98059 (4 mg/kg/day); (9) genistein (25 mg/kg/day) + PD98059 (4 mg/kg/day); (10) 17β-estradiol (0.5 mg/kg/day)+ PD98059 (4 mg/kg/day). In relevant groups above, genistein or17β-estradiol was administered 10min after pretreatment with tamoxifenor PD98059. All drugs were administered intravenously via tail vein bybolus. One hour after the administration on day two, blood samples wereobtained from the thoracic aortas for the determination of serum ACE ac-tivity. Meanwhile, thoracic aortas were harvested to analyze tissue ACEactivity and tissue ACE mRNA expression.
     Administration of genistein induced a dose-related decrease in serumACE activity. Similar dose-related decreases were detected in ACE activ-ity in the aorta and tissue ACE mRNA expression with genistein. Our re-sults also proved that genistein functioned via activation of estrogen re-ceptor and ERK1/2 pathway.
     In conclusion, results of the present study indicated that genisteindose-dependently decreased ACE levels in rats both in vivo and in vitro.The effect was mediated by the estrogen receptor and subsequent activa-tion of the ERK1/2 pathway. This finding expands our knowledge of themechanisms of genistein and may further support the potential use ofgenistein as a therapeutic agent in cardiovascular events. It may provide apromising approach in women with contraindications to the use of con-ventional estrogen replacement or those wanting a natural alternative aswell.
引文
1. Cuffe M. The patient with cardiovascular disease: treatment strategies for preventing major events. Clin Cardiol. 2006; 29: 4-12.
    2.张维忠。高血压治疗研究的回顾与展望。中华心血管病杂志。2000;28:167-169。
    3. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol. 2007; 6: 456-464.
    4. Kugaevskaia EV. Angiotensin converting enzyme domain structure and prop-erties. Biomed Khim. 2005; 51: 567-580.
    5. Jaspard E, Costerousse O, Wei L, Corvol P, Alhenc-Gelas F. The angiotensin I-converting enzyme (kinase Ⅱ): molecular and regulatory aspects. Agents Actions Suppl. 1992; 38: 349-358.
    6. Tallant EA, Ferrario CM. Biology of angiotensin Ⅱ receptor inhibition with a focus on losartan: a new drug for the treatment of hypertension. Exp Opin Invest Drugs. 1996; 5: 1201-1214.
    7. Hecker M, Bara AT, Bauerachs J, Busse R. Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol. 1994; 481: 407-414.
    8. Hecker M, Dambcher T, Busse R. Role of endothelium-derived bradykinin in the control of vascular tone. Cardiovasc Pharmacol. 1992; 20: S55-S61.
    9. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996; 27: 523-528.
    10. Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension. 1997; 29: 394-400.
    11. Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension. 1998; 31: 362-367.
    12. Caldwell PR, Seegal BC, Hsu KC, Das M, Softer RL. Angiotensin-converting enzyme: vascular endothelial localization. Science. 1976; 191: 1050-1051.
    13. Beldent V, Michaud A, Wei L, Chauvet MT, Corvol P. Proteolytic release of human angiotensin-converting enzyme: localization of the cleavage site. J Biol Chem. 1993; 268: 26428-26434.
    
    14. Berecek KH, Zhang L. Biochemistry and cell biology of angiotensin-converting enzyme and converting enzyme inhibitors. Adv Exp Med Biol. 1995; 377: 141-168.
    
    15. Neutel JM. Effect of the rennin-angiotensin system on the vessel wall: using ACE inhibition to improve endothelial function. J Hum Hypertens. 2004; 18: 599-606.
    
    16. Asmar RG, Pannier B, Santoni JP, Laurent S, London GM, Levy BI, Safar ME. Reversion of cardiac hypertrophy and reduced arterial compliance after converting enzyme inhibition in essential hypertension. Circulation. 1988; 78: 941-950.
    
    17. Dixon RA, Ferreira D. Genistein. Phytochemistry . 2002; 60: 205-211.
    
    18. Bartholomew RM, Ryan DS. Lack of mutagenicity of some phytoestrogens in the salmonella/mammalian microsome assay. Muta Res. 1980; 78: 317-321.
    
    19. Yamashita Y, Kawada S, Nakano H. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem Pharmacol. 1990; 39: 737-744.
    
    20. Kelloff GJ, Crowell JA, Hawk ET, Steele VE, Lubet RA, Boone CW, Covey JM, Doody LA, Omenn GS, Greenwald P, Hong WK, Parkinson DR, Bagheri D, Baxter GT, Blunden M, Doeltz MK, Eisenhauer KM, Johnson K, Knapp GG, Longfellow DG, Malone WF, Nayfield SG, Seifried HE, Swall LM, Sig-man CC. Strategy and planning for chemopreventive drug development: clinical development plans II. J Cell Biochem Suppl. 1996; 26: 54-71.
    
    21. Barnes S. Evolution of the health benefits of soy isoflavones. Proc Soc Exp Bio Med. 1998; 217: 386-392.
    
    22. Anderson JJ, Ambrose WW, Garner SC. Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Proc Soc Exp Biol Med. 1998; 217: 345-350.
    
    23. Honore EK, Williams JK, Anthony MS, Clarkson TB. Soy isoflavones en- hance coronary vascular reactivity in atherosclerotic female macaques. Fertil Steril. 1997; 67: 148-154.
    
    24. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman Jr, JW. Soy protein and isoflavones: their effects on blood lipids and bone density in post-menopausal women. Am J Clin Nutr. 1998; 68: 1375S-1379S.
    
    25. Fotsis T, Pepper M, Adlercreuta H, Fleischmann G, Hase T, Montesano R, Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA. 1993; 90: 2690-2694.
    
    26. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995; 333: 276-282.
    
    27. Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA. 1998; 95: 3106-3110.
    
    28. Wagner JD, Cefalu WT, Anthony MS, Litwak KN, Zhang L, Clarkson TB. Dietary soy protein and estrogen replacement therapy improve cardiovascular risk factors and decrease aortic cholesteryl ester content in ovariectomized cynomolgus monkeys. Metabolism. 1997; 46: 698-705.
    
    29. Dubey RK, Gillespie DG, Imthurn B, Rosselii M, Jackson E, Keller P. Phy-toestrogens inhibit growth and MAP kinase activity in human aortic smooth muscle cells. Hypertension. 1999; 33: 177-182.
    
    30. Nestel PJ, Pomeroy SE, Sasahara T, Yamashita T, Liang YL, Dart AM, Jennings GL, Abbey M, Cameron JD. Arterial compliance in obese subjects is improved with dietary plant n-3 fatty acid from flasxseed oil despite increased LDL oxidizability. Arterioscler Thromb Vasc Biol. 1997; 17: 1163-1170.
    
    31. Walker HA, Dean TS, Sanders TA, Jackson G, Ritter JM, Chowienczyk PJ. The phytoestrogen genistein produces acute nitric oxide-dependent dilation of human forearm vasculature with similar potency to 17β-estradiol. Circulation. 2001; 103: 258-262.
    
    32. Murkies A. Phytoestrogens-what is the current knowledge? Aust Fam Physician. 1998; 27: S47-S51.
    
    33. Yamakoshi J, Piskula MK, Izumi T, Tobe K, Saito M, Kataoka S, Obata A, Kikuchi M. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr. 2000; 130: 1887-1893.
    
    34. Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S. Differential response of estrogen receptor a and estrogen receptor (3 to partial estrogen agonists/antagonists. Mol Pharmacol. 1998; 54: 105-112.
    
    35. Chen XW, Garner SC, Anderson JJ. Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem Biophys Res Commun. 2002; 295: 417-422.
    
    36. Voigt LF, Weiss NS, Chu J, Daling JR, McKnight B, Van Belle G Progestagen supplementation of exogenous oestrogens and risk of endometrial cancer. Lancet. 1991; 338: 274-277.
    
    37. Grady D, Wenger NK, Hemngton D, Khan S, Furberg C, Hunninghake D, Vittinghoff E, Hulley S. Postmenopausal hormone therapy increases risk of venous thromboembolic disease: the heart and estrogen/progestin replacement study. Ann of Intern Med. 2000; 132: 689-696.
    
    38. Baker VL, Leitman D, Jaffe, RB. Selective estrogen receptor modulators in reproductive medicine and biology. Obstet Gynecol Surv. 2000; 55: S21-S47.
    
    39. Patricia E, Gallagher, Ping Li, John R, Lenhart, Mark C, Chappell K, Bridget, Brosnihan. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. 1999; 33: 323-328.
    1. Dixon RA, Ferreira D. Genistein. Phytochemistry. 2002; 60: 205-11.
    2. Naik HR, Lehr JE, Pienta KJ. An in vitro and in vivo study of antimmor effects of genistein on hormone refractory prostate cancer. Anticancer Res. 1994; 14: 2617-2619.
    3. He FJ, Wang J, Liu JZ, Wang JF. The inhibiting effect of genistein on the growth of human breast cancer cells in vitro. Zhongguo Zhong Yao Za Zhi. 2002; 27: 936-939.
    4. Radzikowski C, Wietrzyk J, Grynkiewicz G. Genistein: a soy isoflavone revealing a pleiotropic mechanism of action-clinical implication in the treatment and prevention of cancer. Postepy Hig Med Dosw. 2004; 58: 128-139.
    5. MerzDemlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS. Soy isoflavones improve plasma lipids in normocholesterolemic, premeno-pausal women. Am J Clin Nutr. 2000; 71: 1462-1469.
    
    6. Magee JC, Stone AE, Oldham KT, Guice KS. Isolation, culture, and characterization of rat lung microvascular endothelial cells. Am J Physiol 1994; 267: L433-L441.
    
    7. Gibbons GH. The pathophysiology of hypertension: the importance of angiotensin II in cardiovascular remodeling. Am J Hypertens. 1998; 11: 177S-181S.
    
    8. Neutel JM. Effect of the rennin-angiotensin system on the vessel wall: using ACE inhibition to improve endothelial function. J Hum Hypertens. 2004; 18: 599-606.
    
    9. Asmar RG, Pannier B, Santoni JP, Laurent S, London GM, Levy BI, Safar ME. Reversion of cardiac hypertrophy and reduced arterial compliance after converting enzyme inhibition in essential hypertension. Circulation. 1988; 78: 941-950.
    
    10. Messina MJ, Persky V, Setchell, K.D., Barnes, S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer .1994; 21: 113-131.
    
    11. Setchell KD. Phytoestrogens: the biochemistry, physiology and implications for human health of soy isoflavones. Am J Clin Nutr. 1998; 68: 1333S-1346S.
    
    12. Tominaga S. Cancer incidence in Japanese in Japan, Hawaii, and western United States. Natl Cancer Inst Monogr. 1985; 69: 83-92.
    
    13. Adlercreutz, H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl. 1990; 201: 3-23.
    
    14. Dwyer JT, Goldin BR, Saul N, Gualtieri L, Barakat S, Adlercreutz H. Tofu and soy drinks contain phytoestrogens. J Am Diet Assoc. 1994; 94: 739-743.
    
    15. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med. 2003; 697: 589-599.
    
    16. Akiyama T, Ishida J, Nakagawa S, Ogawara H, W'atanabe S, Itoh N. Genistein, a specific inhibitor of tyrosinespecific protein kinases. J Biol Chem. 1987; 26212: 5592-5595.
    
    17. Rathel TR, Leikert JF, Vollmar AM, Dirsch VM. The soy isoflavone genistein induces a late but sustained activation of the endothelial nitric oxide-synthase sys- tern in vitro. Br J Pharmacol. 2005; 1443: 394-399.
    
    18. Liu D, Homan LL, Dillon JS. Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5'-monophosphate-dependent mechanism. Endocrinology. 2004; 14512: 5532-5539.
    
    19. Tikkanen MJ, Adlercreutz H. Dietary soy-derived isoflavone phytoestrogens Could they have a role in coronary heart disease prevention? Biochem Pharmacol. 2000; 601: 1-5.
    
    20. Nestel PJ, Yamashita T, Sasahara T, Pomeroy S, Dart A, Komesaroff P, Owen A, Nestel PJ. Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and perimenopausal women. Arterioscler Thromb Vasc Biol. 1997; 1712: 3392-3398.
    
    21. Squadrito F, Altavilla D, Morabito N, Crisafulli A, D'Anna R, Corrado F, Ruggeri P, Campo GM. Calapai G, Caputi AP, Saquadrito G. The effect of the phytoestrogen genistein on plasma nitric oxide concentrations, endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women. Atherosclerosis. 2002; 1632: 339-347.
    
    22. Fotsis T, Pepper MS, Montesano R, Aktas E, Breit S, Schweigerer L, Rasku S, Wahala K, Adlercreutz H. Phytoestrogens and inhibition of angiogenesis. Baillieres Clin Endocrinol Metab. 1998; 124: 649-666.
    
    23. Shimokado K, Yokota T, Kosaka C, Zen K, Sasaguri T, Masuda J, Ogata J. Protein tyrosine kinase inhibitors inhibit both proliferation and chemotaxis of vascular smooth muscle cells. Ann N YAcadSci. 1995; 748: 171-175.
    
    24. Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost. 2005; 32: 369-376.
    
    25. Bucki R, Pastore JJ, Giraud F, Sulpice JC, Janmey PA. Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J Thromb Haemost. 2003; 18: 1820-1828.
    
    26. Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension. 1997; 29: 394-400.
    27. Klinge CM. Blankenship KA, Risinger KE, Bhatnagar S, Noisin EL, Sumanase-kera WK, Zha L, Brey DM, Keynton RS. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem. 2005; 280: 7460-7468.
    
    28. Wesselman JP, Dobrian AD, Schriver SD, Prewitt RL. Src tyrosine kinases and extracellular signal-regulated kinase 1/2 mito gen-activated protein kinases mediate pressure-induced c-fos expression in cannulated rat mesenteric small arteries.Hypertension. 2001; 37: 955-960.
    1. Beldent V, Michaud A, Wei L, Chauvet MT, Corvol P. Proteolytic release of human angiotensin-converting enzyme: localization of the cleavage site. J Biol Chem. 1993; 268: 26428-26434.
    2. Berecek KH, Zhang L. Biochemistry and cell biology of angiotensin-converting enzyme and converting enzyme inhibitors. Adv Exp Med Biol. 1995; 377: 141-168.
    3. Gallagher PE, Li P, Lenhart JR, Chappell MC, Brosnihan KB. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. 1999; 33: 323-328.
    4. Ambrosioni E, Costa FV. Cost effectiveness calculations from trials. J Hypertens Suppl. 1996; 14: S47-S52.
    5. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996; 275: 1571-1576.
    6. Gibbons GH. The pathophysiology of hypertension: the importance of angiotensin Ⅱ in cardiovascular remodeling. Am J Hypertens. 1998; 11 : 177S-181S.
    7. Scribner AW, Loscalzo J, Napoli C. The effect of angiotensinconverting enzyme inhibition on endothelial function and oxidant stress. Eur J Pharmacol. 2003; 482: 95-99.
    8. Asmar RG, Pannier B, Santoni JP, Laurent S, London GM, Levy BI, Safar ME. Reversion of cardiac hypertrophy and reduced arterial compliance after converting enzyme inhibition in essential hypertension. Circulation. 1988; 78: 941-950.
    9. Neutel JM. Effect of the rennin-angiotensin system on the vessel wall: using ACE inhibition to improve endothelial function. J Hum Hypertens. 2004; 18: 599-606.
    10. Asmar RG, Pannier B, Santoni JP, Laurent S, London GM, Levy BI, Safar ME. Reversion of cardiac hypertrophy and reduced arterial compliance after convering enzyme inhibition in essential hypertension. Circulation. 1988; 78:941-950.
    11. Dostal DE, Booz GW, Baker KM. Angiotensin Ⅱ signalling pathways in cardiac fibroblasts: conventional versus novel mechanisms in mediating cardiac growth and function. Mol Cell Biochem. 1996; 157: 15-21.
    12.赵海珍,等。天然食品来源的血管紧张素转换酶抑制肽的研究进展。中国生化药物杂志。2004:25:315-317。
    13. Skeggs, LT, Dorer, FE, Kahn, JR, Lentz KE, Levine M. The biochemistry of the rennin - angiotensin system and its role in hypertension. Am J Med. 1976; 60: 737-748.
    14.何海伦,陈秀兰,孙彩云,张玉忠。血管紧张素转化酶抑制肽的研究进展。中国生物工程杂志。2004:24:7-11。
    15. Pesquero JB, Araujo RC, Heppenstall PA, Stucky CL, Silva JA Jr, Walther T. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci USA. 2000; 97: 8140-8145.
    16.杨海平,许丽娟。血管紧张素转换酶分子生物学研究进展。中国煤炭工业医学杂志。2004;5:387-389。
    17. Gallagher PE, Li P, Lenhart JR, Chappell MC, Brosnihan KB. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. 1999; 33: 323-328.
    18. Dixon RA, Ferreira D. Genistein. Phytochemistry. 2002; 60: 205-211.
    19. Kelloff GJ, Crowell JA, Hawk ET, Steele VE, Lubet RA, Boone CW, Covey JM, Doody LA, Omenn GS, Greenwald P, Hong WK, Parkinson DR, Bagheri D, Baxter GT, Blunden M, Doeltz MK, Eisenhauer KM, Johnson K, Knapp GG, Longfellow DG, Malone WF, Nayfield SG, Seifried HE, Swall LM, Sigman CC. Strategy and planning for chemopreventive drug development: clinical development plans Ⅱ. J Cell Biochem Suppl. 1996; 26:54-71.
    20. Satake N, Shibata S. The potentiating effect of genistein on the relaxation induced by isoproterenol in rat aortic rings. Gen Pharmacol. 1999; 33: 221-227.
    
    21. Duarte J, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J. Effect of tyrosine kinase and tyrosine phosphatase inhibitors on aortic contraction and induction of nitric oxide synthase. Eur J Pharmacol. 1997; 338: 25-33.
    
    22. Liu D, Homan LL, Dillon JS. Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 3', 5'-monophosphate-dependent mechanism. Endocrinology. 2004; 145: 5532-5539.
    1. Ingram D, Sanders K, Kolybaba M, Lopez D. Case-control study of phyto-oestrogens and breast cancer. Lancet. 1997; 350: 990-994.
    2. Willett WC. Diet and health: what should we eat? Science. 1994; 264: 532-537.
    3. Adlercreutz H, Markkanen H, Watanabe S. Plasma concentrations of phyto-oestrogens in Japanese men. Lancet. 1993; 342:1209-1210.
    4. Maubach J, Bracke ME, Heyerick A, Depypere HT, Serreyn RF, Mareel MM, De Keukeleire D. Quantitation of soy-derived phytoestrogens in human breast tissue and biological fluids by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2003; 784: 137-144.
    5. Wang TT, Sathyamoorthy N, Phang JM. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 1996; 17: 271-275.
    6. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997; 138: 863-870.
    7. Sfakianos J, Coward L, Kirk M, Barnes S. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr. 1997; 127: 1260-1268.
    8. Xu X, Harris KS, Wang HJ. Bioavailability of soybean isoflavones depends upon gut microflava in women. J Nutr. 1995; 125: 2307-2315.
    9. King RA, Broadbent JL, Head RJ. Absorption and excretion of the soy isoflavone genistein in rats. J Nutr. 1996; 126: 176-182.
    10. Morton MS, Wilcox G, Wahlgvist ML, Griffiths K. Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. J Endocrinol. 1994; 142: 251-259.
    11. Karr SC, Lampe JW, Hutchins AM, Slavin JL. Urinary isoflavonoid excretion in humans is dose dependent at low to moderate levels of soy-protein consumption. AMJ Clin Nutr. 1997; 66: 46-51.
    12. Barnes S. Effect of genistein on in vitro and in vivo models of cancer. J Nutr. 1995; 125: 777s-783s.
    13. Dixon RA, Ferreira D. Genistein. Phytochemistry. 2002; 60: 205-11.
    14. Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr. 1999; 129: 399-405.
    15. Steele VE, Pereira MA, Sigman CC, Kelloff GJ. Cancer Chemoprevention Agent Development Strategies for Genistein. J Nutr. 1995; 125: 713s-716s.
    16.刘颖。染料木黄酮对人体胃癌细胞生长抑制作用的研究。营养学报。2001;23:62-65。
    17. Yan C, Han R. Genistein suppresses adhesion induced protein tyrosine phosphorylation and invasion of B16 BL6 melanoma cells. Cancer Lett. 1998; 129: 117-124.
    18. Peterson C. Evaluation of the biochemical targets of genistein in tumor cell. J Nutr. 1995; 125: 784s-789s.
    19. Yu Z, Tang Y, Hu D. Inhibitory effect of genistein on mouse colon cancer MC-26 cells inloved TGF-betal/Smad pathway. Biochen Biophys Res Commun. 2005; 333: 827-832.
    20. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr. 1995; 125: 790S-797S.
    21. Swami S, Krishnan AV, Peehl DM, Feldman D. Genistein potentiates the growth inhibitory effects of 1, 25-dihydroxyvitamin D(3)in DU145 human prostate cancer cells: Role of the direct inhibition of CYP24 enzyme activity. Mol Cell Endocrinol. 2005; 241: 49-61.
    22. Vargs R, Wroblewska B, Tego A, Hatc Jad, Ramwell PW. Oestrodial in habits smooth muscle cell proliferatonion of pigcoronary artery. Br J Pharmacol. 1993; 109: 612-617.
    23. Raines EW, Ross R. Biology of atherosclerotic plaque formation: possible role of growth factors in lesion development and the potential impact of soy. J Nutr. 1995; 125: 624s-630s.
    24. Fotsis T, Pepper M, Aslercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonid, inhibits cell proliferation and vitro angiogensis. J Nutr. 1995; 125: 790-797.
    25. Takahashi M, Ikeda U, Masuyama J, Kitagawa S. Kasahara T, Shimpo M, Kano S, Shimada K. Monocyte-endothelial cell interaction induces expression of adhesion molecules on human umbilical cord endothelial cells. Cardiovasc Res. 1996; 32: 422-429.
    26. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987; 262: 5592-5595.
    27. Kondo K, Suzuki Y, Ikeda Y, Umemura K. Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation. Eur J Pharmacol. 2002; 455: 53-57.
    28. Dobrydneva Y, Williams RL, Morris GZ, Blackmore PF. Dietary phytoestrogens and their synthetic structural analogues as calcium channel blockers in human platelets. J Cardiovasc Pharmacol. 2002; 40: 399-410.
    29. Manolagas SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000; 21: 115-137.
    30.那晓琳,崔洪斌。大豆异黄酮的类雌激素作用与预防骨质疏松研究进展。中国骨质疏松杂志。2002;8:370-371。
    31. Li B, Yu S. Oenistein prevents bone resorption diseases by inhibiting bone re sorption and stimulating bone formation. Biol Pharm Bull. 2003; 26: 780-786.
    32. Dubois D, Nochy D, Chanson P, Timsit J, Chauveau D, Nochy D, Guillausseau P J, Lubetzki J. Remission of proteinuria following correction of hyperlipidemia in NIDDM patients with nondiabetic glomerulopathy. Diabetes Care. 1994; 17: 906-908.
    33. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am JClin Nutr. 2002; 76:1191-1201.
    34. Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, Hepburn DA, Atkin SL. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care. 2002; 25: 1709-1714.
    35. Goodman-Gruen D, Kritz-Silverstein D. Usual dietary isoflavone intake is associated with cardiovascular risk factors in postmenopausal women. J Nutr. 2001; 131: 1202-1206.
    36.刘楠梅,袁伟杰,张小瑛,刘先锋,贾凤玉。金雀异黄素对糖尿病大鼠代谢紊乱及肾脏病理的影响。中国比较医学杂志。2005;4:200-202。
    37. Russo A, Cardile V, Lombardo L, Vanella L, Acquaviva R. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J Nutr Biochem. 2006; 17: 103-108.
    38. Wei H, Saladi R, Lu Y, Wang Y, Palep SR, Moore J, Phelps R, Shyong E, Lebwohl MG. Isoflavone Genistein: photoprotection and clinical implications in dermatology. J Nutr. 2003; 133: 3811s-3819s.
    39. Filipe P, Silva JN, Haigle J, Freitas JP, Fernandes A, Santus R, Morliere P. Contrasting action of flavonoids on phototoxic effects induced in human skin fibroblasts by UVA alone or UVA plus cyamemazine, a phototoxic neuroleptic. Photochem Photobiol Sci. 2005; 4: 420-428.
    40. Wu Q, Wang M, Simon JE. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A. 2003; 1016:195-209.
    41. Arturo R. The use of an isflavone supplement to relieve hot flushes. Female Patient. 2002; 127: 35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700