喉癌多药耐药相关基因的筛查及中药逆转机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喉癌是头颈部较为常见的恶性肿瘤之一,但在其综合治疗中,化疗的疗效欠佳,其主要原因是由于多药耐药性的产生。因此研究喉癌多药耐药相关基因的表达和调控机制以及筛选具有高效、低毒及多靶点性的中药逆转剂,对于提高喉癌的疗效,尤其是远期疗效,有重要的意义。
     本文以长春新碱为诱导剂,采用药物浓度梯度递增法体外诱导建立了喉癌多药耐药Hep-2/v细胞模型。在此基础上应用基因芯片技术研究喉癌耐药细胞株Hep-2/v与其亲本细胞Hep-2之间的多药耐药相关miRNA及mRNA表达谱,筛选出差异表达的miRNA及mRNA,并利用Target数据库初步预测了miRNA的靶基因。MTT、流式细胞术及RT-PCR、Western Blot等技术研究中药对喉癌细胞的逆转特性及多药耐药相关基因mRNA的表达变化。统计学方法对实验结果进行了分析。
     实验结果如下:
     (1)以药物浓度梯度递增法成功构建了喉癌多药耐药细胞模型。
     (2)AFFX miRNA芯片筛查出差异表达的多药耐药相关miRNA共7个,其中表达上调2个,表达下调5个。
     (3)全基因组寡核酸微阵列芯片筛查出差异表达的多药耐药相关基因共有605个,其中表达上调的基因270个,表达水平下调的基因335个。
     (4)结合基因芯片筛查结果,初步预测miRNA-210的靶基因为HTRA1及NUPR1;miRNA-923的靶基因为NUPR1;miRNA-93的靶基因为RGS10。
     (5)粉防己碱及川芎嗪对Hep-2/v细胞的逆转倍数分别为2.22倍和1.88倍。RT-PCR及Western Blot检测显示粉防己碱能够逆转Hep-2/v细胞内HTRA1、RGS10及MDR1基因的表达,但对NUPR1基因的表达无逆转作用。
     本实验对喉癌多药耐药相关基因的表达及调控机制进行了研究,表明miRNA可通过调控其靶基因的表达参与喉癌的多药耐药性。同时对中药的逆转机制进行了研究,并筛选出对喉癌耐药细胞有明显逆转作用的中药逆转剂,为进一步研究奠定了基础。
Laryngeal cancer is one of the relative common malignant tumors of head and neck. However, operations are still the main clinical methods currently, with poor curative effects of chemotherapy; MDR in laryngeal cancer is the main reason for restricting the effects of chemotherapy. Studies show that MDR in laryngeal cancer is an intricate process with multi-factor participation. In recent years, with the development of molecular biology, new MDR-related genes have been discovered continuously, but the molecular mechanism of MDR has not been fully clarified. MiRNA is a class of non-coding small RNA widely existed in plants and animals bodies, found in recent years, can make post-transcriptional negative regulation of gene expression. MiRNA widely participates in the occurrence and development of tumor, each miRNA can regulate about 200 gene expressions. It is predicted that miRNA can regulate MDR related gene expression, thus affecting the drug resistant phenotype of the laryngeal cancer cell. Hence this study establishes MDR of laryngeal cancer cell model, using gene microarray to screen MDR related miRNA and mRNA expressions, screen out the differential expression of miRNA and mRNA, and discuss the expression and regulatory mechanism of MDR in laryngeal cancer.
     Aiming at the MDR of laryngeal cancer, the effective therapy mean is to use drug resistant reversal agent, however, the toxicity of the present developed reversal agent restricted its clinical application, due to the complexity of the MDR mechanism, only repressing and blocking the single drug resistant mechanism is not enough for eliminating MDR. TCM is rich in resources with multi-target function, so seeking new high efficiency and low toxicity anti-tumor medicine and TCM reversal agent has become the key to the current drug resistant tumor research. This study is on the basis of the molecular mechanism of the MDR, with MTT、RT-PCR and Western blot methods, it detects the reversal function and reversal mechanism of TCM on laryngeal cancer Hep-2/v, in order to find a TCM reversal agent with clinical value.
     The experiments as follow:
     (1) Establishment of MDR cell lines Hep-2/v in laryngeal cancer
     With vincristinc (VCR) as the inducer, induce laryngeal cancer Hep-2 cell by increasing the concentration of drug. First using MTT method, detect that the half repressed concentration(IC50) of VCR on the parent cell in laryngeal cancer is 0.04umol/L, the first adding drug concentration is 0.02umol/L VCR, gradually increase the concentration of drug till the cells grow stably and go down to posterity. After 12 months, the cells can grow stably in the concentration of 0.96 umol/L, and this cell lines are named Hep-2/v. Through inverted microscope and electron microscope, observe the morphology change of tumor cells. MTT method is used to detect the MDR of tumor cells, the cell periodical distribution and the accumulation of Rh123 in cells are detected by flow cytometry, and the RT-PCR and Westren blot technology are used to detect the mdr1/P-gp expression on gene and protein levels.
     Results: IC50 of Hep-2/v cells is detected as 1.8umol/L with MTT method, the drug resistant to VCR is 45 times of Hep-2 cells, while this cell line has drug resistance on different degree on the anti-cancer drugs with different structures and action mechanisms, such as 5-Fu and DDP. It is seen that the cells of Hep-2/v are relatively big, and the surface microvillus disappears, the intracellular granules increases, the adherence ability is reduced than that of the parent cells. The detection by flow cytometry shows that Hep-2/v cells are higher than cells in G0/G1 period, while cells in S period are reduced obviously; Rhodamine positive rate of Hep-2/v cells is much higher than Hep-2/v cells. RT-PCR and Western blot detected at the gene and protein levels shows expression difference of MDR1/P-gp between Hep-2 and Hep-2/v has a significant meaning.
     (2) Screening and identification of MDR related miRNA in laryngeal cancer
     Screen the expression profiling of MDR related miRNA in laryngeal cancer using AFFX miRNA microarray, SAM software screen the differential expression miRNA, the screening standard is: q-value≤5%, meanwhile, Fold Change≥2 or Fold Change≤0.5, including miRNA of expression upregulation and downregulation miRNAs. RT-PCR verifies the differential expression miRNA for the screening parts.
     Results: AFFX miRNA micorarray screens out 7 MDR related miRNAs of differential expressions, among them, 2 are upregulated, and 5 are downregulated. RT-PCR detection shows that the expression changes of miRNA-210,miRNA-923 and miRNA-93 are in conformity with the microarray results.
     (3) Screening and identification of MDR related mRNA in laryngeal cancer
     Screen the expression profiling of MDR related mRNA in laryngeal cancer using whole-genome oligonucleotide microarray and SAM software to make analysis, FDR is controlled within 5%, in two times standard to screen differential expression genes. Target database predicts the target genes of miRNA-210, miRNA-923 and miRNA-93, and verify their expressions using RT-PCR method.
     Results: The whole-genome oligonucleotide microarray screen out total 605 MDR related genes of differential expression, among them 270 are expression upregulated genes, and 335 are downregulated genes. Through primary prediction of Target database, the target genes of miRNA-210 are HTRA1 and NUPR1; the target gene of miRNA-923 is NUPR1; miRNA-93’s gene is RGS10. RT-PCR detection shows that the expression changes of HTRA1, NUPR1and RGS10 are in conformity with the microarray results.
     (4) Studies on reversal MDR of TCM in laryngeal cancer
     Detect the non-toxicity doses of TCM Tetrandrine and Tetramethylp yrazine on Hep-2/v cells, and the reversal function on Hep-2/v cells under the doses using MTT method. Flow cytometry detects the Rhodamine accumulation in Hep-2/v cells before and after TCM reversal, RT-PCR and Western Blot detect the expression changes of HTRA1, NUPR1, RGS10 and MDR1 genes.
     Results: The reversal folds of Tetrandrine and tetramethylp yrazine to Hep-2/v cells are 2.22 and 1.88 respectively. Flow cytometry detection shows that the Rhodamine positive rate increased obviously after adding Tetrandrine and tetramethylp yrazine in Hep-2/v cells respectively. RT-PCR and Western Blot detection shows that Tetrandrine can reverse the expression of HTRA1, RGS10 and MDR1 genes in Hep-2/v cell, but the expression of NUPR1 no reversal.
     Conclusions:
     (1) Hep-2/v cells are MDR cells with stable drug resistance; Hep-2/v cells have basic biological characteristics of drug resistant cells, which are the ideal cell models for study the drug resistant mechanism and screening reversal agent.
     (2) The differential expression miRNA screened out from Hep-2 and Hep-2/v cells in laryngeal cancer may take part in the occurrence of MDR of laryngeal cancer.
     (3) The differential expression miRNA screened out from Hep-2 and Hep-2/v cells in laryngeal cancer might take part in the occurrence of MDR of laryngeal cancer. Gene microarray technology is an effective method to make parallel analysis of multi-gene, and discuss the MDR mechanism.
     (4) MiRNA could regulate the expression of its target genes thus to affect the sensitivity of laryngeal cancer for chemotherapy.
     (5) Tetrandrine could reverse the MDR of laryngeal cancer by a variety of mechanisms, which is able to become the MDR reversal agent with clinical value.
引文
[1] Ford JM, Hait WN. Pharmacology of drugs that alert multidrug resistance in cancer [J]. Phamacol Rev, 1990, 42:155-199.
    [2] Jones RJ. Biology and treatment of chronic myeloid leukemia [J]. Curr Opin Oncol, 1997, 9:3-7.
    [3] Thomas H, Coley HM. Overecoming multidrug resistance in cancer an update on the clinical strategy of inlubiting p-glycoprotein[J]. Cancer Control, 2003, 10(2):159-161.
    [4]李莉,董频,万夷,等.人喉癌紫杉醇耐药细胞株的建立及其生物学特性[J].临床耳鼻咽喉头颈外科杂志, 2007, 21(18):843-847.
    [5] Chevillard S, Pouillart P, Beldjord C, et al. Sequential assessment of multidrug resistance phenotype and measurement of S phase fraction as predictive markers of breast cancer respinse to neoadjunant chemotherapy[J]. Cancer, 1996, 77:292.
    [6] Decker DA, Morres LW, Levine AJ, et al. Immunohistochemical analysis of P-gycoprotein in breast clinical correlation[J]. Ann Clin Lab Sci, 1995, 25:52-59.
    [7] Cole SP, Bhardwaj G, Gerlich JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell linel[J]. Science, 1992, 258(5088):1650.
    [8] Borst P, Evers R, Kool M, et al. A familiy drug transporters the multidrug resistance-associated proteins[J]. J Natl Cancer inst, 2000, 92(16):1295-1302.
    [9] Chen CL, Sheen TS, Lou IU, et al. Expression of multidrug resistance 1 and glutathione-S-transferase-Pi protein in nasopharyngeal carcinoma [J]. Hum Pathol, 2001, 32(11):1240-1244.
    [10]杨红枚,李文鑫,章小平,等.足叶乙甙诱导的鼻咽癌细胞亚系共表达多药耐药相关蛋白和P-gp[J].中华医学杂志, 2000, 80(2):155-156.
    [11] Broxtermans HI, Schuurhuis GI. Transport protein in drug resistance detecti on and prognostic significance in acute myeloid leukemia[J]. J int Med, 1997, 740:S-147.
    [12] Izquierdo MA, Scheffer, Flens, et al. Broad distribution of the multidrug resistance related vault protein LRP in normal human tissues and tumours[J]. Am J Pathol, 1996, 148:877.
    [13] Ban M, Takahashi Y, Takayama T, et al. Transfection of Glutathione Stransferase- (GST)πantisense complementary DNA increases the sensitvity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide[J]. Cancer Res, 1996, 56:3577.
    [14] Pommier Y, Leteurte F, Fesen MR, et al. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors[J]. Cancer Invest, 1994, 12:530-542.
    [15] Yin ZH, Ren CP, Li F, et al. Suppression of bcl-2 gene by RNA interference increases chem osensitivity to cisplatin In nasopharyngeal carcinom a cell line CNE1[J]. Acta Biochim Biophys Sin, 2004, 36(11):749-753.
    [16] Cheung HW, Jin DY, Ling M, et al. Mitotic arrest deficient 2 expression induces chem osensitization to a DNAdam aging agent,cisplatin, in nasopharyngeal carcinoma cells[J]. Cancer Res, 2005, 65(2):1450-1458.
    [17] Wang X, Masters JR, Wong YC, et al. Mechanism of differential sensitivity to cisplatin in nasopharyngeal carcinom a cells[J]. Anticancer Res, 2001, 21-(1A):403-408.
    [18] Ralhan R, Swain RK, Agarwal S, et al. P-glycoprotein is positively correlated with p53 in human oral pre-malignant and malignant lesions and is associated with poor prognosis[J]. Int J Cancer, 1999, 84:80.
    [19] Zaika AI, Slade N, Erster SH, et al.△Np73, a dom inantnegative inhibitor of wild- type p53 and TA p73, is up regulated in human tumors[J]. J Exp Med, 2002, 196(6):765-780.
    [20] Herr I, Wilhelm D, Behler T, et al. JNK/SAPK activity is not sufficient for anticancer therapy-induced apoptosis involving CD95-1, TRAIL and TNF[J]. Int J Cancer, 1999, 80:417-424.
    [21] Adjei AA, Blocking oncogenic Ras signaling for cancer theraphy[J]. J Natl Cancer Inst, 2001, 93(14):1062-1074.
    [22] Luo SF, Chen ZH, Zhang BX, et al. Role of hypoxia-inducible factor-1αinformation of multidrug resistance induced by microenvironment in hepatocellular carcinoma[J]. The Chinses- German Journal of Clinical Oncology, 2006, 5(3):178-183.
    [23] Hui EP, Chan AT, Pezzella F, et al. Coexpression of hypoxia-inducible factors 1 and 2,carbonic anhydraseⅨand vascular endothelial growth factor in nasopharyngeal carcinoma and relation ship to survival[J]. Clin Cancer Res, 2002, 8(8):2595-2604.
    [24] Kuwahara Y, Tanabe C, Ikeuchi T, et al. Alternative mechanisms of gene amplification in human cancers[J]. Genes Chromosomes Cancer, 2004, 41(2):125-132.
    [25] Singer MJ, Mesner LD, Friedman CL, et al. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks[J]. PNAS, 2000, 97(14):7921-7926.
    [26] Jayasurya A, Bay BH, Yap WM, et al. Proliferative potential in nasopharyngeal carcinoma: correlations with metallothionein expression and tissue zinc levels[J]. Carcinogene, 2000, 21(10):1809-1812.
    [27]姜润德,张立新,岳文,等.人鼻咽癌顺铂耐药细胞系(CNE2/DDP)的建立及耐药相关基因的筛选[J].癌症, 2003, 22(4):337-345.
    [28]姜润德,胡亮,关心元,等.人鼻咽癌顺铂耐药细胞系(CNE2/DDP)及其亲代细胞CNE2的比较基因组杂交的研究[J].癌症, 2004, 23(4):386-390.
    [29] Wang X, Ling MT, Guan XY, et al. Identification of anovel function of TW IST, a bHLH protein, in the developm ent of acquired taxol resistance in human cancer cells[J]. Oncogene, 2004, 23(4):474-482.
    [30] Cheung HW, Ling M, Tsao SW, et al. Id-1 induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells[J]. Carcinogene, 2004, 25(6):881-887.
    [31]潘文萍,姬传富.中药逆转肿瘤多药耐药的研究进展[J].山东中医杂志, 2006, 25(6):426-428.
    [32]蔡宇.补骨脂逆转白血病HL60/HT耐药细胞研究[J].中成药, 2004, 26(9):773.
    [33]蔡宇,蔡天革.补骨脂素逆转多药耐药系K562/ADM耐药性研究[J].中国药理学通报, 2003, 19(10):1164.
    [34]蔡宇,陈冰,张凤海,等.补骨脂素对人乳腺癌多药耐药细胞Bcl-2基因蛋白表达的影响[J].毒理学杂志, 2005, 19(4):336.
    [35]曲正,侯培珍,曲伟,等.川芎嗪逆转人胃癌细胞SGC7901/ADM多药耐药的实验研究[J].包头医学院学报, 2005, 21(3):221.
    [36]马海英,赵谨瑶,金伟,等.川芎嗪对转基因多药耐药细胞K562/MDR耐药性的逆转作用[J].吉林大学学报(医学版), 2009, 35(4):599-603.
    [37]徐萌,周蓓.汉防己甲素逆转逆转肺癌化疗耐药和凋亡抗性的实验研究[J].新中医, 2006, 28(6):90-91.
    [38]徐建业,周琦,汤伟.汉防己甲素、罗通定及川芎嗪对肿瘤细胞KBV200多药耐药性逆转作用的研究[J].重庆医学, 2005, 34(9):1383-1386.
    [39]赵殿凤,刘子玲,马宁,等.汉防己甲素逆转白血病细胞株K562/A02耐药的机制[J].吉林大学学报(医学版), 2009, 35(1):100-103.
    [40]叶琳,王驰,谢明均,等.粉防己碱对喉癌耐药细胞株Hep-2/ADM多药耐药逆转作用研究[J].第三军医大学学报, 2009, 31(12):1205-1208.
    [41]孙付军,聂学诚,李贵海.粉防己碱逆转获得性多药耐药小鼠S180肿瘤细胞P170过度表达与调控细胞凋亡相关性研究[J].中国中药杂志, 2005, 30(4):280-282.
    [42]彭向前,张文会,李军.氧化苦参碱逆转多药耐药细胞系K562/A02耐药性的研究[J].中国肿瘤临床, 2008, 35(19):1127-1130.
    [43]张金廷,崔慧先,李庆星,等.苦参碱对KB细胞及其多药耐药细胞KBv200的凋亡诱导作用[J].华西口腔医学杂志, 2005, 23(3):254-257.
    [44]李贵海,潘成业,孙付军,等.不同生物碱对小鼠S180肉瘤细胞获得性MDR相生物因子表达的干预[J].中国中医基础医学杂志, 2006, 12(8):585.
    [45]史曦凯,张翼军,赵春竟.人参皂苷单体Rb1对多药耐药细胞系K562、HHT细胞内柔红霉素浓度的影响[J].重庆医学, 2001, 30(6):507-509.
    [46]立彦,王自正,俞腾飞,等.人参皂苷Rb1对耐长春新碱的急性早幼粒白血病(HL60/VCR)细胞多药耐药逆转的实验研究[J].放射免疫学杂志, 2005, 18(5): 362-365.
    [47]封颖璐.人参皂苷与肿瘤[J].国外医学:肿瘤学分册, 2005, 32(9):665-668.
    [48]孙慧君,王晓琦,于丽敏.丹皮酚对MDR逆转作用的研究[J].解剖科学进展, 2000, 6(1):59-62.
    [49]孙国平,王华,沈玉先.丹皮酚诱导K562细胞凋亡的研究[J].中国药理学通报, 2004, 20(5):550-552.
    [50]于丽敏,急丽娟,刘伟先. ?-榄香烯诱导K562白血病细胞凋亡[J].中华肿瘤杂志, 2001, 23:193.
    [51]胡军,赵瑾瑶. ?-榄香烯乳剂逆转多药耐药细胞株MCF-7/ADM对阿霉素耐药性研究[J].中国微生态学杂志, 2002, 14(4):214-215.
    [52]陈春美,杨卫忠,王春华,等.榄香烯对人脑胶质瘤U251/ADM耐药细胞株多药耐药性的逆转作用[J].中华实验外科杂志, 2006, 23(4):601-603.
    [53]郭娟娟,冯长伟,潘祥林.冬凌草甲素诱导多药耐药细胞系K562/Ao2凋亡逆转耐药性的研究[J].安徽中医学院学报, 2000, 19(3):34-36.
    [54] Scambia G, Ranelletti FO, Panici PB, et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast cancer cell line: P- glycoprotein as a possible target[J]. Cancer chemother Pharmacol, 1994, 34(6):459.
    [55]严兴耘,彭俊华,张华欣,等.槲皮素对结肠癌HT-29细胞增殖及周期的影响[J].世界华人消化杂志, 2006, 14(11):1071-1076.
    [56]韩晓红,盖晓冬,薛延军,等.柴胡提取物对人肝癌细胞BEL-7402细胞内游离钙离子浓度和细胞内VCR蓄积的影响[J].肿瘤, 2006, 26(4):314-317.
    [57]袁耀宗,鲍英,夏璐,等.应用基因芯片研究康莱特对人胰腺癌Patu8988细胞的凋亡诱导作用[J].中华消化杂志, 2004, 2(8):451-4541.
    [58]秦群,谢兆霞,黄程辉,等.中药拮新康对K562/A02细胞内阿霉素积聚浓度的影响[J].湖南中医学院学报, 2005, 25(5):18-20.
    [59]石宇雄,黄永明,许少健,等.参麦注射液对人成骨肉瘤MDR细胞株R-OS-732逆转作用[J].广东医学, 2006, 27(8):1200-1201.
    [60]傅洁,刘鲁明,沈谨,等.消胰化积方联合健择对SW1990抑瘤积逆转MDR作用观察[J].中国中医基础医学杂志, 2007, 13(4):62-67.
    [61]许建华,范中泽,孙珏,等.肠胃清药物血清对人口腔表皮癌细胞株KB-A-1多药耐药的逆转作用[J].肿瘤, 2005, 25(6):565.
    [62]夏蕾,沈明.四物合剂对人红白血病细胞株K562/ADM多药耐药性的逆转作用研究[J].中国中药杂志, 2004, 29(8):792-795.
    [63]丁世凯,游海波,李起,等.中药复方“肝癌一号”治疗晚期肝癌的初步临床研究[J].重庆医学, 2008, 37(15):1711-1715.
    [64] ZHOU Dong-Gen, LUO Yu-Ping, LI Si-Guang. The structure, biogenesis and function of microRNA[J]. Biotechnology Bulletin, 2005, 5:20-26.
    [65] Lund E, Guttingers S, Calado A, et al. Nuclearexport of microRNA precarsors[J].Science, 2004, 303(5654):95-98.
    [66] Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery [J]. Nature Genetics, 2006, 38: S2-S7.
    [67] HE Chen, TAN Jun, CHEN Wei, NIE Neng. The progress of microRNA research[J]. Biotechnology Bulletin, 2006, 1:18-25.
    [68] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543):853-858.
    [69] Lewis BP, Shih IH, Jones-Rhoades MW. et al. Prediction of mammalian microRNA targets[J]. Cell, 2003, 115(7):787-798.
    [70] Abrahante JE, Daul AL, Li M, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs[J]. Dev Cell, 2003, 4(5):625-637.
    [71] John B, Enright AI, Aravin A, et al. Human MicroRNA targets[J]. Plos Biol, 2004, 2-(11):e363.
    [72] Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006):350-355.
    [73] Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. ProcNat Acad Sci USA, 2002, 99(24):15524-15529.
    [74] Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell, 2005,120:635-647.
    [75] Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung Cancers in association with shortened postoperative survival[J]. Cancer Res, 2004, 64(11):3753-3756.
    [76] Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92 is overexpressed in human lung cancers and enhances cell proliferation[J]. Cancer Res, 2005, 65(21):9628-9632.
    [77] He L, Thomson JM, Hemanm MT, et al. A microRNA polycistron as a potential human oncogene[J]. Nature, 2005, 435(7043):828-833.
    [78] Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solidtumors defines cancer gene targets[J]. PNAS, 2006, 103(7): 2257-2261.
    [79] Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNA in primary glioblastoma[J]. Biochem Biophys Res Commun, 2005, 334(4):1351-1358.
    [80] Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res, 2005, 65(14):6029-6033.
    [81] Bottoni A, Piccin D, Taliti F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas[J]. J Cell Physiol, 2005, 204(1):280-285.
    [82] Michael MZ, Connor SM, Vanholstpellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia[J]. Mol Cancer Res, 2003, 1(12):882-891.
    [83] He H, Jazdzewski K, Li W. The role of microRNA gene in papillary thyroid carcinoma[J]. Proc Natl Acad Sci USA 2005, 102(52):19075-19080.
    [84] Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res, 2005, 65(16):7065-7077.
    [85] Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias[J]. Proc Natl Acad Sci USA, 2004, 101(32): 11755-11760.
    [86] Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers[J]. Nature, 2005, 435(7043):834-838.
    [87] He I, Thomson JM, Heman S, et al. A microRNA polycistion as a potential human oncogene[J]. Nature, 2005, 435(7043):828-833.
    [88] Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with‘antagomirs’[J]. Nature, 2005, 438(7068):685-689.
    [89] Weiler J, Hunziker J, Hall J. Anti miRNA oligonucleotides(AMOs): Ammunition to target miRNAs implicated in human disease[J]. Gene Ther, 2005 Sep29.
    [90] Liu XY, Gu JF, Shi WF. Targeting gene-virotherapy for cancer[J]. Acta Biochim Biophys Sin(Shanghai), 2005, 37(9):581-587.
    [91] Pei Z, Chun L, Zou W, et al. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and inmice[J]. Hepatology, 2004, 39(5):1371-1381.
    [92] Zou W, Luo C, Zhang Z. Novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent[J]. Onco-gene, 2004, 23(2):457-464.
    [93] Silva JM, Li MZ, Chang K, et al. Second generation shRNA libraries covering the mouse and human genomes[J]. Nat Genet, 2005, 37(11):1281-1288.
    [94] Stegmeier F, Hu G, Rickles RJ, et al. A lentiviral microRNA-based system for single-copy polymerase II regulated RNA interference in mammalian cells[J]. Proc Natl Acad Sci USA, 2005, 102(37):13212-13217.
    [95] Yang W, Chendrimada TP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases[J]. Nature Structural & Molecular Biology, 2006, 13:13-21.
    [96] Yang Z, Ebright YW, Yu B, et al. HEN1 recognizes 21–24 nt small RNA duplexes and deposits methyl group onto the 2-OH of the 3-terminal nucleotide. [J]. Nucleic Acids Research, 2006, 34:667-675.
    [97] Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA Discovery [J]. Nature Genetics, 2006, 38(Suppl.):s2-s7.
    [98] Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals[J]. Nature, 2005, 434: 338-345.
    [99] Bonnet E, Wuyts J, Rouze P, et al. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences[J]. Bioinformatics, 2004, 20:2911-2917.
    [100] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs[J]. Nature Genetics, 2005, 37:766-770.
    [101] Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs[J]. Nucleic Acid Research, 2004, 32(22):e188.
    [102] Chen JF, Mandel EM, Thomson JM,et al. The role of microRNA-1 and microRNA- 133 in skeletal muscle proliferation and differentiation[J].Nature Genetics, 2006, 38(2): 228-233.
    [103] Bandres E, Cubedo E, Agirre X,et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues[J]. Molecular Cancer, 2006, 5:29.
    [104] Krutzfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs[J]. Nature Genetics, 2006, 38:14-19.
    [105] Rajewsky N. microRNA target predictions in animals[J]. Nature Genetics Supplement, 2006, 38:s8-s13.
    [106] H Zhu, H Wu, XP Liu, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J]. Biochemical Pharmacology, 2008, 76(5):582-588.
    [107] Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer, 2008, 123(2):372-379.
    [108] Kovalchuk O, Filkowski J. Meservv J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J]. Mol Cancer Ther, 2008, 7(7):2152-2159.
    [109] Yang H, Kong W, He L,et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN[J]. Cancer Res, 2008, 68(2):425-33.
    [110] Blower PE, Verducci JS, Lin S, et al. MicroRNA expression profiles for the NCI-60 cancer cell panel[J]. Mol Cancer Ther, 2007, 6:1483-91.
    [111] Blower PE, Chung JH, Verducci JS,et al.MicroRNAs modulate the chemosensitivity of tumor cells[J]. Mol Cancer Ther, 2008, 7(1):1-9.
    [112] Hong L, Zhao Y, Wang J et al. Reversal of Multidrug Resistance of Adriamycin resistant Gastric Adenocarcinoma Cells Through the Up-regulation of DARPP-32[J]. J Dig Dis Sci, 2008, 53(1):101-107.
    [113] Kwak MK, Lee HJ, Hur K, et al. Expression of Kruppel-like factor 5 in human gastric carcinomas[J]. Cancer Res Clin Oncol, 2008, 134(2):163-167.
    [114] Giovanni Carlo Cesana, Fabrizio Romano, Gaia Piacentini, et al. Low-dose interleukin-2 administered pre-operatively to patients with gastric cancer activates peripheral andperitumoral lymphocytes but does not affect prognosis[J]. Annals of Surgical Oncology, 2007, 14(4):1295-1304.
    [115] Macrae I, Ma E, Zhou M, et al. In vitro reconstitution of the human RISC-loading complex[J]. Proc Natl Acad Sci USA, 2008, 105:512-7.
    [116] Ambros V. The function of animal microRNA[J]. Nature, 2004, 431:350-55.
    [117] Matskevich AA, Moelling K. Dicer is involved protection against influenza virus infection[J]. J Gen Virol, 2007, 88:2627-35.
    [118] Zhu H, Wu H, Liu XP, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1P-glycoprotein expression in human cancer cells[J]. Biochem Pharmacol, 2008, 76(5):582-588.
    [119] Sorrentino A, Liu CG, Addario A, et al. Role of MicroRNAs in drug-resistant ovarian cancer cells[J]. Gynecol oncol, 2008, 111(3):478-486.
    [120] Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies let-7i as a novel biomarker and the rapeutic target in human epithelial ovarian cancer[J]. Cancer Res, 2008, 68(24):10307-10314.
    [121] Mathew L k, Simon M C. MiRNA-210:a sensor for hypoxic stress during tumorrigenesis[J]. Mol cell, 2009, 35(6):737-8.
    [122] Gee HE, Camps C, Buffa FM, et al. hsa-miR-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer[J]. Cancer, 2010 Feb 24. [Epub ahead of print].
    [123] Du L, Schaqeman JJ, Subauste MC, et al. MiR-93,miR-98,and miR-197 regulate expression tumor suppressor gene FUS1[J]. Mol Cancr Res. 2009, 7(8):1234-43.
    [124] Taieb D, Malicet C, Garcia S, et al. Inactivation of stress protein p8 increases murine carbon tetrachloride hepatotoxicity via preserved CYP2E1 activity [J]. Hepatology, 2005, 42(1):176-182.
    [125] Fang J, Menon M, Kapelle W, et al. EPO modulation of cell-cycle regulatory genes and cell division, in primary bone marrow erythroblasts [J]. Blood, 2007, 110(7): 2361-2370.
    [126] Su SB, Motoo Y, Iovanna JL, et al. Expression of p8 in human pancreatic cancer [J].Clin Cancer Res, 2001, 7(2): 309-313.
    [127] Ito Y, Yoshida H, Motoo Y, et al. Expression of p8 protein in medullary thyroid carcinoma [J]. Anticancer Res, 2005, 25(5): 3419-3423.
    [128] Ito Y, Yoshida H, Motoo Y, et al. Expression and cellular localization of p8 protein in thyroid neoplasms [J]. Cancer Lett, 2003, 201(2): 237-244.
    [129] Ito Y, Yoshida H, Motoo Y, et al. Expression of p8 protein in breast carcinoma; an inverse relationship with apoptosis [J]. Anticancer Res, 2005,25-(2A): 833-837.
    [130] Su SB, Motoo Y, Iovanna JL, et al. Overexpression of p8 is inversely correlated with apoptosis in pancreatic cancer [J]. Clin Cancer Res, 2001, 7(5):1320-1324.
    [131] Carracedo A, Lorente M, Egia A, et al. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells [J]. Cancer Cell, 2006, 9(4): 301-312.
    [132] Vasseur S, Hoffmeister A, Garcia-Montero A, et al. p8-deficient fibroblasts grow more rapidly and are more resistant to adriamycin-induced apoptosis [J]. Oncogene, 2002, 21(11): 1685-1694.
    [133] Tocharus J, Tsuchiya A, Kajikawa M, et al. Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-beta signaling [J]. Dev Growth Differ, 2004, 46(3):257-274.
    [134] Joanna Narkiewicz, Dagmara Klasa-Mazurkiewicz, Dorota Zurawa-Janicka, et al. Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer[J]. Clinical Biochemistry, 2008, 41(7-8):561-569.
    [135] Chien J, Aletti G, Baldi A, et al. Serine protease HtrA1 modulates chemotherapy- induced cytotoxicity[J]. J Clin Invest, 2006, 116(7):1994-2004.
    [136] Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins regulators of G protein signaling RGS and RGS- like proteins[J]. Annu Rev Biochem, 2000, 69.795-827.
    [137] Lu J, Gosslau A, Liu AY, et al. PCR differential display-based identification of regulator of protein signaling 10 as the target gene in human colon cancer cells induced black tea polyphenol theaflavin monogallate[J]. Eur J Pharmacol, 2008, 601(1-3): 66-72.
    [138]杨叶,侯培珍,张娟.川芎嗪联合氟尿嘧啶对胃癌细SGC7901/ADR的杀伤作用[J].肿瘤防治研究, 2008, 35(9):624-626.
    [139]解霞,郝立宏,高清波,等.川芎嗪逆转肿瘤多药耐药性及其机制的研究[J].中华肿瘤防治杂志, 2006, 13(18):1368-1370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700