耐大环内酯类药物鸡毒支原体的诱导和耐药基因的突变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在含有递增浓度红霉素或替米考星的液体培养基中连续传代培养鸡毒支原体S6和BG44T药物敏感菌株,使其逐渐产生耐药性,然后筛选出高度耐药菌株。红霉素对筛选出的S6耐红霉素株和BG447耐红霉素株的MIC≥436.7 μg/ml,替米考星对筛选出的S6耐替米考星和BG44T耐替米考星的MIC≥400μg/ml。耐红霉素的S6和BG44T菌株同时对替米考星、泰乐菌素、林可霉素有交叉耐药性。耐替米考星的S6和BG44T菌株对红霉素、泰乐菌素、林可霉素有交叉耐药性。
     23SrRNAV区域基因突变与细菌产生大环内酯类耐药性有关。为了检测鸡毒支原体的23SrRNAV区域基因是否发生耐药突变,首先把鸡毒支原体上处于两个不同位置的23SrRNAV区域基因(论文中分别将这两处基因称为23rrn1和23rrn2)区分开来。对鸡毒支原体酶切产物进行琼脂糖凝胶电泳,将凝胶上的DNA转移到尼龙膜上,进行杂交,确定了含有23SrRNAV区域基因的限制片段的位置。将这些限制片段分离出来,进行PCR扩增和克隆。结果表明S6耐红霉素菌株的23rrn1在2058位发生了耐药相关突变,rrn2未发生耐药相关突变。S6耐替米考星株的23rrn1未发生耐药相关突变,23rrn2在2058、2504处发生了耐药相关突变。BG44T耐红霉素的23rrn1发生了2458位耐药相关突变,23rrn2发生了2057、2059位耐药相关突变。BG44T耐替米考星株的23rrn1未发生耐药相关突变,23rrn2发生了2504、2058位耐药相关突变。
Erythromycin-resistant mutants and tilmicosin-resistant mutants were obtained in vitro from mycoplasma gallisepticum(MG)S6 and BG44T by increasing concemtrations of erythromycin and tilmicosin.The MICs of erythromycin for erythromycin-resistant S6 and BG44T are more than 436.7 u g/ ml. The MICs of tilmicosin for tilmicosin-resistant S6 and BG44T are more than 400 u g/ ml. Erythromycin-resistant S6 and BG44T showed cross-resistance to tilmicosin,tylosin and lincomycin. Tilmicosin-resistant S6 and BG44T showed cross-resistance to erythromycin,tylosin and lincomycin.
    Resistance by ribosomal mutations in domain V of 23S rRNA has been described.To determine the role of 23S rRNA in macrolide resistance in MG,we firstly differentiated the 23 S rRNA gene in the two ribosomal operons in MG(These two genes were named by 23rrnl and 23rrn2 respectively in mis article).MG DNA was digested by a restrictive endonuclease.electrophoresed in agarose gel, and transfered the DNA from the agarose gel to nylon membrane.To ascertain the positions of the two 23S rRNA genes,Southern hybridization was performed. 23S rRNA genes from the agarose gel were isolated, amplified, and cloned of 23S rRNA V genes were performed from isolated 23S rRNA genes.Cloned these genes.Within the 23rrnl, erythromycin-resistant S6 contained the 2058 mutation that was associated with resistance. For erythromycin-resistant S6, 23rrn2 was unchanged.And for tilmicosin-resistant S6, 23rrnl was unchanged and 23rrn2 harbored 2058,2504 mutation that was associated with resistance. Erythromycin-resistant BG44T occurred 2458 resistant point mutation in 23rrnl that was associated with resistance and 2057 , 2058 resistant point mutation that was associated with resistance in 23rrn2.Tilmicosin-resistant BG44T did not show resistant point mutation in 23rrnl and 2504,2058 point mutation that was associated with resistance in 23rrn2.
引文
[1] 曹玉璞,叶元康.支原体及支原体病.北京:人民卫生出版社,2000,91~94
    [2] 洪文荣,黄光华.泰乐菌素研究进展.海峡药学,1994,6(3):1~3
    [3] 孙永学,陈仗榴.替米考星在兽医临床上应用的研究概况.中兽医医药杂志,2003,2(2):18~20
    [4] 王英才,减云娟,张世芬等.1989~1993年青岛地区淋球菌对青霉素、红霉素和四环素耐药性的变迁.中国皮肤性病学杂志.1995,9(1):30
    [5] 郭仁发侯玉华.本溪地区淋球菌耐药性调查.中华流行病学杂志.1994,15(3):177~178
    [6] 刘建勋,苏惠存,余立等.郑州市常见致病菌耐药状况与耐药性传播的社会因素调查.河南预防医学杂志.1994,5(2):74~78
    [7] 成守悦,单红,张虹燕等。450株病原菌对10种抗生素耐药性结果分析.前卫医药杂忠.1994,11(4):219~221
    [8] 黄建荣,钱汶,干梦九等.凝固酶阴性葡萄球菌耐药性的研究.中华内科杂志.1995,34(9):620~622
    [9] 孙德龙,陈玉兰,符智蓉等.355株常见病原菌的分布及耐药性调查.海南医学.1995,6(3):172~174
    [10] 陈义忠,俞守义,陈清等.产肠毒性大肠杆菌的耐约性和质粒特征.第一军医大学学报.1995,15(1):30~32
    [11] 张杏怡,何礼贤,胡必杰等.耐甲氧西林金黄色葡萄球菌的耐约性研究.中华医院感染学杂志.1996,6(2):114~116
    [12] 姚成,肖永红.肺炎链球菌的耐药性和耐药机制.国外医药抗生素分册,2002,23(2):62~66
    [13] 邱华红,钟海萍.115例解脲支原体感染对几种抗生素的耐药性分析.海峡药学,2001,13(2):97~98
    [14] 陈昌富,王敏嗜.水气单胞菌对各类抗生素的敏感性测定.淡水渔业,1996,26(6):3~6
    [15] 宁宜宝.动物支原体病预防与控制的研究进展.中国兽药杂志,1999,33(1):45~48
    [16] Reinhardt A.K., Kempf I., Kobisch M., et al. Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target of enrofloxacin and impact of mutations in topoisomerases on resistance level. J.Antimicrob.Chemother,2002,50(4):589
    [17] 李凌凌,张部昌,马清钧.红霉素抗菌作用及细菌产生红霉素抗性的机制.国外医药抗生素分册,2004,25(1):12~16
    [18] Nissen P, Hansen J,Ban N,et al.The structural basis of ribosome activity in peptide bond synthesis. Science,2002,289(5481):920
    [19] Hansen, L. H .,P. M auvais, S. Douthwaite. The macrolide-ketolide antibiotic binding sire is
    
    formed by structures in domains Ⅱand Ⅴof 23S ribosomal RNA. Mol. Microbiol.,1999,31(2): 623~631
    [20] Moazed, D., H. E Noller. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie, 1987, 69(8): 879~884
    [21] Chittum HS, Champney WS.Ribosomal protein gene sequence changes in Erythromycin-resistance mutants of Escherichia coli. J.Bacterial,1994,176(20):6192
    [22] Ban N, Nissen P, Hansen J. et al. The complete atomic structure of the large ribosomal subunit at 2.4 (?) resolution. Science, 2000, 289 (5481) :905
    [23] Retse ma J, Fu W. Macrolide:structures and microbial targets.Int J Antimicrob Agents,2001,18 (suppl 1): S3
    [24] Taitkamradt, A., T. Davies, M. Cronan, et al. Mutation in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrobial Agents and Chemotherapy, 2000, 44(8):2218~2125
    [25] 王明贵,张婴元.细菌对大环内酯类抗生素耐药机制的研究进展.国外医药抗生素分册.2000,21(1):13~15
    [26] 黄德强,吕农华.幽门螺杆菌耐药机制的研究进展.中国实用内科杂志.2004,24(1):7~11
    [27] 吴桢.研究细菌的耐药性.中华医学丛刊.2003,3(11):10~11
    [28] 马培奇.Telithromycin药学特性及其临床地位.国外医药抗生素分册.2003,24(1):7~11
    [29] 唐明,章锦才.牙周细菌的耐药性及其机制.牙体牙髓牙周病学杂志.2002,12(2):104~108
    [30] 周宏,邓力,叶启慈等.广州地区ermB和mefE基因介导的对红霉素耐药的肺炎链球菌及其耐药性的分析.2004,27(2):111~113
    [31] 王辉,陈民钧.肺炎链球菌对红霉素的耐药机制的研究.中华检验医学杂志.2002,25(3).137~140
    [32] Joanna Clancy, Fadia Dib-hajj, Joan W. Petitpas, et al. Cloning and Characterization of a Novel Macrolide Effiux Gene, mreA, from Streptococcus agalactiae. Antimierobial Agents and Chemotherapy, 1997, 41(12):2719~2723
    [33] Wondrack L., Mass M., Yang B. V., et al. Clinical Strain of Staphylococcus aureus Inactivates and Causes Effiux of Macrolides. Antimicrobial Agents and Chemotherapy, 1996, 40(4):992~998
    [34] Tae-gwon OH, Ae-ran Kwon, Eung-choi, et al. Induction of ermAMR from a Clinical Strain of Enterococcus faecalis by 16-Membered-Ring Macrolide Antibiotics. Journal of Bacteriology, 1998,180(21):5788"~5791
    [35] 李秀敏.细菌耐药机制研究进展.中国新药杂志.2003,12(1):29~31
    [36] Nagai, K.,. Appelbaum P. C, Davies T. A., et al. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992
    
    pneumococci from 10 Central and Eastern European countries. Antimicrobial Agents and Chemotherapy, 2002,46(2) :371~377
    [37] Garza-Ramos G, Xiong L, Zhong P, et al. Binding site of macrolide antibiotics on the ribosome:new resistance mutation identifies a specific interaction of ketolides with rRNA. J Bacterial, 2001,183 (23):6898
    [38] 陈代杰.抗菌药物与细菌耐药性.上海:华东理工大学出版社,2001,120~129
    [39] 顾觉奋,高捷.大环内酯药物抗性基因及新药研究进展.药物生物技术,2001,89(20):112~116
    [40] Shuwsei Kamimiya, Bernard Weisblum.Induction of ermSV by 16-Membered-Ring Macrolide Antibiotics.Antimicrobial Agents and Chemotherapy, 1997,41 (3):530~534
    [41] Farrell D.J., Morrissey I., Bakker S., et al.Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999-2000 study.Joural of Antimicrobial Chemotherapy, 2002, 50(S1),39-47
    [42] Chung W O, Werckenthin, Schwarz S. Host range of the ermF rRNA methylase gene in bacterial of human and animal and animal origin.J.Antimicrob.Chemother,1999,43(1):5~4
    [43] Johnston N J, Azavedo J, Kellner J D,et al. Prevalence and characterization of the mechanisms of macrolide, lincosamide and streptogramin resistance in isolates of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy,1998, 42(9):2425~2426
    [44] Seppala H, Skurnik M,Soini H. A novel erythromycin resistance methylase gene(erm TR) in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy,1998, 42(2):257~256
    [45] Sutcliffe J, Grebe T, Tait-Kamtadt A, et al. Detection of erythromycin-resistant determinants by PCR. Antimicrobial Agents and Chemotherapy,1996, 40(11):2562~2566
    [46] Vannuffle P, Cocito C. Mechanism of action of streptogramins and macrolides. Drugs,1996,51(suppl 1):20~30
    [47] Weisblum B. Erythromycin resistance by ribosome modification. Antimicrobial Agents and Chemotherapy,1995, 39(3):577~585
    [48] Norio Okazaki, Mitsuo Narita, Satoshi Yamada, et al. Characteristics of Macrolide-Resistant Mycoplasma pneumoniae Strains Isolated from Patient and Induced with Erythromycin In Vitro. Microbiol. Immunol. ,2001, 45(8):617~620
    [49] Pio Maria Furneri, Giancarlo Rappazzo, Maria Pia Musumarra, et al. Tow New Point Mutations at A2062 Associated with Resistance to 16-Membered Macrolide Antibiotics in Mutant Strains of Mycoplasma hominis. Antimicrobial Agents and Chemotherapy, 2001,45(10):2958-2960
    [50] Pio Maria Furneri, Giancarlo Rappazzo, Maria Pia Musumarra, et al. Genetic basis of natural resistance to erythromycin in Mycoplasma hominis. Journal of Antimicrobial Chemotherapy, 2000, 45(4):547~548
    [51] Pereyre S., Gonzalez P., Barbeyrac B. de, et al. Mutations in 23S rRNA Account for Intrinsic Resistance to Macrolides in Mycoplasma hominis and Mycoplasma fermentans and for Acquired Resistance to Macrolides in M. hominis. Antimicrobial Agents and Chemotherapy, 2002,
    
    46(10):3142~3150
    [52] Thomas S. Lucier, Kathryn Heitzman, Shi-kau Liu, et al. Transition Mutation in the 23S rRNA of Erythromycin-Resistant Isolates of Mycoplasma pneumoniae. Antimicrobial Agents and Chemotherapy, 1995, 39(12):2770~2773
    [53] Verdier L, Gharbi-Benarous J, Bertho G, et al. Antibiotic resistance peptides: interaction of peptides conferring macrolide and ketolide resistance with Staphylococcus aureus ribosome: conformation of bound p eptides as determined by transferred NOE experiment. Biochemistry, 2002, 41(13):4218
    [54] Tripathi S, Kloss P S, M ankin A S. Ketolide resistance c onferred by short p eptides. J B oil Chem, 1998, 273(32):20073
    [55] Tenson T, Mankin AS. Short peptide conferring resistance to macrolide antibiotics. Peptides, 2001, 22(10):1661
    [56] 饶勇,曾振灵,陈杖榴.抗生素耐药性的主动外排机制.国外医药抗生素分册,2002,23(3):109~114
    [57] Joanna Clancy, Fadia Dib-hajj, Joan W. Petitpas. et al. Cloning and Characterization of a Novel Macrolide Efflux Gene, rare A, from Streptococcus agalactiae. Antimicrobial Agents and Chemotherapy, 1997, 41(12):2719~2723
    [58] 王玉宝,宋诗铎.肠球菌对人环内酯类抗生素的耐药机制.国外医药抗生素分册,2003,24(1):5
    [59] Pereyre S, Guyot C, Renaudin H. et al. In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumiae. Antimicrobial Agents and Chemotherapy, 2004,48(2):460~5
    [60] 艾武,牟建青,刘玉山等.鸡毒支原体敏感药物的筛选.中国兽药杂志,2003,37(5):48~49
    [61] 吴清民,杨秀玉,沈志强等.鸡毒支原体的分离鉴定和最低抑菌浓度测定.中国预防兽医学报,2003(4):309~312
    [62] 宁宜宝.氨苄青霉素—硫氰酸红霉素可溶性粉对鸡毒支原体病的治疗试验.中国兽药杂志,2003,37(5):45~47
    [63] 朱翠明,吴移谋,余敏君等.次抑菌浓度的药物诱导解脲支原体、人型支原体耐药与交叉耐药的研究.中国皮肤性病学杂志.2000,14(2):86~87
    [64] 张冉,吴移谋,向斌等.次抑菌浓度的喹诺酮类药物诱导人型支原体耐药与交义耐药的研究.实用预防医学.2000,7(1):12~14
    [65] Zanella A., Martino P. A., Pratelli A., et al. Development of antibiotic resistance in Mycoplasma gallisepticun in vitro. Avian Pathology, 1998, 27:591~596
    [66] Gautier-Bouchardon A. V., Reinhardt A. K., Kobisch M., et al. In vitro development of resistance to enrofloxacin, erythromycin, tylosin, tiamulin and oxytetracycline in Mycoplasma galliaepticum, Mycoplasma iowae and Mycoplasma synoviae. Veterinary Microbiology, 2002, 88(1):47~58
    
    
    [67] Yasutak Niitu, Sumio Hasegawa, Hideo Kubota. In Vitro Development of Resistance to Erythromycin, Other Macrolide Antibiotics, and Lincomycin Mycoplasma pneumoniae. Antimicrobial Agents and Chemotherapy, 1979, 5(5):513~519
    [68] 段晓东,毕丁仁.四种禽源支原体核酸限制性酶切图谱分析.中国畜禽传染病,1998,20(3):146~148
    [69] 郭建华,陈得威,陈明勇.鸡毒支原体DNA限制性内切酶分析.畜牧兽医学报,1998,29(6):560~563
    [70] 王承宇,宣华.鸡毒支原体病研究进展.中国预防兽医学报,2000,22(S1):208~211
    [71] J.萨姆布鲁克,E.E氟里奇,T.曼尼阿蒂斯.分子克隆实验指南,金冬雁,黎孟枫等译.北京:科学出版社,1999,304~308
    [72] Scamrov A., Beabealashvilli R.. Mycoplasma Gallisepticum strain S6 genome contains three regions hybridizing with 16S rRNA and tow regions hybridizing with 23S and 5S rRNA. Federation of European Biochemical Societies, 1991, 291 (1):71~74
    [73] Douthwaite S., Hansen L. H., Mauvais P.. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain Ⅱ of 23S rRNA. Mol. Microbiol.,2000, 36(1): 183~192
    [74] Douthwaite S. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosome RNA. Nucleic Acids Res., 1992,20(18): 717~4720
    [75] Ettayebi M., Prasad S. M., Morgan E. A.. Chloramphenicol erythromycin resistance mutations in a 23S rRNA gene in Escherichia coli. J. Bacteriol., 1985,162(2):551~557
    [76] Ross J. I., Eady E. A., Cove J. H.. et al. Clinical resistance to erythromycin and clindamycin in cutaneous propionibacteria isolated from acne patients is associated with mutations in 23S rRNA. Antimicrobial Agents and Chemotherapy, 1997, 41(5): 1162~1165
    [77] Canu A., Malbruny B., Coquemont M., Davies T. A., et al. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2002,46(1): 125~131
    [78] Pihlajamaki M., J. Kataja, H. Seppala,et al. Ribosomal mutations in Streptococcus pneumoniae clinical isolates. Antimicrobial Agents and Chemotherapy, 2002,46(3):654~658
    [79] Taitkamradt A., Davies T., Appelbaum P. C., et al. Tow new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrobial Agents and Chemotherapy, 2000, 44(12):3395~3401
    [80] Xiong L. Q,, Shah S., Mauvais P., A ketolide resistance mutation in domain Ⅱ of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol.,1999, 31(2):633~639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700