纳米碳/硅异质结的制备及其气敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文第一部分利用控溅射的方法在Si(100)基片上成功沉积了一系列不同结构的非晶碳膜(a-C),对其电输运特性和气体敏感特性进行了较为详细的研究。
     首先,研究了在室温下NH3对碳纳米薄膜/硅(C/Si)异质结的电容-频率(C-F)特性的影响。主要结果为:在外加频率为50Hz时,当C/Si异质结从空气中转移到盛有少量NH3气体的锥形瓶中(浓度0.2ml/L),异质结的电容迅速地增加到在空气中的230%,改变外加频率,分别为1000、10000、100000Hz时,异质结电容分别增加到在空气中的200%、170%和130%,并提出了相应的理论模型解释了上述现象。研究表明,可以利用C/Si异质结的氨气敏感特性开发氨气传感器。
     其次,研究了纳米针尖阵列(CNA)结构的制备条件和CNA/Si异质结的酒精气敏特性。其主要结果为:氩气气压对沉积的薄膜表面形貌有着较大的影响,只有在特定的Ar气压下沉积才能形成CNA结构。并且,酒精气体对CNA/Si异质结的电流-电压(I-V)和C-F特性具有显著的影响。尤其对于正向的I-V性质,当正向电压稳定时,将CNA/Si异质结从空气转移到含有少量酒精气体(0.64g/L)的锥形瓶中,其结电阻迅速地减小。经过多次实验发现异质结对酒精气体的敏感度随着薄膜厚度的增加而下降。在外加频率5000Hz下,重复测量酒精气体对异质结电容的影响,实验结果表明当异质结从空气转移到酒精气体中时,异质结的电容值迅速上升,上升到原来的140%,响应时间和恢复时间都非常短。该CNA/Si异质结在酒精气体传感器领域具有潜在的应用价值。
     最后,研究了在室温下湿度对C/Si异质结电容的影响,选用过饱和盐溶液作为湿度值的标定。主要的实验结果为:在外加频率1000Hz下,当湿度从11%RH变化到95%RH时,该C/Si异质结的电容从~1000pF增加到~3000pF,并且结电容的变化随着湿度的改变呈现着较好的线性关系。研究表明,该C/Si异质结可作为湿度传感器材料。
     论文的第二部分是用控溅射方法制备了纳米碳薄膜和纳米掺钯碳(Pd x C1-x)复合薄膜,并研究了其电学性质。结果表明:掺钯碳膜中含有更高的sp2杂化的碳原子,即在沉积薄膜的过程中,钯诱导sp2杂化的碳结构的形成。并且,掺钯碳薄膜的电阻值比纯碳薄膜下降了3个数量级,即薄膜中掺杂钯显著地提高了薄膜的电导率。还研究了纳米钯碳复合薄膜/硅(Pd x C1-x/Si)异质结对氢气的敏感特性,结果显示PdxC1-x/Si异质结对氢气的敏感度随着纳米掺钯碳薄膜中钯含量x的增加而上升。
Ammonia (NH3) sensors based on carbon/sillicon (C/Si) heterojunctions are demonstrated at room temperature (RT). Upon exposure to ammonia (0.2 ml/l) at RT, the interface capacitance of C/Si junction increases dramatically about 230%. The results show that C/Si junctions have high NH3 gas sensitivity, rapid response and high recovery speed at RT. This phenomenon can be attributed to the change of potential barrier width of the junction, which is caused by the adsorption of NH3 molecules. The C/Si junctions can greatly amplify the detection sensitivity of the nano-sized carbon so that the C/Si junctions allow acting as excellent RT gas sensors.
     Carbon nanotip arrays were grown from silicon substrates via direct current magnetron sputtering at RT. The simple carbon nanotip arrays/n-Si (CNA/Si) heterojunctions were used to detect ethanol gas at RT. The results show that the CNA/Si junctions have high ethanol gas sensitivity, rapid response and high recovery speed at RT. Upon exposure to ethanol gas (0.64 g/L) at RT, the resistance of the junction decreases by 35% at a given positive voltage of 8 V. And the interface capacitance of the junction at 5 kHz can increase by about 40% rapidly when exposed to ethanol gas. The phenomena should be attributed to the change of the Fermi level of the carbon film caused by adsorbing electrons from ethanol molecules. The study shows that the CNA/Si junctions have potential application as ethanol gas sensors.
     Amorphous carbon (a-C) films were deposited on n-silicon by direct current magnetron sputtering at RT and the corresponding microstructure was characterized. The RT capacitive humidity sensing properties of C/Si junctions were studied by a standard two-probe method. It was shown that with the RH changing from 11 to 95%, a capacitive device response over 200% was achieved at 1 kHz, and the curve of the capacitive response with RH is of high linearity at the given frequency range. The phenomena should be attributed to the change of the Fermi level of carbon film caused by adsorbing electrons from H2O molecules. The result also shows that the capacitance of the junctions increases with decreasing frequency, because the adsorbed water molecules can get stronger polarization at lower frequencies. The study shows that the C/Si junctions have potential application as humidity gas sensors.
     Using magnetron sputtering method we prepared Pd x C1-x composite films and a-C films on n-Si (100) substrates. Then the electrical properties and the hydrogen sensitive properties of the Pdx C1-x/Si junctions were explored. The results showed that: (1) the palladium-doped carbon films contain higher sp2 carbon structure, induced by palladium atoms, than the pure carbon films; (2) the resistivity of Pdx C1-x films is larger than that of pure carbon films by 3 orders of magnitude; (3) the Pd x C1-x/Si junctions can be used to detect hydrogen gas, because the conductivity of the Pdx C1-x film is sensitive to hydrogen.
引文
[1] Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering: R: Report, 2002, V37(4-6): 129-281.
    [2] Aisenberg S., Chabor S. Thin Films of Diamond Like Carbon[J]. Applied Physics Letters, 1971, V42(7): 3953-3955.
    [3]李敬财,何玉定,胡杜军,等.类金刚石薄膜的应用[J].新材料产业,2004,V3:39-42.
    [4] Cheah L. K, Shi X., Tay B. K., et al. Field emission from undoped and nitrogen-doped tetrahedral amorphous carbon film prepared by filtered cathodic vacuum arc technique[J]. Diamond and Related Materials 1998, V7(2-5): 640-644.
    [5] Forrest R. D., Burden A. P., Silva S. R. P., et al. A study of electron field emission as a function of film thickness from amorphous carbon films[J]. Applied Physics Letters, 1998, V73( 25): 3784-3786.
    [6] Liu D. P., Benstetter G., and Frammelsberger W., The effect of the surface layer of tetrahedral amorphous carbon films on their tribological and electron emission properties investigated by atomic force microscopy[J]. Applied Physics Letters, 2003, V82(22): 3898-3910.
    [7] Yu H. A., Kaneko T., Otani S., et al. A carbonaceous thin film made by CVD and its application for a carbon/n-type silicon (C/n-Si) photovoltaic cell[J]. Carbon, 1998, V36(1-2): 137-143.
    [8] Konofaos N., Angelis C. T., Evangelou E. K., et al. Electrical characterization of TiN/a-C/Si devices grown by magnetron sputtering at room temperature[J]. Applied Physics Letters, 2001, V78(12): 1682-1684.
    [9] Konofaos N., Angelis C. T., Evangelou E. K., et al. Charge carrier response time in sputtered a-C/n-Si heterojunctions[J]. Applied Physics Letters, 2001, V79(15): 2381-2383.
    [10] Trakhtenbera I. S., Vladimirov A. B., Rubstein A. P., et al. The analysis of microhardness measurement approach for characterization of hard coatings[J]. Diamond and Related Materials, 2003, V12(10-11): 1788-1792.
    [11] Miranzo P., Osendi M. I., Garcia E., et al. Thermal conductivity enhancement in cutting tools by chemical vapor deposition diamond coating[J]. Diamond and Related Materials, 2002, V11(3-6): 703-707.
    [12] Hastas N. A., Dimitriadis C. A., Tassis S. H., et al. Charge carrier response time in sputtered a-C/n-Si heterojunctions[J]. Applied Physics Letters, 2001, V79(15): 3269-3271.
    [13] Xue Q. Z., and Zhang X., Anomalous electrical transport properties of amorphous carbon films on Si substrates[J]. Carbon, 2004, V43(4):760-764.
    [14] Podder J., Rusop M., Soga T., et al. Boron doped amorphous carbon thin films grown by r.f. PECVD under different partial pressure[J]. Diamond Related and Materials, 2005, V14(11-12): 1799-1804.
    [15] Qin Z. Y., Wang P. N., Shen H., et al. Microstructure and electronic properties of pulsed-discharge-deposited amorphous carbon-nitride films[J]. Diamond Related and Materials, 2005, V14(10): 1616-1622.
    [16] Donadio D., Colombo L., Milani P., et al. Growth of mamostructured carbon films by cluster assembly[J]. Physical Review Letters, 1999, V83(4): 776-779.
    [17] Wei Q., Pan Z. W., Li Z. J., et al. Impact-energy dependence of atomic mobility in diamondlike carbon film growth[J]. Physics Letters B, 2003, V68(23): 235408.1-235408.5.
    [18] Angus J. C. Dense“diamondlike”hydrocarbons as random covalent networks[J]. Journal of Vacuum Science and Technology A, 1988, V6(3): 1778-1782.
    [19] Tamor M. A., Wu C. H. Graphitic network models of“diamondlike”carbon[J]. Journal of Applied Physics, 1990, V67(2): 1007-1012.
    [20] Robertson J. Amorphous Carbon. Advances in Physics, 1986, V35(4): 317-374.
    [21]马国佳,邓新绿.类金刚石膜的应用及制备[J].真空,2002,V5(7):27-31.
    [22]马会中,张兰,张兵临,等.类金刚石薄膜冷阴极场发射研究进展[J].光电子激光,1999,V10 (1):85-89.
    [23] Artamonov V. V., Klyui N. I., Melnik V. P., et al. Microraman and microhardness study of nitrogen implanted diamond-like carbon films[J]. Carbon, 1998, V36(5-6): 791-794.
    [24] Weissmantel C., Bewilogua K., Breuer K., et al. Preparation and properties of hard i-Cand i-BN coatings[J]. Thin Solid Films, 1982, V96(1): 31-44.
    [25] Erdumir A., Switala M., A tribological investigation of the graphite to diamond like behavior of amorphous carbon films ion beam deposited on ceramic substrates[J]. Surface and Coatings Technology, 1991, V50(1): 17-23.
    [26] Wei R., Wilbur P. J., Liston M. J., Effects of diamond-like hydrocarbon films on rolling contact fatigue of bearing steels[J]. Diamond Related Materials, 1993, V2(5-7): 898-903.
    [27] Janmohamed R., Steele J. J., Scurtescu C., et al. Study of porous carbon thin films produced by pulsed laser deposition[J]. Applied Surface Science, 2007, V253(19): 7964-7968.
    [28] Fujimoli S., Kasai T., Inamura T., Carbon film formation by laser evaporation and ion beam sputtering[J]. Thin Solid Films, 1982, V92(1-2): 71-80.
    [29] Tian P., Zhang X., Xue Q. Z., Enhanced room-temperature positive magneto resistance of a-C:Fe film[J].Carbon, 2007, V45(9): 1764-1768.
    [30] Buijnsters J. G., Camero M., Vázquez L., et al. Substrate bias effects on the physical properties of hydrogenated amorphous carbon films grown by plasma-assisted chemical vapour deposition[J]. Vacuum, 2007, V81(11-12): 1412-1415.
    [31] Armour D. G.., Bailey P., Sharples G.. The use of ion beams in thin film deposition[J]. Vacuum, 1986, V36(11-12): 769-775.
    [32]高兴海,PCVD工艺及其在机车车辆工业中的应用[J].机车车辆工艺,2002,V(6):1-4.
    [33] Grill A. Plasma-deposited diamondlike carbon and related materials[J]. IBM Journal of Research and Development, 1999, V43(1-2): 147-161.
    [34] Liu L., Yamamoto A., Oka Y., Yatsuzuka M., et al. Microstructural observation of diamond like carbon film prepared from C2H2/C5H6CH3 plasma beam source[J]. Materials Science Forum, 2005, V475-479: 2905-2908.
    [35]唐一科,刁宇翔.纳米气敏材料的研究与发展趋势[J].油气田环境保护,2004,V14 (2):9-11.
    [36]刘凯,邹德福,廉五州,等.纳米传感器的研究现状与应用[J].仪表技术与传感器,2008,(1):10-12.
    [37]毛黎.美首次完成太空纳米感应器试验[N].科技日报,2007-06-20.
    [38] Parthangal P. M., Cavicchi R. E., Zachariah M. R., A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture[J]. Nanotechnology, 2006, V17: 3786-3790.
    [39] Wang H. T., Kang B. S., Ren F., et al., Hydrogen-selective sensing at room temperature with ZnO nanorods[J]. Applied Physics Letters, 2005, V86(24): 243503-5.
    [40] Tien L. C., Sadik P. W., Norton D. P., et al., Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods[J]. Applied Physics Letters, 2005, V87(22): 222106-8.
    [41] Kong J., Franklin N. R., Zhou C., et al., Nanotube molecular wires as chemical sensors[J]. Science 2000, V287(5453): 622-625.
    [42] Kawano T., Chiamori H. C., Suter M., et al., An electrothermal carbon nanotube gas sensor[J]. Nano Letters, 2007, V7(12): 3686-3690.
    [43] Modi, Koratkar N., Lass E., et al., Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature, 2003, V424: 171-174.
    [44] Xue Q. Z., Zhang X., Tian P., et al., Anomalous current-voltage characteristics and colossal electroresistance of amorphous carbon film on Si substrate. Applied Physics Letters, 2004, V85(19): 4397-4399.
    [45] Gao X. L., Xue Q. Z., Hao L. Z., et al, Effect of gas pressure on current-voltage characteristics of amorphous carbon film/silicon heterojunction[J]. Applied Physics Letters, 2007, V91(9): 092104-6.
    [46] Gao X. L., Xue Q. Z., Hao L. Z., et al, Ammonia sensitivity of amorphous carbon film/silicon heterojunctions[J]. Applied Physics Letters, 2007, V91(9):122110-2.
    [47]徐万劲.控溅射技术进展及应用(上)[J].现代仪器,2005,(5):1-5.
    [48] Btnnig G., Quate C. F., Gerber Ch., Atomic Force Microscope[J]. Physical Review Letters, 1986, V56(9): 930-933.
    [49] Merel P., Tabbal M., Chaker M., et al. Direct Evaluation of the sp3 Content in Diamond like carbon Films by XPS[J]. Applied Surface Science, 1998, V136(1-2): 105-110.
    [50] Haerle R., Riedo E., Pasquarello A., et al. First-principle study of C1s core-level shifts in amorphous carbon[J]. Computational Materials Science, 2001, V22(1-2): 67-72.
    [51]魏爱香,陈弟虎,周有国.非晶金刚石薄膜的sp3键成分的XPS谱研究[J].人工晶态学报,2003,V32 (2):179-182.
    [52]周玉,武高辉.材料分析测试技术[M].第二版,哈尔滨:哈尔滨工业大学出版社,1997,232.
    [53] Kang B. S., Ran F., Gila B. P., et al. AlGaN/GaN-based metal–oxide– semiconductor diode-based hydrogen gas sensor[J]. Applied Physics Letters, 2004, V84(7): 1123-1125.
    [54] Marquis B. T., Vetelino J. F., A semiconducting metal oxide sensor array for the detection of NOx and NH3[J]. Sensors and Actuators B: Chemical, 2001, V77(1-2): 100-110.
    [55] Hyodo T., Ohoka J., Shimizu Y., et al. Design of anodically oxidized Nb2O5 films as a diode-type H2 sensing material[J]. Sensors and Actuators B: Chemical, 2006, V117(2): 359-366.
    [56] Dhawan S. K., Kumar D., Ram M. K., et al. Application of conducting polyaniline as sensor material for ammonia[J]. Sensors and Actuators B: Chemical, 1997, V40(2-3): 99-103.
    [57] Lonergan M. C., Severin E. J., Doleman B. J., et al. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black?Polymer Resistors[J]. Chemistry of Materials, 1996, V8(9): 2298-2312.
    [58] Liu Y. G., Feng P., Xue X. Y., et al. Room-temperature oxygen sensitivity of ZnS nanobelts[J]. Applied Physics Letters, 2007, V90(4): 042109-042111.
    [59] Wang S. G., Zhang Q., Yang D. J., et al. Multi-walled carbon nanotube-based gas sensors for NH3 detection[J]. Diamond and Related Materials, 2004, V13(4-8): 1327-1332.
    [60] Liang Y. X., Chen Y. J., Wang T. H., Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer[J]. Applied Physics Letters, 2004, V85(4): 666-668.
    [61] Huang C. S., Huang B. R., Jang Y. H., et al. Three-terminal CNTs gas sensor for N2 detection[J]. Diamond and Related Materials, 2005, V14(11-12), 1872-1875.
    [62] Zhou X. T., Hu J. Q., Li C. P., et al. Silicon nanowires as chemical sensors[J]. Chemical Physics Letters, 2003, V369(1-2): 220-224.
    [63] Fields L. L., Zheng J. P., Cheng Y., et al. Room-temperature low-power hydrogen sensorbased on a single tin dioxide nanobelt[J]. Applied Physics Letters, 2006, V88(26): 263102.
    [64] Kong J., Franklin N. R., Zhou C. W., et al. Nanotube Molecular Wires as Chemical Sensors[J]. Science, 2000, V287(5453): 622-625.
    [65] Villalpando-Paez F., Romero A. H., Munoz-Sandoval E., et al. Fabrication of vapor and gas sensors using films of aligned CNx nanotubes[J]. Chemical Physics Letters, 2004, V386(1-3): 137-143.
    [66] Liu E. K., Zhu B. S., Luo J. S. Semiconductor Physics[M]. Beijing: Publishing house of electronics industry, 2003: 291.
    [67] Arab M., Berger F., Picaud F., et al. Direct growth of the multi-walled carbon nanotubes as a tool to detect ammonia at room temperature[J]. Chemical Physics Letters, 2006, V433(1-3): 175-181.
    [68] Quang N. H., Trinh M. V., Lee B. H., et al. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles[J]. Sensors and Actuators B: Chemical, 2006, V113(1): 341-346.
    [69] Sahay P. P., Tewari S., Jha S., et al. Sprayed ZnO thin films for ethanol sensors[J]. Journal of Materials Science, 2005, V40(18): 4791-4793.
    [71] A. Salehi, Preparation and characterization of proton implanted indium tin oxide selective gas sensors[J]. Sensors and Actuators B: Chemical, 2003, V94(2): 184-188.
    [72] Ionescu R., Hoel A., Granqvist C.G., et al. Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors[J]. Sensors and Actuators B: Chemical, 2005, V104(1): 132-139.
    [73] Tan O. K., Cao W., Zhu W., et al. Ethanol sensors based on nano-sizedα-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions[J]. Sensors and Actuators B: Chemical, 2003, V93(1-3): 396-401.
    [74] Mishra R. L., Sharma A. K., Srivastava R. K., et al. Ethanol Gas Sensitivity of Zinc Oxide Micro-Structural Thin Film[J]. Invertis Journal of Science & Technology, 2008, V1(3): 167-171.
    [75] Vaishnav V. S., Patel P. D., Patel N. G., Indium Tin Oxide thin film gas sensors for detection of ethanol vapours[J]. Thin Solid Films, 2005, V490(1): 94-100.
    [76] Chopra S., McGuire K., Gothard N., et al. Selective gas detection using a carbon nanotube sensor[J]. Applied Physics Letters, 2003, V83(11): 2280-2282.
    [77] Villalpando-Páez F., Romero A. H., Mu?oz-Sandoval E., et al. Fabrication of vapor and gas sensors using films of aligned CNx nanotubes[J]. Chemical Physics Letters, 2004, V386(1-3): 137-143.
    [78] Singh R. C., Singh O., Singh M. P., et al. Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors[J]. Sensors and Actuators B: Chemical, 2008, V135(1): 352-357.
    [79] Cantalini C., Valentini L., Armentano I., et al. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD[J]. Sensors and Actuators B: Chemical, 2003, V95(1-3): 195-202.
    [80]赵希权,曾志新,李勇.一种高分子湿度探测器标定方法[J].传感器世界,2004,(6):30-34.
    [81] Tai W. P., Oh J. H. Preparation and humidity sensing behaviors of nanocrystalline SnO2/TiO2 bilayered films[J]. Thin Solid Films, 2002, V422(1-2): 220–224.
    [82] Zhang Y. S., Yu K., Jiang D. S., et al. Zinc oxide nanorod and nanowire for humidity sensor[J]. Applied Surface Science, 2005, V242(1-2): 212–217.
    [83] Cantalini C., Valentini L., Armentano I., et al. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD[J]. Sensors and Actuators B: Chemical, 2003, V95(1-3): 195-202.
    [84] Qiu Y. F., Yang S. H. ZnO Nanotetrapods: Controlled Vapor-Phase Synthesis and Application for Humidity Sensing[J]. Advance Functional Materials, 2007, V17(8): 1345-1352.
    [85] Wang W., Li Z. Y., Liu L., et al. Humidity sensor based on LiCl-doped ZnO electrospun nanofibers[J]. Sensors and Actuators B: Chemical, 2009, V141(2): 404-409.
    [86] Valentini L., Cantalini C., Lozzi L., et al. Effects of oxygen annealing on cross sensitivity of carbon nanotubes thin films for gas sensing applications[J]. Sensors and Actuators B: Chemical, 2004, V100(1-2): 33-40.
    [87] Forrest R. D., Burden A. P., Silva S. R. P. et al. A study of electron field emission as a function of film thickness from amorphous carbon films[J]. Applied Physics Letters,1998, V73(25): 3784 -3786.
    [88] Inoue T., Ogletree D. F., Salmeron M. et al. Field emission study of diamond-like carbon films with scanned-probe field-emission force microscopy[J]. Applied Physics Letters, 2000, V76(20): 2961-2963.
    [89] Hastas N. A., Dimitriadis C. A., Tassis D. H. et al. Electrical characterization of nanocrystalline carbon–silicon heterojunctions[J]. Applied Physics Letters, 2001, V79(5): 638 -640.
    [90] Konofaos N., Angelis C. T., Evangelou E. K. et al. Charge carrier response time in sputtered a-C/n-Si heterojunctions[J]. Applied Physics Letters, 2001, V79(15): 2381-2383.
    [91] Corbella C., Oncins G., Gomez M. A. et al. Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering[J]. Diamond and Related Materials, 2005, V14(3-7): 1103-1107.
    [92] Trakhtenberg I. S., Vladimirov A. B., Rubstein A. P., et al. The analysis of microhardness measurement approach for characterization of hard coatings[J]. Diamond and Related Materials, 2003, V12(10-11): 1788-1792.
    [93] Lee J. G., Lee S. P. Impedance characteristics of carbon nitride films for humidity sensors[J]. Sensors and Actuators B: Chemical, 2006, 117(2): 437-441.
    [94] Chen H. J., Xue Q. Z., Yan K. Y., et al. Ethanol gas sensitivity of carbon nanotip arrays/n-Si heterojunctions at room temperature[J]. Journal of Applied Physics, 2009, V106(5): 053718-21.
    [95] Wang W., Li Z. Y., Liu L., et al. Humidity sensor based on LiCl-doped ZnO electrospun nanofibers[J]. Sensors and Actuators B: Chemical, 2009, V141(2): 404–409.
    [96]崔雨.饱和盐溶液湿度发生器的原理与不确定度评定[J].中国仪器仪表,2007(,3):77-79.
    [97] Grimes C. A., Ong K. G., Varghese O. K., et al. A Sentinel Sensor Network for Hydrogen Sensing[J]. Sensors, 2003, V3: 69-82.
    [98] Cheng C., Tsai Y., Lin K., et al. Pd-Oxide-Al0.24Ga0.76As (MOS) High Electron Mobility Transistor (HEMT)-Based Hydrogen Sensor[J]. IEEE Sensors Journal, 2006, V6(2): 287-292.
    [99] Katsuki A., Fukui K., H2 selective gas sensor based on SnO2[J]. Sensors and Actuators B: Chemical, 1998, V52(1-2): 30-34.
    [100] Berlin C. W., Sarma D. H. R., Thick Film Sense Resistor Composition and Method of Using the Same[P]. Delco Electronics Corp. U.S. Patent 5, 221, 644, June 22, 1993.
    [101] Wolfe D. B., Love J. C., Paul K. E., et al. Fabrication of palladium-based microelectronic devices by microcontact printing[J]. Applied Physics Letters, 2002, V80(12): 2222-2224.
    [102] Lundstr?m I., Shivaraman S., Svensson C., et al. A hydrogen?sensitive MOS field?effect transistor[J]. Applied Physics Letters, 1975, V26(2): 55-56.
    [103] Dwivedi D., Dwivedi R., Srivastava S. K. Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide[J]. Sensors and Actuators B: Chemical, 2000, V71(3): 161-168.
    [104] Im Y., Lee C., Vasquez R. P., et al. Investigation of a single Pd nanowire for use as a hydrogen sensor[J]. Small, 2006, V2(3): 356-358.
    [105] Favier F., Walter E. C., Zach M. P., et al. Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays[J]. Science, 2001, V293(5538): 2227-2231.
    [106] Kong J., Chapline M. G., Dai H. Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors[J]. Advanced Materials, 2001, V13(18): 1384-1386.
    [107] Varghese O. K., Gong D., Paulose M., et al. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B: Chemical, 2003, V93(1-3): 338-344.
    [108] Krupke R., Hennrich F., L?hneysen H. V., et al. Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes[J]. Science, 2003, V301(5631): 344-347.
    [109] Qi P., Vermesh O., Grecu M., et al. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection[J]. Nano Letters, 2003, V3(3): 347-351.
    [110] Kong J., Franklin N. R., Zhou C., et al. Nanotube Molecular Wires as Chemical Sensors[J]. Science, 2000, V287(5453): 622-625.
    [111] Lin C. K., Yang Z. Z., Xu T., et al. An in situ electrical study on primary hydrogenspillover from nanocatalysts to amorphous carbon support[J]. Applied Physics Letters, 2008, V93(23): 233110-2.
    [112] Xua T., Zach M. P., Xiao Z. L., et al. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films[J]. Applied Physics Letters, 2005, V86(20): 203104-6.
    [113] Chen J. S., Lau S. P., Chen G. Y., et al. Deposition of iron containing amorphous carbon films by filtered cathodic vacuum arc technique[J]. Diamond and Related Materials, 2001, V10(11): 2018-2023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700