基于生物协同进化的无线传感器网络路由智能容错机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由部署在监测区域内的大量微型、低成本传感器节点组成的自组织多跳网络系统。这种网络的易部署性、自适应性特点,使得它在环境监测、精细农业、远程医疗等领域有着广泛的应用前景。但由于数目庞大的节点硬件结构脆弱且能量受限、部署环境恶劣等特性,网络经常出现节点损坏、通信链路断开等故障。近年来传统基于冗余的容错路由技术由于没有综合考虑能量受限等无线传感器网络特性,如何设计节能高效的容错技术、保证数据传输的鲁棒性以提高网络性能已经成为无线传感器网络研究的关键问题。
     本论文针对无线传感器网络中的路由容错问题,借鉴生物协同进化智能算法的优势,同时考虑到路由优化过程中能量平衡机制,通过研究无线传感器网络中分簇、异构节点、移动的汇聚节点(Sink)等网络结构的容错路由问题,建立了相应的路由容错模型,解决在无线传感器网络中的路由容错优化等复杂计算应用问题。取得的研究成果包括如下几个方面:
     (1)以分簇的无线传感器网络为场景,针对异构网络簇内路由失效后的路径恢复问题,提出了基于路径编码的无线传感器网络簇内的路由容错模型及节点失效模型。综合运用免疫协同进化粒子群算法和簇内多路径路由策略,构建异构网络的簇内路由智能容错机制,使得路由容错模型的路径搜索能集中在高质量的解搜索空间内。仿真实验证明了该策略提高了簇内数据传输的效率和容错能力。
     (2)对异构无线传感器网络的簇间超级节点之间的容错路由问题进行了进一步分析,建立了相应的簇间簇内路由智能容错模型,运用主从粒子群协同进化免疫算法研究最优的替代路由构建策略,通过路径编码、主从群协同更新进化、克隆复制、高频变异、克隆选择等操作进行问题求解,以提高算法的运行效率和反应能力,从而提升异构无线传感器网络的整体容错性和数据传输的可靠性。最后通过实验对该算法及理论分析进行了验证。
     (3)针对现有的单移动Sink无线传感器网络协议复杂、通信开销大而不能高效适应拓扑频繁变化的问题,建立了单移动Sink路由恢复模型,并采用正交免疫粒子群算法来维护随着Sink移动而变化的拓扑路由,同时有效地降低通信开销,减少网络能耗。实验表明采用该策略的单移动Sink网络能量分布更均衡,容错性能也得到了相应的提升;
     (4)对多个移动Sink无线传感器网络的路由容错进行了进一步分析,结合多个Sink移动的特点和网络节点失效问题综合设计网络路由智能容错模型,并采用内分泌粒子群协同进化思想来构建高效可靠的替代路径,通过路径编码、激素群选择、粒子群协同更新等操作来求解问题。仿真结果也进一步验证了该策略能提高数据流传输的鲁棒性,均衡化网络能量消耗,延长网络生存周期。
     最后,总结了论文的研究内容,指出了研究中存在的不足,展望了下一步的研究方向。
Wireless sensor networks (WSNs) consist of a large amount of inexpensive, miniature sensor nodes which are deployed in monitoring region, forming a self-organized multi-hop network system. The features of easy deployment, self-adaptive and low cost enable WSNs to conduct many applications, such as precision agriculture, environment surveillance and remote medicine. However, there are often some faults happened, such as node failure, wireless link breakage, which is because the massive nodes in WSNs are energy constrained and usually deployed in harsh environments. As the feature of energy restriction and others have been rarely considered in recent years, the tranditional routing fault-tolerant protocols based on redundancy are difficult to efficiently achieve in WSNs. Designing efficient fault tolerant technology which can ensure the robustness of data transmission, prolong the network lifetime and improve its performance has been a critical issue on WSNs research.
     In this study, the fault-tolerant routing problem of WSNs is focused, based on the superior features of biological co-evolution intelligent algorithm, and considering the energy balance mechanisms in process of routing optimization. The fault-tolerant mechanism of heterogeneous nodes and mobile sink nodes is studied by building routing models, and applying in the route optimization of complex computation applications in WSNs. This paper focuses on analyzing the fault-tolerant routing technology of clustering and mobile sink structure, and the main contributions of the paper are as follows:
     (1) Based on heterogeneous WSNs and path coding, the intra-cluster fault-tolerant routing model and node fault model are proposed for the path recovery problem after intra-cluster routing failure. With immune co-evolution particle swarm algorithm and multi-path routing method, we build the intra-cluster routing intelligent fault-tolerant mechanism to make the path searching concentrating on high-quality solution within the search space and improving the algorithm efficiency and responsiveness. The simulation results have shown its efficiency and fault-tolerant cability of intra-cluster data transmission comparing with the classical clustering protocols
     (2) The inter-cluster fault-tolerant routing problem of heterogeneous WSNs is further analyzed. We build the inter-cluster route, use the master-slave co-evolution immune particle swarm algorithm to investigate the optimal alternative routing strategies, and solve the problem with path coding, master-slave swarm updating, cloning, high-frequency mutation, clonal selection and other operations, which can improve the overall fault tolerant ability and reliability of inter-cluster and intra-cluster data transmission. Finally, theoretical analysis of the algorithm was verified through experiments.
     (3) Some existing routing protocols of mobile sink WSNs are not suitable for the problem of topology frequent change, due to their complex computing and high communication cost. We adopt a single mobile sink WSNs routing recovery model, and use the immune orthogonal learning particle swarm algorithm to repair the routing topology changed by the sink movement. The method can also reduce the communication overhead and network energy consumption of single mobile sink WSNs. Experiments show that SMS-WSNs have a more balanced energy distribution, and the improved fault tolerant performance using this strategy.
     (4) We further analyze the fault-tolerant routing of multiple mobile sink WSNs and design the routing model, considering both the characteristic of multiple sink mobility and network node failure problem. Then we use the endocrine co-evolution particle swarm algorithm to build the efficient and reliable alternative path, and solve the problem with path coding, hormone group selection, swarm co-evolution updating and other operations. The simulation results have also validated that the strategy can improve the robustness of data stream transmission, distribute the network energy consumption, and prolong the network lifetime.
     At the end, we summarize the content, advantage and deficiency of the paper, and narrate further development of the study.
引文
[1]J. I. Agbinya, Framework for wide area networking of inductive internet of things [J], Electronics Letters,2011,47 (21):1199-1201.
    [2]F. Michahelles, S. Karpischek and A. Schmidt, What can the internet of things do for the citizen? Workshop at pervasive 2010 [J], IEEE Pervasive Computing, 2010,9 (4):98-101.
    [3]P. Giner and C. Cetina, Developing mobile business processes for the internet of things [J], IEEE Pervasive Computing,2010,9 (2):18-26.
    [4]D. Guinard, V. Trifa, S. Karnouskos, et al., Interacting with the SOA-based internet of things:discovery, query, selection, and on -demand provisioning of web services [J], IEEE Trans. Services Computing,2010,3 (3):223-235.
    [5]N. Koshizuka and K. Sakamura, Ubiquitous ID:Standards for ubiquitous computing and the internet of things [J], IEEE Pervasive Computing,2010,9 (4): 98-101.
    [6]T. S. Toftegaard, Next generation wireless infrastructure [J], Wireless Personal Communications,2010,53 (3):465-479.
    [7]M. Zorzi, A. Gluhak, S. Lange, et al., From today's intranet of things to a future internet of things:a wireless-and mobility-related view [J], IEEE Wireless Communications,2010,17 (6):44-51.
    [8]D. Kiritsis, Closed-loop PLM for intelligent products in the era of the Internet of things [J], Computer-Aided Design,2011,43 (5):479-501.
    [9]王保云,物联网技术研究综述[J],电子测量与仪器学报,2009,23(12):1-6.
    [10]梁炜,曾鹏,第十九章面向工业自动化的物联网技术与应用[J],仪器仪表标准化与计算,2010,1(1):21-24.
    [11]Z. Zou, D. S. Mendoza, P. Wang, et al., A low-power and flexible energy detection IR-UWB receiver for RFID and wireless sensor networks [J], IEEE Trans. Circuits and Systems Ⅰ:Regular Papers,2011,58 (7):1470-1482.
    [12]E. Welboure and L. Battle, Building the internet of things using RFID:The RFID ecosystem experience [J], IEEE Internet Computing,2009,13 (3):48-55.
    [13]M. Kranz and P. Holleis, Embedded interaction interacting with the internet of things [J], IEEE Internet Computing,2010,14 (2):46-53.
    [14]V. M. Rohokale and N. R. Prasad, Receiver sensitivity in opportunistic cooperative internet of things (IoT) [J], Ad Hoc Networks,2010,49 (3):160-167.
    [15]G. Kortuem and F. Kawsar, Smart objects as building blocks for the internet of things [J], IEEE Internet Computing,2010,14 (1):44-51.
    [16]S. Hong, D. Kim, M. Ha, et al., SNAIL:an IP-based wireless sensor network approach to the internet of things [J], IEEE Wireless Communications,2010,17 (6):34-42.
    [17]M. Presser and P. M. Barnaghi, The SENSEI project:integrating the physical world with the digital world of the network of the future [J], IEEE Communications Magazine,2009,47 (4):1-4.
    [18]H. Ning and Z. Wang, Future internet of things architecture:like mankind neural system or social organization framework? [J], Communications Letters, IEEE, 2011,15 (4):461-463.
    [19]L. Zhou and H.-C. Chao, Multimedia traffic security architecture for the internet of things [J], IEEE Network,2011,25 (3):35-40.
    [20]C. W. Thompson, Next-generation virtual worlds:Architecture, status, and directions [J], Internet Computing, IEEE,2011,15 (1):60-65.
    [21]G. Broll and M. Paolucci, Perci:Pervasive service interaction with the internet of things [J], IEEE Internet Computing,2009,13 (6):74-81.
    [22]A. V. Kini, N. Singhal and S. Weber, Broadcast capacity of a WSN under communication and information coordination [J], Ad Hoc Networks,2010,8 (4): 439-455.
    [23]J. Liang, Z. Wang and X. Liu, Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements [J], IEEE Trans. Neural Networks,2011,22 (3):486-496.
    [24]S. Misra and A. Jain, Policy controlled self-configuration in unattended wireless sensor networks [J], Journal of Network and Computer Applications,2011,34 (5): 1530-1544.
    [25]R. Madan and S. Cui, Modeling and optimization of transmission schemes in energy- constrained wireless sensor networks [J], IEEE/ACM Trans. Networking, Dec.2007,15(6):1359-1372.
    [26]侯楠,冯海林,顾鑫,基于邻居节点数目的洪泛概率计算方法[J],计算机应用研究,2010,27(9):3443-3445.
    [27]王家冰,熊庆旭,面向应用的无线传感器网络路由算法[J],网络测试技术,2011,34(1):132-136.
    [28]A. G. Dimakis, S. Kar, J. M. F. Moura, et al., Gossip algorithms for distributed signal processing [J], Proceedings of the IEEE,2010,98 (11):1847-1864
    [29]A. D. G. Dimakis, A. D. Sarwate and M. J. Wainwright, Geographic gossip: Efficient averaging for sensor networks [J], IEEE/ACM Trans. Signal Processing, 2008,56(3):1205-121.
    [30]C. Intanagonwiwat and R. Govindan, Directed diffusion for wireless sensor networking [J], IEEE/ACM Trans. Networking, Feb.2003,11(1):2-16.
    [31]F. Zabin, S. Misra, I. Woungang, et al., REEP:Data-centric, energy-efficient and reliable routing protocol for wireless sensor networks [J], IET Communications, 2008,2 (8):995-1008.
    [32]K. Akkaya and M. Younis, A survey on routing protocols for wireless sensor network [J], Ad Hoc Network,2005,3 (3):325-349.
    [33]Y. Wang, X.-Y. Li, W.-Z. Song, et al., Energy-efficient localized routing in random multihop wireless networks [J], IEEE Trans. Parallel and Distributed Systems,2011,22 (8):1249-1257.
    [34]S. Bhatti, J. Xu and M. Memon, Clustering and fault tolerance for target tracking using wireless sensor networks [J], IET Wireless Sensor Systems,2011,1 (2): 66-73.
    [35]Y.-R. Tsai, Coverage-preserving routing protocols for randomly distributed wireless sensor networks [J], IEEE Trans. Wireless Communications,2007,6 (4): 1240-1245.
    [36]O. Younis and S. Fahmy, HEED:A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks [J], IEEE Trans. Mobile Computing,2004, 3 (4):366-379.
    [37]S. D. Muruganathan, D. C. F. Ma, R. I. Bhasin, et al., A centralized energy-efficient routing protocol for wireless sensor networks [J], IEEE Communications Magazine,2005,43 (3):8-13.
    [38]H. Xu, L. Huang, Y. Zhang, et al., Energy-efficient cooperative data aggregation for wireless sensor networks [J], Journal of Parallel and Distributed Computing, 2010,70 (9):953-961.
    [39]S.-S. Wang, K.-Q. Yan, S.-C. Wang, et al., An integrated Intrusion detection system for cluster-based wireless sensor networks [J], Expert Systems with Applications,2011,38 (12):15234-15243.
    [40]S. D. Muruganathan, A. B. Sesay and W. A. Krzymien, Analytical query response time evaluation for a two-level clustering hierarchy based wireless sensor network routing protocol [J], IEEE Communications Letters,2010,14 (5): 486-488.
    [41]F. Bajaber and I. Awan, Adaptive decentralized re-clustering protocol for wireless sensor networks [J], Journal of Computer and System Sciences,2011,77 (2): 282-292.
    [42]S. Misra and P. D. Thomasinous, A simple, least-time, and energy-efficient routing protocol with one-level data aggregation for wireless sensor networks [J], Journal of Systems and Software,2010,83 (5):852-860.
    [43]霍梅梅,郑增威,周晓伟,移动传感器网络及其路由协议研究进展[J],计算机应用研究,2009,26(11):4010-4014.
    [44]王斌,无线传感器网络移动性和路由技术的研究[D],北京邮电大学出版社,2008.
    [45]C. T. Jung, W. K. Chen and H. Y. Ling, A color-theory-based energy efficient routing algorithm for mobile wireless sensor networks [J], Computer Networks, 2008,52 (3):531-541.
    [46]A. Chamam and S. Pierre, On the planning of wireless sensor networks: Energy-efficient clustering under the joint routing and coverage constraint [J], IEEE Trans. Mobile Computing,2009,8 (8):1077-1086.
    [47]J. Li and G. AlRegib, Network lifetime maximization for estimation in multihop wireless sensor networks [J], IEEE Trans. Signal Processing,2009,57 (7): 2456-2466.
    [48]J. Choi and J. Hahn, A fault-tolerant adaptive node scheduling scheme for wireless sensor networks [J], Journal of Information Science and Engineering, 2009,25(1):273-287.
    [49]M. Cardei and S. H. Yang, Algorithms for fault-tolerant topology in heterogeneous wireless sensor networks [J], IEEE Trans. Parallel and Distributed Systems,2008,19 (4):545-558.
    [50]J. Heo and J. Hong, EARQ:Energy aware routing for real-time and reliable communication in wireless industrial sensor networks [J], IEEE Trans. Industrial Informatics, Feb.2009,5 (1):3-11.
    [51]H. Ammari and S. Das, Fault tolerance measures for large-scale wireless sensor networks [J], ACM Trans. Autonomous and Adaptive Systems,2009,4 (1):1-28.
    [52]C. Pandana and K. J. R. Liu, Robust connectivity-aware energy-efficient routing for wireless sensor networks [J], IEEE Trans. Wireless Communications, Oct. 2008,10 (7):3904-3916.
    [53]C. Laukik and D. Alin, Fault tolerant aggregation in heterogeneous sensor networks [J], Journal of Parallel and Distributed Computing,2009,469 (2): 210-219.
    [54]H. L. Ren and M. Q. H. Meng, Game-theoretic modeling of joint topology control and power scheduling for wireless heterogeneous sensor networks [J], IEEE Trans. Automation Science and Engineering,2009,6 (4):610-625.
    [55]M. Lazaro and M. Sanchez-Fernandez, Optimal sensor selection in binary heterogeneous sensor networks [J], IEEE Trans. Signal Processing,2009,57 (4): 1577-1587.
    [56]K. Xu and H. Hassanein, Relay node deployment strategies in heterogeneous wireless sensor networks [J], IEEE Trans. Mobile Computing, Feb,9 (2): 145-159.
    [57]A. Boukerche and A. Martirosyan, An inter-cluster communication based energy aware and fault tolerant protocol for wireless sensor networks [J], Mobile Networks and Applications,2008,13 (6):614-626.
    [58]Y. Jing and L. Wang, EECCR:An energy-efficient m-coverage and n-connectivity routing algorithm under border effects in heterogeneous sensor networks [J], IEEE Trans. Vehicular Technology,2009,58 (3):1429-1442.
    [59]刘化君,刘传清,物联网技术[M],电子工业出版社,2010.
    [60]H. Luo and F. Ye, TTDD:two-layer data dissemination in large-scale wireless sensor networks [J], ACM Wireless Networks,2005,11 (1-2):161-175.
    [61]S. Paul, J. Pan and R. Jain, Architectures for the future networks and the next generation Internet:a survey [J], Computer Communications,2011,34 (1):2-42.
    [62]G. Audisio, The birth of the cyber tyre [J], IEEE Solid-State Circuits Magazine, 2010,2(4):16-21.
    [63]V. Naik, A. Arora, P. Sinha, et al., Sprinkler:a reliable and energy efficient data dissemination service for extreme scale wireless networks of embedded devices [J], IEEE Trans. Mobile Computing,,2007,6 (7):777-789.
    [64]A. Wood, J. Stankovic, G. Virone, et al., Context-aware wireless sensor networks for assisted living and residential monitoring [J], IEEE Network,2008,22 (4): 26-33.
    [65]L. Yan, W. Pan and B. Luo, Modified energy-efficient protocol for wireless sensor networks in the presence of distributed optical fiber senor link [J], IEEE Sensors Journal,2011,11 (9):1815-1819.
    [66]马建,物联网技术概论[M],机械工业出版社,2011.
    [67]陈剑霞,一种而向无线传感器网络协同任务分配的动态联盟更新机制[J],传感技术学报,2009,22(4):499-504.
    [68]张海波,胡大可,低成本高速率传感器网络的设计实现[J],传感技术学报, 2010,23(5):732-738.
    [69]高磊,超宽带生物无线传感器网络热效应研究[J],现代生物医学进展,2009,9(3):555-558.
    [70]陈帅,无线传感器网络混沌分组密码研究[J],中国科学(F辑:信息科学),2009,39(3):357-362.
    [71]D. R. Raymond, R. C. Marchany, M. I. Brownfield, et al., Effects of denial-of-sleep attacks on wireless sensor network MAC protocols [J], IEEE Trans. Vehicular Technology,2009,58 (1):367-380.
    [72]X. Du and H.-H. Chen, Security in wireless sensor networks [J], IEEE Wireless Communications,2008,15 (4):60-66.
    [73]A. Boukerche, R. W. N. Pazzi and R. B. Araujo, Fault-tolerant wireless sensor network routing protocols for the supervision of context-aware physical environments [J], Journal of Parallel and Distributed Computing, Apr.2006,66 (4):586-599.
    [74]庞蓓蓓,一种用于多集装箱监测的低功耗路由协议研究[D],重庆大学出版社,2010.
    [75]郭小华,基于无线传感器网络的车辆定位技术研究[J],自动化技术与应用,2009,28(1):71-73.
    [76]F. Hu, M. Jiang, L. Celentano, et al., Robust medical ad hoc sensor networks (MASN) with wavelet-based ECG data mining [J], Ad Hoc Networks,2008,6 (7):986-1012.
    [77]陈岳兵,冯超,张权,等,树突状细胞算法原理及其应用[J],计算机工程,2010,36(8):173-176.
    [78]S. Ferrari and R. F. Stengel, Smooth function approximation using neural networks [J], IEEE Transactions on Neural Networks,2005,16(1):24-38.
    [79]W.-Y. C. Young-Dong Lee, Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring [J], Sensors and Actuators B: Chemical,2011,140 (2):390-395.
    [80]I. M. Steinberg and M. D. Steinberg, Radio-frequency tag with optoelectronic interface for distributed wireless chemical and biological sensor applications [J], Sensors and Actuators B:Chemical,2009,138 (1):120-125.
    [81]Z. Zhang, W. K. Chan, T. H. Tse, et al., Resource prioritization of code optimization techniques for program synthesis of wireless sensor network applications [J], Journal of Systems and Software,2009,82 (9):1376-1387.
    [82]M.-M. Wang, J.-N. Cao, J. Li, et al., Middleware for wireless sensor networks:A survey [J], Journal of computer science and technology,2008,23 (3):305-326.
    [83]H. K. Lam, S. H. Ling and F. H. F. Leung, Optimal and stable fuzzy controllers for nonlinear systmes subject to parameter uncertainties using genetic algorithms [J], IEEE Trans. Industrial Electronics,2004,51 (1):172-182.
    [84]I. Kucuk and N. Derebasi, Prediction of power losses in transformer cores using feed forward neural network and genetic algorithm [J], Measurement,2006,39 (7):605-611.
    [85]王海,基于TinyOS的无线传感器网络节点[J],机电工程,2009,6(5):20-23.
    [86]S. Wu and D. Clements-Croome, Understanding the indoor environment through mining sensory data—A case study [J], Energy and Buildings,2007,39 (11): 1183-1191.
    [87]S. Yang and X. Yao, Population-based incremental learning with associative memory for dynamic environments [J], IEEE Trans. Evolutionary Computation, 2008,12 (5):542-561.
    [88]丁永生,计算智能:理论、技术与应用[M],科学出版社,2004.
    [89]L. Batista, F. G. Guimaraes and J. A. Ramirez, A distributed clonal selection algorithm for optimization in electromagnetics [J], IEEE Trans. Magnetics,2009, 45(3):1598-1601.
    [90]F. Campelo, F. G. Guimaraes, H. Igarashi, et al., A clonal selection algorithm for optimization in electromagnetics [J], IEEE Trans. Magnetics,2005,41 (5): 1736-1739.
    [91]L. Zhao, L. Wong and J. Li, Antibody-specified B-cell epitope prediction in line with the principle of context-awareness [J], IEEE/ACM Trans. Computational Biology and Bioinformatics,2011,8 (6):1483-1494.
    [92]N. Swerdlin, I. R. Cohen and D. Harel, The lymph node B cell immune response: dynamic analysis in-silico [J], Proceedings of the IEEE,2008,96 (8):1421-1443.
    [93]J.-T. Tsai and J.-H. Chou, Design of optimal digital IIR filters by using an improved immune algorithm [J], IEEE Trans. Signal Processing,,2006,54 (12): 4582-4596.
    [94]V. K. Karakasis and A. Stafylopatis, Efficient evolution of accurate classification rules using a combination of gene expression programming and clonal selection [J], IEEE Trans. Evolutionary Computation,2008,12 (6):662-678.
    [95]B. Liu, Y. S. Ding and D. Ruan, A reinforcement learning intelligent controller based on primary-secondary response mechanism of immune system [J], Dynamics of Continuous, Discrete & Impulsive Systems, Series B:Applications & Algorithms,2007,14 (4):557-574.
    [96]韩华,刘宝,朱晓建,一种基于免疫应答机制的噪声智能控制系统[J],计算机仿真,2007,24(3):160-163.
    [97]A. A. Freitas and J. Timmis, Revisiting the foundations of artificial immune systems for data mining [J], IEEE Trans. Evolutionary Computation,2007,11 (4): 521-540.
    [98]X. Hao and S. Cai-xin, Artificial immune network classification algorithm for fault diagnosis of power transformer [J], IEEE Trans. Power Delivery,2007,22 (2):930-935.
    [99]L. Guo, L. Zhao, Y. Wu, et al., Tumor detection in MR images using one-class immune feature weighted SVMs [J], IEEE Trans. Magnetics,2011,47 (10): 3849-3852.
    [100]L. Jiao, Y. Li, M. Gong, et al., Quantum-inspired immune clonal algorithm for global optimization [J], IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics,2008,38 (5):1234-1253.
    [101]F. Dressier and O. B. Akan, Bio-inspired networking:from theory to practice [J], IEEE Communications Magazine,2010,48 (11):176-183.
    [102]Y. Ding, H. Sun and K. Hao, A bio-inspired emergent system for intelligent Web service composition and management [J], Knowledge-Based Systems,2007,20 (5):457-465.
    [103]W. Liu and B. Chen, Optimal control of mobile monitoring agents in immune-inspired wireless monitoring networks [J], Journal of Network and Computer Applications,201,34 (6):1818-1826.
    [104]R. H. Jacobsen, Q. Zhang and T. S. Toftegaard, Bioinspired principles for large-scale networked sensor systems:an overview [J], Sensors,2011,11 (4): 4137-4151.
    [105]S. S. Iyengar, H.-C. Wu, N. Balakrishnan, et al., Biologically inspired cooperative routing for wireless mobile sensor networks [J], IEEE Systems Journal, Sep.2007,1(1):29-37.
    [106]王骐,无线传感器网络的入侵检测技术研究[D],华中科技大学,2010.
    [107]张楠,张建华,李志蜀,等,无线传感器网络中基于免疫的数据融合机制[J],小型微型计算机系统,2009,30(3):454-459.
    [108]毕晓君,张艳双,基于免疫算法的无线传感器网络路由算法[J],智能系统学报,2009,4(1):67-71.
    [109]M. Neal and J. Timmis, Once more unto the breach towards artificial homeostasis, in recent advances in biologically inspired computing [J], Idea Group,2005:340-365.
    [110]张翼鹏,内分泌机制在传感器网络应用中的若干研究[D],中国科学技术大学,2010.
    [111]丁永生,刘宝,任丽红,等,基于生物网络的智能控制与优化[M],科学出版社,2010.
    [112]刘宝,丁永生,王君红,基于内分泌系统超短反馈调节机制的智能控制器[J],计算机仿真,2008,25(1):188-191.
    [113]Y. S. Ding, B. Liu and L. H. Ren, A decoupling controller based on the inverse control and the bi-regulation principle of growth hormone [J], Dynamics of Continuous Discrete and Impulsive Systems-Series B,2007,14b (5):679-694.
    [114]B. Liu, L. H. Ren and Y. S. Ding, A novel intelligent controller based on modulation of neuroendocrine system [J], Lecture Notes in Computer Science, 2005,3498(3):119-124.
    [115]邹锋,陈得宝,一种人工内分泌多目标微粒群方法[J],计算机工程与应用,2011,47(4):50-52.
    [116]陈得宝,李庆,李群,等,基于内分泌思想的改进粒子群算法[J],计算机技术与发展,2008,18(10):61-63.
    [117]X.-M. Hu, J. Zhang, H. S.-H. Chung, et al., SamACO:Variable sampling ant colony optimization algorithm for continuous optimization [J], IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40 (6):1555-1566.
    [118]M. Birattari, P. Pellegrini and M. Dorigo, On the invariance of ant colony optimization [J], IEEE Trans. Evolutionary Computation,2007,11 (6):732-742.
    [119]C.-F. Juang, C.-M. Lu, C. Lo, et al., Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation [J], IEEE Trans. Industrial Electronics,2008,55 (3):1453-1462.
    [120]刘波,粒子群优化算法及其工程应用[M],电子工业出版社,2010.
    [121]B.-B. Li, L. Wang and B. Liu, An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling [J], IEEE Trans. Systems, Man and Cybernetics, Part A:Systems and Humans,2008,38 (4):818-831.
    [122]G. G. Yen and W. F. Leong, Dynamic multiple swarms in multiobjective particle swarm optimization [J], IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans,2009,39 (4):890-911.
    [123]许珂,刘栎,多粒子群协同进化算法[J],计算机工程与应用,2009,45(3):51-54.
    [124]G. Fornarelli and A. Giaquinto, Adaptive particle swarm optimization for CNN associative memories design [J], Neurocomputing,2009,72 (16-18):3851-3862.
    [125]M. Yannis and M. Magdalene, A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem [J], Computers & Operations Research,2010,37 (3):432-442.
    [126]S. Bing, C. Jiapin and L. Zhenbo, Study on hybrid PS-ACO algorithm [J], Applied Intelligence,2011,34 (1):64-73.
    [127]L. Nanni and A. Lumini, Particle swarm optimization for prototype reduction [J], Neurocomputing,2009,72 (4-6):1092-1097.
    [128]W. D. Liao, J. Y. Wang and J. F. Wang, Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J], Advances in Swarm Intelligence,2011,6728 (2011):80-85.
    [129]R. V. Kulkarni and G. K. Venayagamoorthy, Particle swarm optimization in wireless-sensor networks:A brief survey [J], IEEE Trans. Systems, Man and Cybernetics, Part C:Applications and Reviews,2011,41 (2):262-267.
    [130]Y. Liang and H. B. Yu, PSO-based energy efficient gathering in sensor networks [J], Mobile Ad-Hoc and Sensor Networks, Proceedings,2005,3794:362-369.
    [131]Y. Yuan, Z. H. He and M. Chen, Virtual MIMO-based cross-layer design for wireless sensor networks [J], IEEE Trans. Vehicular Technology,2006,55 (3): 856-864.
    [132]Y.-S. Ding and B. Liu, Intelligent bi-cooperative decoupling control approach based on modulation mechanism of internal environment in body [J], IEEE Trans. Control Systems Technology,2011,19 (3):692-698.
    [133]C. H. Liang, C. Y. Chung, K. P. Wong, et al., Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition [J], IEEE Trans. Power Systems,2007,22 (1):249-257.
    [134]L. Yu, A. Mishra and S. Ramaswamy, Component co-evolution and component dependency:speculations and verifications [J], IET Software,2010,4 (4): 252-267.
    [135]T.-D. Nguyen, O. Berder and O. Sentieys, Energy-efficient cooperative techniques for infrastructure-to-vehicle communications [J], IEEE Trans. Intelligent Transportation Systems,2011,12 (3):659-668.
    [136]Y. Wang and A. Nakao, On cooperative and efficient overlay network evolution based on a group selection pattern [J], IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40 (2):493-504.
    [137]A.-M. Farahmand, M. N. Ahmadabadi, C. Lucas, et al., Interaction of culture-based learning and cooperative co-evolution and its application to automatic behavior-based system design [J], IEEE Trans. Evolutionary Computation,2010,14 (1):23-57.
    [138]M. Peng, Y. Liu, D. Wei, et al., Hierarchical cooperative relay based heterogeneous networks [J], IEEE Wireless Communications,2011,18 (3): 48-56.
    [139]L. Badia, M. Levorato, F. Librino, et al., Cooperation techniques for wireless systems from a networking perspective [J], IEEE Wireless Communications, 2010,17(2):89-96.
    [140]A. Ibrahim, Z. Han and K. J. R. Liu, Distributed energy-efficient cooperative routing in wireless networks [J], IEEE Trans. Wireless Communications,2008,7 (10):3930-3941.
    [141]N. Garcia-Pedrajas, C. Hervas-Martinez and D. Ortiz-Boyer, Cooperative coevolution of artificial neural network ensembles for pattern classification [J], IEEE Trans. Evolutionary Computation,2005,9 (3):271-302.
    [142]B. Shen, Z. Wang and X. Liu, A stochastic sampled-data approach to distributed H-infinity filtering in sensor networks [J], IEEE Trans. Circuits and Systems I: Regular Papers, in press,2011:
    [143]毕晓君,张艳双,基于移动代理的无线传感器网络路由算法[J],传感技术学报,2009,22(7):1007-1012.
    [144]杨春明,无线传感器网络时间同步算法的研究[D],中国科学技术大学,2008.
    [145]K. K. Rachuri and C. S. R. Murthy, Energy efficient and scalable search in dense wireless sensor networks [J], IEEE Trans. Computers,2009,58 (6): 812-826.
    [146]M. Cheng and X. Gong, Joint routing and link rate allocation under bandwidth and energy constraints in sensor networks [J], IEEE Trans. Wireless Communications,2009,8 (7):3770-3779.
    [147]E. Fasolo, M. Rossi, J. Widmer, et al., In-network aggregation techniques for wireless sensor networks:A survey [J], IEEE Trans. Wireless Communications, 2007,14 (2):70-87.
    [148]J. L. Bredin and E. D. Demaine, Deploying sensor networks with guaranteed fault tolerance [J], IEEE/ACM Trans. Networking, Feb.2010,18 (1):216-228.
    [149]L. Chitnis, A. Dobra and S. Ranka, Analyzing the techniques that improve fault tolerance of aggregation trees in sensor networks [J], Journal of Parallel and Distributed Computing,2009,69 (12):950-960.
    [150]R. E. N. Moraes, C. C. Ribeiro and C. Duhamel, Optimal solutions for fault-tolerant topology control in wireless ad hoc networks [J], IEEE Trans. Wireless Communications, Dec.2009,8 (12):5970-5981.
    [151]Z. Merhi and M. Elgamel, A lightweight collaborative fault tolerant target localization system for wireless sensor networks [J], IEEE Trans. Mobile Computing,2009,8 (12):1690-1704.
    [152]X. Han and X. Cao, Fault-tolerant relay node placement in heterogeneous wireless sensor networks [J], IEEE Trans. Mobile Computing, May.2010,9 (5): 643-656.
    [153]N. Nasser and Y. F. Chen, SEEM:Secure and energy-efficient multipath routing protocol for wireless sensor networks [J], Computer Communications,2007,30 (11):2401-2412.
    [154]P. Djukic and S. Valaee, Reliable packet transmissions in multipath routed wireless networks [J], IEEE Trans. Mobile Computing,2006,5 (5):548-559.
    [155]C.-H. Lung and C. Zhou, Using hierarchical agglomerative clustering in wireless sensor networks:An energy-efficient and flexible approach [J], Ad Hoc Networks, May 2010,8 (3):328-344.
    [156]Z. Zhang and M. Ma, Energy-efficient multihop polling in clusters of two-layered heterogeneous sensor networks [J], IEEE Trans. Computers, Feb. 2008,57 (2):231-245.
    [157]Z. Zhou and S. Zhou, Energy-efficient cooperative communication in a clustered wireless sensor network [J], IEEE Trans. Vehicular Technology, Nov. 2008,57 (6):3618-3628.
    [158]C. Alippi and R. Camplani, An adaptive LLC-based and hierarchical power-aware routing algorithm [J], IEEE Trans. Instrumentation and Measurement,2009,58 (9):3347-3357.
    [159]K. Karenos and V. Kalogeraki, Traffic management in sensor networks with a mobile sink [J], IEEE Trans. Parallel and Distributed Systems, Oct.2010,21 (10):1515-1530.
    [160]熊志强,无线传感器网络数据传输容错技术研究[D],华中科技大学出版社,2007.
    [161]C. H. Lin, J. L. Chen and Z. L. Gaing, Combining biometric fractal pattern and particle swarm optimization-based classifier for fingerprint recognition [J], Mathematical Problems in Engineering,2010,2010, Article ID 960981:1-30.
    [162]W. Yao and S. Chen, Minimum bit error rate multiuser transmission designs using particle swarm optimisation [J], IEEE Trans. Wireless Communications, 2009,8 (10):5012-5017.
    [163]T. S. Zhan and C. C. Kao, Modified PSO method for robust control of 3RPS parallel manipulators [J], Mathematical Problems in Engineering,2010,2010, Article ID 328676:1-4.
    [164]H. B. Chen and C. K. Tse, Minimizing effective energy consumption in multi-cluster sensor networks for source extraction [J], IEEE Trans. Wireless Communications,2009,8 (3):1480-1489.
    [165]T. Wimalajeewa and S. K. Jayaweera, Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO [J], IEEE Trans. Wireless Communications,2008,7 (9):3608-3618.
    [166]S. Maheswararajah and S. K. Halgamuge, Sensor scheduling for target tracking by suboptimal algorithms [J], IEEE Trans. Vehicular Technology, Mar.2009,58 (3):1467-1479.
    [167]A. Ratnaweera, S. K. Halgamure and H. C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J], IEEE Trans. Evolutionary Computation,2004,8 (3):240-255.
    [168]C. Lin, C. Chen and C. Lin, A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications [J], IEEE Trans. Systems, Man and Cybernetics, Part C:Applications and Reviews, Jan.2009,39 (1):55-68.
    [169]Y. S. Ding, X. J. Lu, K. R. Hao, et al., Target coverage optimization of wireless sensor networks using multi-objective immune co-evolutionary algorithms [J], International Journal of Systems Science,2011,42 (9):1531-1541.
    [170]Y. Zhong, L. Zhang, B. Huang, et al., An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery [J], IEEE Trans. Geoscience and Remote Sensing,2006,44 (2):420-431.
    [171]Z. H. Hu and Y. S. Ding, Immune co-evolutionary algorithm based partition balancing optimization for tobacco distribution system [J], Expert Systems with Applications, Apr.2009,36 (3):5248-5255.
    [172]J. Ben-Othman and B. Yahya, Energy efficient and QoS based routing protocol for wireless sensor networks [J], Journal of Parallel and Distributed Computing, Aug.2010,70(8):849-857.
    [173]J. H. Pu and Z. Xiong, Fault-tolerant deployment with k-connectivity and partial k-connectivity in sensor networks [J], Wireless Communications and Mobile Computing,2009,9 (7):909-919.
    [174]K. Ozaki and K. Watanabe, A fault-tolerant model of wireless sensor-actuator network [J], Distributed Sensor Networks,2008,4 (2):110-128.
    [175]S. Q. Ren and J. Park, Fault-tolerance data aggregation for clustering wireless sensor network [J], Wireless Personal Communications,2009,51 (1):179-192.
    [176]S. Pandey and S. Dong, On performance of node placement approaches for hierarchical heterogeneous sensor networks [J], Mobile Networks and Applications, Aug.2009,14 (4):401-414.
    [177]D. Kumar, T. C. Aseri and R. B. Patel, EEHC:Energy efficient heterogeneous clustered scheme for wireless sensor networks [J], Computer Communications, Mar.2009,32 (4):662-667.
    [178]B. Niu and Y. Zhu, A multi-swarm optimizer based fuzzy modeling approach for dynamic systems processing [J], Neurocomputing,2008,71 (7-9):1436-1448.
    [179]B. Niu and Y. Zhu, MCPSO:A multi-swarm cooperative particle swarm optimizer [J], Applied Mathematics and Computation,2007,185 (2):1050-1062.
    [180]Y. Wu and L. Zhang, Motion-indicated interest dissemination with directional antennas for wireless sensor networks with mobile sinks [J], IEEE Trans. Vehicular Technology,2009,58 (2):977-989.
    [181]S. Park and E. Lee, Novel strategy for data dissemination to mobile sink groups in wireless sensor networks [J], IEEE Communications Letters,2010,14 (3): 202-204.
    [182]Y. Yun and Y. Xia, Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications [J], IEEE Trans. Mobile Computing, 2010,9(9):1308-1318.
    [183]H. Yang, F. Ye and B. Sikdar, A swarm-intelligence-based protocol for data acquisition in networks with mobile sinks [J], IEEE Trans. Mobile Computing, 2008,7 (8):931-945
    [184]F. Yu and S. Park, Elastic routing:A novel geographic routing for mobile sinks in wireless sensor networks [J], IET Communications,2010,4 (6):716-727.
    [185]P. Soochang, L. Euisin, P. Hosung, et al., Mobile geocasting to support mobile sink groups in wireless sensor networks [J], IEEE Communications Letters, Oct. 2010,14 (10):939-941.
    [186]J. Luo and J. P. Hubaux, Joint sink mobility and routing to maximize the lifetime of wireless sensor networks:The case of constrained mobility [J], IEEE/ACM Trans. Networking,2010,18 (3):871-884.
    [187]T. A. Babbitt and C. Morrell, Self-selecting reliable paths for wireless sensor network routing [J], Computer Communications, Oct.2008,31 (16):3799-3809.
    [188]S. Tian and S. M. Shatz, Querying sensor networks using ad hoc mobile devices: A two-layer networking approach [J], Ad Hoc Networks, Jul.2009,7 (5): 1014-1034.
    [189]李海涛,移动多Sink传感器网络无位置依赖的数据获取方法研究[D],天津大学出版社,2010.
    [190]R. Bai and M. Singhal, DOA:DSR over AODV routing for mobile Ad Hoc networks [J], IEEE Trans. Mobile Computing,2006,5 (10):1403-1416.
    [191]杜青松,朱江,张尔扬,基于闲时逆寻和路由学习机制的优化AODV路由协议[J],通信学报,2011,32(8):64-71.
    [192]M. Gatzianas and L. Georgiadis, A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink [J], IEEE Trans. Wireless Communications,2008,7 (3):984-994.
    [193]C. S. Park, K. W. Lee and Y. S. Kim, A route maintaining algorithm using neighbor table for mobile sinks [J], Wireless Networks,2009,15 (4):541-551.
    [194]M. A. M. d. Oca, T. Stutzle, K. V. d. Enden, et al., Incremental social learning in particle swarms [J], IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics,2011,41 (2):368-384.
    [195]P. Kanakasabapathy and K. S. Swarup, Evolutionary tristate PSO for strategic bidding of pumped-storage hydroelectric plant [J], IEEE Trans. Systems, Man and Cybernetics, Part C:Applications and Reviews,2010,40 (4):460-471.
    [196]崔挺,孙元章,徐箭,等,基于改进小生境遗传算法的电力系统无功优化,中国电机工程学报,2011,31(19):43-50.
    [197]P. S. Shelokar, P. Siarry and V. K. Jayaraman, Particle swarm and ant colony algorithms hybridized for improved continuous optimization [J], Applied Mathematics and Computation,2007,188 (23):129-142.
    [198]Z. H. Zhan, H. Zhang, Y. Li, et al., Orthogonal learning particle swarm optimization [J], IEEE Trans. Evolutionary Computation,2010,15 (99):1-16.
    [199]H.-W. Ge and L. Sun, An effective PSO and AIS-based hybrid intelligent algorithm for job-shop scheduling [J], IEEE Trans. Systems, Man and Cybernetics, Part A:Systems and Humans,2008,38 (2):358-368.
    [200]蔡景明,孙季丰,无线传感器网络中的自适应路由算法[J],计算机工程,2009,35(18):263-265.
    [201]J. J. Liang and A. K. Qin, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J], IEEE Trans. Evolutionary Computation, Jun.2006,10 (3):281-295.
    [202]Z.-H. Zhan and J. Zhang, Adaptive particle swarm optimization [J], IEEE Trans. Systems, Man and Cybernetics, Part B:Cybernetics,2009,39 (6):1362-1381.
    [203]C. J. Lin and C. H. Chen, A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications [J], IEEE Trans. Systems, Man and Cybernetics, Part C:Applications and Reviews,2009,39 (1):55-68.
    [204]S. Ali and C. B. Norman, A mobile-sink-based packet transmission scheduling algorithm for dense wireless sensor networks [J], IEEE Trans. Vehicular technology,2009,58 (5):2509-2518.
    [205]S. Gao, H. Zhang and S. K. Das, Efficient data collection in wireless sensor networks with path-constrained mobile sinks [J], IEEE Trans. Mobile Computing, April 2011,10(4):592-608.
    [206]J. Rao and S. Biswas, Data harvesting in sensor networks using mobile sinks [J], IEEE Wireless Communications, Dec.2008,15 (6):63-70.
    [207]万常情,无线传感器网络TTDD协议的研究与改进[J],电脑知识与技术,2009,5(7):1578-1580.
    [208]R. W. N. Pazzi and A. Boukerche, Mobile data collector strategy for delay-sensitive applications over wireless sensor networks [J], Computer Communications,2008,31 (5):1028-1039.
    [209]J. W. Kim, J. S. In, K. Hur, et al., An intelligent agent-based routing structure for mobile sinks in WSNs [J], IEEE Trans. Consumer Electronics,2010,56 (4): 2310-2316.
    [210]C. G. B. H. Elyes, Strategies for data dissemination to mobile sinks in wireless sensor networks [J], IEEE Wireless Communications,2008,15 (6):31-37.
    [211]D. Turgut and L. Boloni, Heuristic approaches for transmission scheduling in sensor networks with multiple mobile sinks [J], Computer Journal,2011,54 (3): 332-344.
    [212]虞斌能,焦斌,顾幸生,改进协同粒子群优化算法及其在Flow Shop调度中的应用[J],华东理工大学学报(自然科学版),2009,35(3):468-474.
    [213]F. Zou, D. B. Chen and J. T. Wang, Multi-objective PSO based on infeasibility degree and principle of endocrine [J], Journal of Computer Applications,2010, 30(7):1885-1888.
    [214]K. Deb, A. Pratap, S. Agarwal, et al., A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ [J], IEEE Trans. Evolutionary Computation,2002,6 (2): 182-197.
    [215]X. Huang, H. Zhai and Y. Fang, Robust cooperative routing protocol in mobile wireless sensor networks [J], IEEE Trans. Wireless Communications,2008,7 (12):5278-5285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700