人工内分泌系统新机制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然计算研究从自然界的信息组织与处理过程中提取出计算方法与模型,用于解决传统计算方法难以解决的计算问题。自然计算已经成为人工智能研究的一个重要方向,而从人体中提取计算方法则是自然计算领域的重要研究方向。人体内的信息控制系统主要包括神经系统、免疫系统、遗传系统和内分泌系统。这些控制系统体现了高度的智能性和自适应性,蕴含着丰富的有启发性的信息处理机制。
     在人体的四个主要控制系统中,内分泌系统对人体的生长发育、新陈代谢等功能起到重要的调节作用。内分泌系统与神经系统、免疫系统紧密联系、相互合作,一起维持着机体的内平衡。内分泌系统通过一种称为激素的物质对机体进行调节,激素扩散到全身,对机体进行分布式的调节。内分泌系统与神经系统存在紧密的相互联系,它们互相调节互相作用。神经系统通过神经内分泌细胞调节内分泌系统的活动;内分泌系统则通过激素调节神经系统的活动。内分泌系统分泌的一些激素可以影响人的情感,从高层对神经网络进行调节。神经系统和内分泌系统共同组成一个负反馈调节系统,维持机体内环境的稳态。内分泌系统内部存在着复杂的反馈调节关系,以保证其对机体的调节处于可控状态。目前,对内分泌系统生理机制的研究还不充分,很多内分泌系统的信息作用机制仍未得到充分理解。由此可见,人体的内分泌系统蕴含丰富的信息处理机制,可以给自然计算研究带来新的启发,是自然计算的重要研究方向。受内分泌系统启发提出的自然计算模型称为人工内分泌系统。目前,对内分泌系统生理机制的建模已经蓬勃开展,但是该领域的研究仍不充分,应用研究还不够广泛。本文以人工内分泌系统为主要研究对象,针对目前人工内分泌系统研究的不足之处,努力挖掘出内分泌系统蕴含的信息处理机制,为自然计算研究带来新的启发。
     本文主要从以下四个方面展开工作:
     1.通过研究人体内分泌系统与神经系统的相互作用机制,努力挖掘两者之间的相互调节关系,对现有人工神经网络模型进行改进。
     在对机体的调节过程中,内分泌系统和神经系统存在紧密的相互作用关系,两者合作共同对机体进行调节。神经系统通过神经内分泌细胞调节内分泌系统的活动。内分泌系统分泌的激素可调节神经元的兴奋性,并可从高层影响神经系统的活动。两者的相互作用机制非常复杂,蕴含丰富的信息处理机制,并体现出一定的自适应、自组织、自学习的特点。因此,神经系统与内分泌系统相互作用的机制值得深入研究。本文在对神经系统与内分泌系统相互作用的生理机制进行深入研究的基础上,提出了一种新的利用人工内分泌系统调节人工神经网络的人工神经内分泌模型。相比传统人工神经网络,该模型可以使人工神经网络动态适应环境变化。
     2.研究人体内分泌系统在调节机体维持内稳态中的作目,在其作用机制的启发下,提出协助保持控制系统处于稳定状态的人工内分泌模型。
     内分泌系统与神经系统一起相互合作对机体进行调节,其最重要的功能之一就是维持机体的内平衡。人体的内平衡对机体的正常工作具有重要意义,是维持人体生命的基本条件之一。内分泌系统和神经系统一起组成一个负反馈系统,调节内分泌系统的活动,保持人体内环境的稳态。神经系统也可以从高层感知外界环境变化,调节内分泌系统的活动,维持机体的内平衡。受该机制启发,本文提出了协助保持系统处于稳定状态的入工内分泌控制模型。该模型可以协助保持控制系统的状态处于一个相对稳定和平衡的状态,从而更好地起到控制作用。
     3.研究激素在细胞间扩散的机制,在该机制的启发下,本文提出一种应用于多机器人系统运动控制的模型。
     研究内分泌系统和神经系统相互调节相互作用的机制是从宏观角度对内分泌系统的信息处理机制进行研究。而从微观角度研究,内分泌系统对机体的调节是通过激素以分布式的方式进行的。激素由内分泌腺体分泌,经多种传播方式扩散到机体各处,对机体进行分布式的调节。激素在机体中的传播受激素的浓度、种类等多种因素影响。由于激素传播过程固有的分布性,研究该过程中的信息传递与控制机制,可以给多机器人系统等分布式系统带来新的启发。基于激素在细胞间传递的生理机制,本文提出了应用于多机器人系统运动控制的分布式人工内分泌模型。相比传统类似模型,该模型具有计算量较少、通用性强等优点。
     4.在激素传播与作用机制的启发下,研究应用于多机器人系统协同定位问题中的新算法。
     激素由内分泌细胞分泌后,扩散到全身,对机体进行分布式的调节,其调节过程带有固有的分布式特性。激素的传播过程和作用方式具有很多经典分布式系统信息传播方式不具有的独特特点,但内分泌系统仍可通过激素对机体进行高效的调节。激素的这些传播特性值得深入研究,以给传统分布式系统中的信息传播方式带来新的启发。在激素的生理特性的启发下,本文提出了应用于多机器人系统协同定位问题的人工内分泌模型。相比于传统协同定位算法,该模型可以有效提高多机器人系统协同定位的准确性。
     本文在对内分泌系统生理机制深入研究的基础上,对内分泌系统的不同部分进行了深入的分析和建模。基于内分泌系统不同部分蕴含的有启发性的信息处理机制,本文对传统自然计算模型进行了改进或提出了新的自然计算模型。本文对提出的自然计算模型进行了实验验证,实验结果证实了本文提出的自然计算模型的有效性和合理性。
Nature Inspired Computing seeks to discover and extract useful organizing and processing mechanisms of information from nature and to apply them to computing problems which traditional methods cannot solve. In the achievements of Nature Inspired Computing, algorithms inspired by human body are the most successful, such as Artificial Neural Networks, Genetic Algorithm. Because human is the only intelligent creature in the world, it is straightforward to learn from human body to achieve truly intelligence. Therefore, taking inspiration from human body is the most important research direction of Nature Inspired Computing. The information processing organisms of human body mainly include neural system, genetic system, immune system and endocrine system. These systems cooperate to modulate human body and to maintain its normal working. The systems also exhibit high intelligence and self-adaptability in their modulation process, which is source of imitation for Nature Inspired Computing.
     Among the control systems of human body, endocrine system is a crucial one. It plays an essential role in the modulation of growth and metabolism. It cooperates closely with neural system and immune system to maintain homeostasis of human body. Endocrine system modulates human body by a substance called hormone, which spreads everywhere in the body and modules the body in a distributed way. Endocrine system and neural system is closely tied together; they cooperate to module human body. Neural system modulates endocrine system by neuroendocrine cells; while endocrine system influences neural system by hormone. Neural system and endocrine system cooperate to form a negative feedback loop to ensure homeostasis of human body. In endocrine system itself, there are complex negative feedback modulation mechanisms too, which ensure that its modulation of human body is controllable. At present, research on endocrine system of human body is still premature. Summing all of those up, endocrine system must bear some new inspiration to computing theory. Therefore, endocrine system is worthy a lot of research efforts, and is an important research direction of Nature Inspired Computing. Computing models inspired by endocrine system are called Artificial Endocrine Models. Research on Artificial Endocrine Models is still very preliminary and applications of Artificial Endocrine Models are still very limited. Aiming as a supplement for previous work, this thesis will focus on endocrine system and strive to extract meaningful information processing mechanisms from it.
     This thesis is mainly composed of four parts:
     1. By studying the ties between neural system and endocrine system, this thesis analyzes and formalizes their correlations and applys their interaction mechanisms to improve traditional Artificial Neural Networks.
     When controlling human body, neural system cooperates with endocrine system closely. Neural system modulates endocrine system by neuroendocrine cells. On the other hand, hormones can affect excitement of neurons. Moreover, endocrine system can influence emotion, which could modulte neural system from high level. After thorough survey on relations between neural system and endocrine system, this thesis proposes TAES, in which Artificial Endocrine System modulates Artificial Neural Networks. Compared with traditional Artificial Neural Networks, TAES enables Artificial Neural Networks to adapt to dynamical environment more quickly.
     2. By studying the way endocrine system maintains homeostasis of human body, this thesis propose a model in which endocrine system help maintain stability of control system.
     One of the most important functions of endocrine system and neural system is to maintain homeostasis of human body. Generally, endocrine system cooperates with neural system to maintain homeostasis of human body. Neural system and endocrine system form a negative feedback loop together, which guarantees homeostasis of human body. Such processes are self-adaptive and self-organized, contains a lot of interesting and complex information processing mechanisms. Inspired by such mechanism, this thesis proposes a dynamic control system called EMNCS. Compared with traditional control systems, EMNCS can help maintain stability of the control system.
     3. Inspired by biological hormone, this thesis proposes a distributed control model applied in multi-robot system.
     To study relation of endocrine system and neural system is to study endocrine system in macroscopic perspective. However, from microscopic perspective, endocrine system modulates human body by hormones. Hormones are secreted by endocrinal glands and spread everywhere in human body via many different transmission channels. The ways hormone spread are correlated with density, type, and many other factors. Due to the distributive characteristics of hormone, research on mechanisms of hormones may give distinct insight to distributed systems like multi-robot system and others. Inspired by hormone, we propose a model called DIIMRCS which is used to control motion of robots in multi-robot system. Experimental results show that DHMRCS can reduce computation substantially.
     4. This thesis scrutinizes the ways hormone spreads and functions and formalizes many distinct characteristics of it. Inspired by such characteristics, this thesis proposes an algorithm which is applied in formation problem in multi-robot system.
     The mechanisms by which hormones spread are different from common communication principles of modern distributed systems. There hide interesting distributed communication and control ideas in endocrine system. Inspired by hormone's way of communication and control, we propose DHFS, which is applied in formation problem in multi-robot system. Experimental results show that DHFS can improve precision of formation for multi-robot system compared with traditional formation algorithms.
     Based on thorough study on biological endocrine system, this thesis analyzes and scrutinizes many aspects of the system. By extracting meaningful mechanisms of the systems and apply them in many computing problems, this thesis either improve traditional Nature Inspired Computing models or propose new computing models. This thesis has made many experiments to verify proposed models, and the experimental results confirm rationality and effectiveness of those models.
引文
[1]拉塞尔,诺文,著.姜哲,等,译.人工智能——一种现代方法(第二版)[M].北京人民邮电出版社,2004.
    [2]丁永生.计算智能——理论、技术与应用[M].北京:科学出版社,2004.
    [3]汪镭,张永华,郭为安,等.自然计算发展趋势研究[J].微型电脑应用,2010,26(7).
    [4]SCHALKOFF R J. Artificial Neural Networks[M]. New York:McGraw-Hill Companies, Inc. 1997.
    [5]HASSOUN M H. Fundamentals of Artificial Neural Networks[M], Cambridge:MIT Press, 1995.
    [6]GRAUPE D. Principles of Artificial Neural Networks[M].2nd Edition. New Jersey:Word Scientific Publishing Company,2007.
    [7]MITCHELL M. An Introduction to Genetic Algorithms[M]. Cambridge. MA:MIT Press, 1996.
    [8]HAUPT R L, HAUPT S E. Practical Genetic Algorithms[M].2nd Edition. John Wiley and Sons Inc,2004.
    [9]陈国良,王煦法,等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [10]DASGUPTA D. Artificial Immune Systems and Their Applications[M]. Springer-Verlag, 1999.
    [11]DASGUPTA D, NINO F. Immunological Computation:Theory and Applications[M]. Florida:Auerbach Publications Press,2008.
    [12]DE CASTRO L N, TIMMIS J. Artificial Immune Systems:A New Computational Intelligence Approach[M]. Springer-Verlag,2002.
    [13]ADLEMAN L M. Computing with DNA[J]. Scientific American,1998,279:54-61.
    [14]ADLEMAN L M. Molecular Computation of Solution to Combinatorial problems[J]. Science,1994,66(11):1021-1024.
    [15]DIVINCENZO D P. Quantum Computation [J]. Science Magazine,1995,270:255-261.
    [16]STEANE A. Quantum Computing[J]. Reports on Progress in Physics,1998,61(2):117-173.
    [17]NIELSEN M A, CHUANG I. Quantum Computation and Quantum Information[J]. American Journal of Physics,2002,70(5):558.
    [18]DORIGO M, MANIEZZO V, COLORNI A. The Ant System:Optimization by a Colony of Cooperating Agents[J]. IEEE Transaction on Systems, Man, and Cybernetics,1996, Part B, 26(1):1-13.
    [19]DORIGO M, GAMBARDELLA L M. Ant colony system:a cooperative learning approach to the traveling salesman problem[J]. IEEE Transaction on Evolutionary Computation,1997, 1(1):53-66.
    [20]徐宗本,著,计算智能中的仿生学:理论与算法[M].北京:科学出版社,2003.
    [21]段海滨,张祥银,徐春芳,著.仿生智能计算[M].北京:科学出版社,2011.
    [22]MCCULLOCH W, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943,5:115-133.
    [23]HEBB D O. The Organization of Behavior:A Ncuropsychological Theory[M]. New York, USA:John Wiley & Sons,1949.
    [24]ROSENBLATT F. The perceptron:A probabilistic model for information storage and organization in the brain[J]. Psychological Review,1958,65:386-408.
    [25]WIDROW G, HOFF M E. Adaptive switching circuits[C]. Western Electronic Show and Convention,1960, Institute of Radio Engineers Convention Record, Part 4:96-104.
    [26]高隽,著.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2007.
    [27]HOPFIELD. J. J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities[C]. Proceedings of National Academy of Science,1982,79: 2554-2558.
    [28]BAGLEY J D. The Behavior of Adaptive Systems which Employ Genetic and Correlation Algorithms[D]:[Ph. D.]. University of Michigan, University of Microfilms,1967.
    [29]HOLLAND J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor, Michigan: University of Michigan Press,1975.
    [30]GOLDBERG D E. Genetic Algorithms in Search, Optimization, and Machine Learning[M]. Reading, Massachusetts:Addison-Wesley Press,1989.
    [31]FARMER J D, PACKARD N H, PERELSON A S. The immune system, adaptation, and machine learning[J]. Physica D:Nonlinear Phenomena,1986,22(1-3),187-204.
    [32]FORREST S, et al. Self-nonself discrimination in a computer[C]. Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy,1994:202-212.
    [33]KENNEDY J, EBERHART R. Particle Swarm Optimization[C]. Proceedings of IEEE International Conference on Neural Networks,1995,4:1942-1948.
    [34]PAUN G. Computing with Membranes [J]. Journal of Computer and System Science,2000, 61(1):108-143.
    [35]SHOR P W. Algorithms for quantum computation:discrete logarithms and factoring[C]. Proceedings of the 35th Annual Symposium on Foundations of Computer Science,1994. IEEE Computer Society Press:124-134.
    [36]DEUTSCH D, JOZSA R. Rapid Solution of Problems by Quantum Computation[J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences,1992, 439:553-558.
    [37]KLIR G J, YUAN B. Fuzzy Sets and Fuzzy Logic:Theory and Applications[M]. Englewood Cliffs, NJ, USA:Prentice Hall,1995.
    [38]DRIANKOV D, HELLENDOORN H, REINFRANK M. An Introduction to Fuzzy Control[M]. New York, USA:Springer-Verlag,1993.
    [39]BURNET F M. The Clonal Selection Theory of Immunity[M]. Nashville, TN:Vanderbilt University Press,1959.
    [40]BURNET F M. The clonal selection theory of acquired immunity[M]. Cambridge, UK: Cambridge University Press,1959.
    [41]JERNE N K. The immune system[J]. Scientific American,1973,229(1):52-60.
    [42]JERNE N K. Towards a network theory of the immune system[J]. Annual Immunology, 1974,125C(1/2):373-389.
    [43]DE CASTRO L N. VON ZUBEN F J. Learning and optimization using the clonal selection principle[J]. IEEE Transaction on Evolutionary Computation,2002,6(3):239-251.
    [44]张四海,罗文坚,曹先彬,王煦法.用于网络入侵检测的免疫学习子系统[J].小型微型计算机系统,2003,24(8):1441-1444.
    [45]张泽明,罗文坚,王煦法.一种基于人工免疫的多层垃圾邮件过滤算法[J].电子学报,2006,34(9):1616-1620.
    [46]虞震,马建辉,曹先彬,王煦法.基于免疫联想记忆的病毒检测算法[J].中国科学技术大学学报,2004,34(2):246-252.
    [47]鲍欣龙,马建辉,罗文坚,曹先彬,王煦法.用于未知病毒检测的免疫识别模型和算法研究[J].计算机科学,2005,32(1):74-76,94.
    [48]崔嵬,强盛,高晓智.人工内分泌系统研究及应用[C]Proceedings of the 25th Chinese Control Conference.
    [49]KRAVITZ E A. Hormonal control of behavior:amines and the biasing of behavioral output in lobsters[J]. Science,1988,241:1175-1181.
    [50]ARKIN R C. Dynamic replanning for a mobile robot based on internal sensing[C]. Proceedings of IEEE International Conference on Robotics and Automation,1989,3: 1416-1421.
    [51]BROOKS R A. Integrated Systems Based on Behaviors[J]. ACM SIGART Bulletin,1991, 2(4).
    [52]BUDILOVA E V, TERIOKHIN A T. Endocrine networks[C]. IEEE Symposium on Neuroinformatics and Neurocomputers,1992,2:729-737.
    [53]KITANO H. A model for hormone modulation of learning[C]. International Joint Conference on Artificial Intelligence,1995.
    [54]SUGANO S, OGATA T. Emergence of Mind in Robots for Human Interface[C]. Proceedings of the 1996 IEEE International Conference on Robotics and Automations,1996, 2:1191-1198.
    [55]OGATA T, SUGANO S. Emotional Communication Robot:WAMOEBA-2R[C]. Proceedings of the International Conference on Humanoid Robots,2000.
    [56]OGATA T, SUGANO S. Emotional Communication Between Humans and the Autonomous Robot which has the Emotion Model[C]. Proceedings of IEEE International Conference on Robotics and Automation,1999:3177-3182.
    [57]CANAMERO D. A Hormonal Model of Emotions for Behavior Control[C].4th European Conference on Artificial Life,1997, Brighton, UK, July 28-31.
    [58]CANAMERO D. Modeling Motivations and Emotions as a Basis for Intelligent Behavior[C]. Proceedings of the First International Conference on Autonomous Agents,1997, 148-155.
    [59]SHEN W M, LU Y M, WILL P. Hormone-based control for self-reconfigurable robots[C]. Proceedings of the fourth international conference on Autonomous agents,2000:918-925.
    [60]SHEN W M, SALEMI B, WILL P. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots[J]. IEEE Transactions on Robotics and Automation,2002,18(5):700-712
    [61]WILL P, CASTANO A, SHEN W M. Robot modularity for self-reconfiguration[C]. Proceedings of Sensor Fusion and Decentralized Control in Robotic Systems,1999.
    [62]SHEN W M, SALEMI B, WILL P. Hormones for Self-Reconfigurable Robots [C]. Proceedings of the Sixth International Conference on Intelligent Autonomous Systems,2000
    [63]SHEN W M, CHUONG C M, WILL P. Simulating Self-Organization for Multi-Robot Systems[C]. International Conference on Intelligent and Robotic Systems,2002,3: 2776-2781.
    [64]SHEN W M, WILL P, GALSTYAN A. Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms[J]. Autonomous Robots,2004,17(1):93-105.
    [65]NEAL M, TIMMIS J. Timidity:A useful mechanism for robot control?[J]. Informatica, special issue on perception and emotion based control,2003,4(27):197-204.
    [66]TIMMIS J, NEAL M, THORNILEY J. An Adaptive Neuro-Endocrine System for Robotic Systems[C]. IEEE Workshop on Computational Intelligence,2009.
    [67]NEAL M, TIMMIS J. Once more unto the breach:towards artificial homeostasis[J]. Recent Advances in Biologically Inspired Computing,2005:340-365,
    [68]TIMMIS J, NEAL M. Artificial Homeostasis:Integrating Biologically inspired Computing[R]. Technical Report UWA-DCS-03-043, University of Wales, Aberystwyth, 2003.
    [69]GREENSTED A J, TYRRELL A M. An endocrinologic-inspired hardware implementation of a multicellular system[C]. Proceedings of NASA Conference on Evolvable Hardware, 2004:245-252.
    [70]GREENSTED A J, TYRRELL A M. Fault Tolerance via Endocrinologic Based Communication for Multiprocessor Systems[C]. Proceedings of 5th International Conference on Evolvable Systems:From Biology to Hardware,2003:24-34.
    [71]HENLEY J J, BARNES D P. An Artificial Neuro-Endocrine Kinematics Model for Legged Robot Obstacle Negotiation [C]. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation,2004.
    [72]FARHY L S. Modeling of oscillations of endocrine networks with feedback[J]. Methods Enzymol,2004,384:54-81.
    [73]OSTERGAARD E H. Efficient Distributed "Hormone" Graph Gradients[C]. Proceedings of the 19th International joint Conference on Artificial Intelligence,2005:1489-1495.
    [74]AVILA-GARCIA O, CANAMERO L. Using Hormonal Feedback to Modulate Action Selection in a Competitive Scenario[C]. Proceedings of the seventh International Conference on Simulation of Adaptive Behavior:From Animals to Animats,2004.
    [75]AVILA-GARCIA O, CANAMERO L. Hormonal Modulation of Perception in Motivation-Based Action Selection Architectures[C]. Proceedings of the Symposium of Society for the Study of Artificial Intelligence and the Simulated Behaviour,2005:9-16.
    [76]TRUMLER W, THIEMANN T, UNGERER T. An Artificial Hormone System for Self-organization of Networked Nodes[J]. International Federation for Information Processing, Volume 216,2006.
    [77]BRINKSCHULTE U, PACHER M, VON RENTELN A. Towards an Artificial Hormone System for Self-organizing Real-Time Task Allocation[C]. Proceedings of the 5th IFIP Workshop on Software Technologies for Embedded and Ubiquitous Systems,2007:339-347.
    [78]BRINKSCHULTE U, VON RENTELN A, PACHER M. Measuring the Quality of an Artificial Hormone System based Task Mapping[C]. Proceedings of the 2nd International Conference on Autonomic Computing and Communication Systems,2008:32-39.
    [79]VON RENTELN A, BRINKSCHULTE U, WEISS M. Examinating Task Distribution by an Artificial Hormone System Based Middleware[C]. Proceedings of the 11th IEEE symposium on Object Oriented Real-Time Distributed Computing,2008:119-123.
    [80]BRINKSCHULTE U, RENTELN A. Analyzing the behavior of an artificial hormone system for task allocation[C]. Proceedings of the 6th International Conference on Autonomic and Trusted Computing,2009,
    [81]VARGAS P, MOIOLI R, DE CASTRO L N, ct al. Artificial Homeostatic System:A Novel Approach[C]. Proceedings of the 8th European Conference on Artificial Life,2005:754-64.
    [82]MOIOLI R C, VARGAS P A, et al. Evolving an Artificial Homeostatic System[C]. Brazilian Symposium on Artificial Intelligence Joint Conference,2008:278-288.
    [83]MOIOLI R C, VARGAS P A, ZUBEN F J V, et al. Towards the evolution of an artificial homeostatic system[C]. Proceedings of IEEE Congress on Evolutionary Computation,2008: 4024-4031.
    [84]SAUZE C, NEAL M. A biologically inspired approach to long term autonomy and survival sailing robots[C]. Proceedings of the International Robotic Sailing Conference,2008:6-11.
    [85]BALASUBRAMANIAM S, BOTVICH D, DONNELLY W. Bio-inspired Framework for autonomic communication systems[J]. Studies in Computational Intelligence,2007,69:3-19.
    [86]WALKER J, WILSON M. Hormone-Inspired Control for Group Task-Distribution[C]. Proceedings of Towards Autonomous Robotic Systems,2007:1-8.
    [87]PAYTON D, DAILY M, ESTOWSKI R, HOWARD M, LEE C. Pheromone Robotics[J]. Autonomous Robots,2001,11(3):319-324.
    [88]BALCH T, ARKIN R C. Communication in Reactive Multi-agent Robotic Systems[J]. Autonomous Robots,1994,1:1-25.
    [89]黄国锐,曹先彬,徐敏,王煦法.基于内分泌调节机制的行为自组织算法[J].自动化学报,2004,30(3):460-465.
    [90]黄国锐,徐敏,张荣,曹先彬,下煦法.基于内分泌调节机制的机器人行为规划算法及其应用研究[J].小型微型计算机系统,2004,25(2):262-265.
    [91]黄国锐.人工内分泌模型及其应用研究[D]:[博士].合肥:中国科学技术大学,2003.
    [92]董大源,李霞,王煦法.基于激素调节的传感器网络覆盖算法[J].计算机应用研究,2011,28(2):517-520.
    [93]DONG D Y, YOU H F, ZHANG Y P, WANG X F. A Hormone-based Clustering Algorithm in Wireless Sensor Networks[C]. Proceedings of 2nd International Conference on Computer Engineering and Technology,2010,3:445-449.
    [94]刘宝,丁永生,王君红.一种基于内分泌超短反馈机制的智能控制器[J].计算机仿真,2008,25(1):188-191.
    [95]孙宏彬,丁永生.基于生物网络的e-service 自进化组合方法研究[J].计算机应用研究,2008,25(4):999-1002.
    [96]张向锋,任立红,丁永生.基于生物迁移的网络动态负载平衡的研究[J].计算机科学2007,34(7):63-65.
    [97]王袆,顾幸生,徐震浩.基于内分泌激素调节机制的自适应免疫算法的flow shop调度问题[C]Proceedings of the 26th Chinese Control Conference,2007:801-804.
    [98]陈得宝,李庆,李群,李峥.基于内分泌思想的改进粒子群算法[J].计算机技术与发展,2008,18(10):62-67.
    [99]雷扬,尤海峰,王煦法.神经内分泌计算模型及其在机器人避障中的应用[J].小型微型计算机系统,2010,31(9):1910-1913.
    [100]林广栋,_王煦法.人工内分泌系统调节人工神经网络的动态控制模型[J].中国科学技术大学学报.2012,42(2):148-153,160.
    [101]林广栋,王煦法,尤海峰.一种与人工神经网络结合的人工内分泌系统模型[J].小型微型计算机系统.2012,33(2):249-253.
    [102]王磊,徐庆征.基于晶格的人工内分泌系统模型及在多机器人系统中的应用[J].中国科学:信息科学,2011,41(5):562-579.
    [103]邹锋,陈得宝.一种人工内分泌多目标微粒群方法[J].计算机工程与应用,2011,47(4):50-52,83.
    [104]陈瑞祥,任立红,丁永生.一种6自由度冗余驱动并联机器人的神经内分泌智能控制[J].制造业自动化,2008,30(5):46-50.
    [105]郭崇滨,郝矿荣,丁永生.基于神经内分泌的并联机器人智能控制系统[J].机电、工程,2010,27(7):1-4,8.
    [106]ZHANG Y P, YOU H F, WANG X F. A Hormone based Tracking Strategy for Wireless Sensor Network[C]. Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems,2009,3:104-108.
    [107]LI X, WANG X F, LEI Y, YOU H F. A Self-organized Algorithm Based on Digital Hormone[C]. Proceedings of 3rd International Conference on Advanced Computer Theory and Engineering,2010,2:398-402.
    [108]LIANG J W, YOU H F, WANG X F. A Hormone-Modulated Fuzzy Emotional Model[C]. Proceedings of 2nd International Conference on Computer Engineering and Technology,2010, 3:537-541.
    [109]LIANG J W, DONG D Y, WANG X F. An Aritificial Endocrine-Emotion Model Based on Fuzzy Logic[C]. Proceedings of International Conference on Information Science and Engineering Application,2011. Lecture Notes in Electrical Engineering, Vol.100,307-314.
    [110]DAMASIO A R. Descartes' Brror[M]. New York, USA:G. P. Putnam's Sons,1994.
    [111]MINSKY M. The society of mind[M]. New York, USA:Simon and Schuster,1987.
    [112]CUSTODIO L, VENTURA R, FERREIRA C P. Artificial Emotions and Emotion-Based Control System [C]. Proceedings of 7th IEEE International Conference on Emerging Technologies and Factory Automation,1999,2:1415-1420.
    [113]TURING A M. The Chemical Basis of Morphogenesis[J]. Transaction of the Royal Society of London, Series(B):Biological Science,1952,237:37-72.
    [114]GARDNER D G, SHOBACK D. Greenspan's Basic and Clinical Endocrinology[M].8th Edition. McGraw Hill,2007.
    [115]GREENSPAN F S, GARDNER D G, J原著,郭晓惠等译.基础与临床内分泌[M].第7版.北京:人民卫生出版社,2009.
    [116]姚泰,罗自强,等,著.生理学[M].北京:人民卫生出版社,2001.
    [117]迟素敏,主编.内分泌生理学[M].西安:第四军医大学出版社,2006.
    [118]张万全,王复周.神经、免疫及内分泌系统间的关系[J].生理科学进展,1993,3:261-268.
    [119]李明龙,赵家军.现代内分泌学发展的回顾与展望[J].医学与哲学,2003,24(4):41-43.
    [120]龚守良.从内分泌学的发展看机体的内稳态[J].东北师大学报(自然科学版),1987,No.4:93-99.
    [121]邝安堑,陈家伦.内分泌学研究现状和展望[J].中华内分泌代谢杂志,1985,1(1):4-7.
    [122]BROOKS R A. A robust layered control system for a mobile robot[J]. IEEE Journal of Robotics and Automation,1986,2(1):14-23.
    [123]JOSIN G, CHARNEY D, WHITE D. Robot Control using Neural Networks[C]. IEEE International Conference on Neural Networks,1988,2:625-631.
    [124]FLOREANO D, FRANCESCO M. Automatic creation of an autonomous agent:genetic evolution of a neural-network driven robot[C]. Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior,1994.
    [125]LEWIS M A, FAGG A H, SOLIDUM A. Genetic programming approach to the construction of a neural network for control of a walking robot[C]. Proceedings of IEEE International Conference on Robotics and Automation,1992,3:2618-2623.
    [126]POMERLEAU D A. Neural Network Vision for Robot Driving[J]. In The Handbook of Brain Theory and Neural Networks,1996.
    [127]YANG S X. MENG M. An Efficient Neural Network Approach to Dynamic Robot Motion Planning[J]. Neural Networks,2000,13(2):143-148.
    [128]TSCHICHOLD-GURMAN N. The neural network model RuleNet and its application to mobile robot navigation[J]. Fuzzy Sets and Systems,1997,85(2):287-303.
    [129]CHIEL H J, BEER R D, QUINN R D, ESPENSCHIED K S. Robustness of a Distributed Neural Network Controller for Locomotion in a Hexapod Robot[J]. IEEE Transactions on Robotics and Automation,1992,8(3):293-303.
    [130]NAGATA S, SEKIGUCHI M, ASAKAWA K. Mobile Robot Control by a Structured Hierarchical Neural Network[J]. IEEE Control Systems Magazine,1990,10(3):69-76.
    [131]MUNIZ F, ZALAMA E, GAUDIANO P, LOPEZ-CORONADO J. Neural Controller for a mobile robot in a nonstationary environmern[C]. Proceedings of 2nd IFAC Conference on Intelligent Autonomous Vehicles,1995:279-284.
    [132]FUJII T, ARAI Y, ASAMA H, ENDO 1. Multilayered Reinforcement Learning for Complicated Collision Avoidance Problems[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1998,3:2186-2191.
    [133]LISMAN J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory[C]. Proceedings of the National Academy of Sciences of the United States of America,1989,86:9574-9578.
    [134]PARUNAK H V D, PURCELL M, O'CONNELL R. Digital Pheromones for Autonomous Coordination of Swarming UAV's[C]. Proceedings of the 1st Unmanned Aerospace Vehicles, Systems, Technologies, and Operations Conference and Workshop,2002.
    [135]PARUNAK H V D, BRUECKNER S. Entropy and Self-Organization in Multi-Agent Systems[C]. Proceedings of the 5th International Conference on Autonomous Agents.2001.
    [136]BURGARD W, MOORS M, FOX D, SIMMONS R, THRUN S. Collaborative Multi-Robot Exploration[C]. Proceedings of IEEE International Conference on Robotics and Automation,2000,1:476-481.
    [137]MATARIC M J. Reinforcement Learning in the Multi-Robot DomainfJ]. Autonomous Robots,1997,4(1):73-83.
    [138]MATARIC M J. Learning to behave socially[C]. Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior:From Animals to Animats,1994:453-462.
    [139]TAN M. Multi-Agent Reinforcement Learning:Independent vs. Cooperative Agents[C]. Proceedings of the 10th International Conference on Machine Learning,1993:330-337.
    [140]SUGIHARA K, SUZUKI I. Distributed Motion Coordination of Multiple Mobile Robots[C]. Proceedings of the 5th IEEE International Symposium on Intelligent Control,1990, 1:138-143.
    [141]PARKER L E. Designing Control Laws for Cooperative Agent Teams[C]. Proceedings of IEEE International Conference on Robotics and Automation,1993,3:582-587.
    [142]CHEN Q, LUH J Y S. Distributed Motion Coordination of Multiple RobotsfC]. Proceedings of International Conference on Intelligent Robots and Systems:Advanced Robotic Systems and the Real World,1994,3:1493-1500.
    [143]GORDON N, WAGNER I A, BRUCKSTEIN A M. Discrete Bee Dance Algorithms for Pattern Formation on a Grid[C]. Proceedings of IEEE International Conference on Intelligent Agent Technology,2003:545-549.
    [144]SAHIN E, LABELLA T H, TRIANNI V, et al. SWARM-BOT:Pattern Formation in a Swarm of Self-Assembling Mobile Robots[C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics,2002,4.
    [145]BALCH T, ARKIN R C. Behavior-Based Formation Control for Multirobot Teams [J]. IEEE Transactions on Robotics and Automation,1998,14(6):926-939.
    [146]MAIARIC M J. Designing Emergent Behaviors:From Local Interactions to Collective Intelligence[C]. Proceedings of International Conference on Simulation of Adaptive Behavior: From Animals to Animats,1993,2:432-441.
    [147]BALCH T, HYBINETTE M. Social potentials for scalable multi-robot formations [C]. Proceedings of IEEE International Conference on Robotics and Automation,2000,1:73-80.
    [148]王聪颖.障碍环境中的多机器人编队研究[D]:[硕士].杭州,浙江大学,2010.
    [149]DE JONG K A. An Analysis of the behavior of a class of genetic adaptive systems[D]:[Ph. D]. University of Michigan,1975.
    [150]HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology,1952,117: 500-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700