基于细胞因子的生物网络协同进化理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络应用需求日益朝着高性能、大规模、多样性的方向发展,对Internet网络提出了更高的分布式要求。对网络系统逐渐提出自扩充性、可移动性、可生存性、简单易操作性的要求。并且,随着用户和网络环境变化的自适应性等特点,有必要进一步优化Internet网络体系结构,并设计其应用。生物系统是分布式自治系统,能提供给科学和工程领域各种富有成效的技术和方法。在生物界中,像人体系、蜂群和人类社会这样的大规模系统,已形成许多重要的原理和机理,正好可以满足以上对Internet的未来需求。
     本课题将生物细胞因子网络的一些相关原理和机理,应用到Internet网络中,提出新颖的生物网络计算模型和相关智能算法语应用。
     首先,本文对人工神经网络、人工免疫系统和人工内分泌系统等生物智能理论及各种智能技术发展进行了综述,指出了目前发展存在的问题以及将来的发展方向。并介绍了细胞因子网络的生理基础及其调控机理和网络模型,为本文智能网络模型及算法的研究设计奠定了生物理论基础。介绍了智能移动Agent的特性及应用领域,为生物网络模型的设计提供技术支撑。
     其次,从细胞因子网络的理论和研究结果中抽象出一种新颖的生物网络集成计算框架,设计了一种细胞因子网络结构及其中间件,该中间件包括网络平台和生物实体。生物网络平台由通用基础组件、网络服务模块和关联模块三部分组成,生物实体是网络应用中的最小组件。并设计了生物结构的通信机制。
     接着,对初步激活辅助性T细胞前体提出了一个“两步双信号”模型,用来了解外周的自我-非我区分的机制。基于这个“两步双信号”模型,我们提出了一种新颖的人工免疫算法用来产生不同的“两步双信号”生物实体,而且设计了基于一个“两步双信号”生物实体的分布式入侵检测系统用来保护生物网络结构的安全,对它的运行机制进行了讨论。
     借鉴造血细胞因子模型的协同调整模型,扩展生物实体的设计,提出了一种Web服务的协同调度。造血细胞因子模型研究了细胞因子之间的促进与抑制机制,以及对于造血祖细胞的控制调节作用。在细胞因子网络基础上,对Web合成服务请求与调度的建模,融入基于造血细胞因子调节模型,设计了一种资源的实时计算方法。并结合两种服务选择策略,在扩展的生物网络平台上研究系统的响应能力和服务质量。仿真实验表明基于造血细胞因子网络的Web服务实时调度方法是有效的,具有很好的性能。
     借鉴生物神经内分泌免疫系统的协同进化机制,基于细胞因子网络平台提出了Web服务的合成方法。在细胞因子网络调控下的生物实体代理Web服务,构成为一个带有条件的米兰机单元,Web服务的合成可以转换为米兰机进化过程。生物实体通过消息匹配和条件约束形成细胞因子网络,Web服务的合成通过生物实体细胞因子网络支持。在服务协同进化过程中可以动态调整其合成的服务,完成服务的动态自组织合成和管理等工作。仿真结果表明该方法在环境动态变化时具有适应性。
     然后,借鉴生物细胞因子网络的协同进化机制,为生物实体设计协同感知的属性与计算能力,提出了Web服务合成中的方法。在细胞因子网络调控下的生物实体代理Web服务,具有细胞因子网络实体的基本功能,并且扩展了对于分布感知的支持。通过考虑连接亲和度、多亲和度服务质量模型,以及信任亲和度的计算,提出了服务感知计算的具体方法。仿真结果表明该方法具有良好的性能和可扩展性。
     最后,对全文研究内容进行了总结,指出研究工作中存在的不足,明确了下一步的研究方向。
With the development of network application requirements for high performance, large scale,and diversity,Internet should be highly distributed,that is to say,the network with the core of users should be extensibility,mobility,survivality,simple operation,and adaptability to the long or short change of users and network environments.Hence,it is necessary to optimize further the architecture of Internet and design its applications. Biological information systems can be regarded as distributed automatic systems,and can provide various effective technologies and methods for science and engineering field.In biological world,the large-scale systems,such as human society,bee swarm,and human body systems have developed many important theories and mechanisms that can be satisfied with the future requirements of the Internet.
     In the thesis,we apply the correlated theories and mechanisms of cytokine network to the Internet,and bring forward a novel bio-network computing model and some intelligent algorithms.
     Firstly,we investigate the development of artificial intelligent technologies,including artificial neural network,artificial immune system,artificial endocrine system,and the others intelligent technologies.And their difficulties and further developments are summarized.Some relative physiological theories and modulation mechanisms or models of neural system,endocrine system,and immune system,are briefly introduced.They provide the biological bases for the intelligent network models and algorithms studied in this thesis.We introduce characteristic of intelligent mobile agents,which is useful for designing bio-network models.
     Secondly,from theories and studies of the cytokine netowork,we abstract a computing framework integrated by neuro-endocrine-immune networks and design bio-network architecture and its middleware.The bio-network middleware includes bio-network platform and bio-entities.The bio-network platform consists of general basic components,bio-network services modules and context modules.A bio-entity is the smallest unit in the network applications.Then we design communication mechanisms of the bio-network.
     Again,a two-step,two-signal(TSTS) model for the primary activation of precursor helper T cells is proposed to incorporate a mechanism of peripheral self-nonself discrimination.Based on the TSTS model,we propose a novel artificial immune algorithm to generate different TSTS bio-entities.We design a distributed intrusion detection system (DIDS) based on the TSTS bio-entities to protect the security of our bio-network architecture.We also discuss its running mechanism.
     Next,inspired by schedule model of hematopoiesis cytokine network,extending the design of bio-entity,a co-schedule model is proposed for Web services.In the model of hematopoiesis cytokine network,the synergy and inhibitor mechanisms adjusting the capability of hematopoiesis cells are studied.On the basis of cytokine network,the request and schedule of the Web composite services are modeled by incorporating the model of hematopoiesis cytokine network to design an approach of computing resources. Considering two strategies of services selection,the capability of response and service quality are studied in the extended bio-network platform.The experimental study shows that the real-time schedule method based on hematopoiesis cytokine network is valid and has promising performance.
     After that,inspired by co-evolutionary mechanism in neuroendocrine-immune system, a cytokine network platform is proposed for Web services composition.In the control of cytokine network,bio-entity delegates Web service to construct a Melay evolutionary unit with conditions.Web composition is then transferred to Melay evolutionary process. Bio-entities construct cytokine network through message matching and conditional constraints to support Web services composition.During the co-evolution process of Web services,the composed services are dynamically adjusted to finish the dynamical composition and management of Web services.The simulation results show that the approach is adaptive in dynamic environments.
     And,inspired by co-evolutionary mechanism in cytokine network,the features and computing capability of bio-entity are designed for a clustering approach in Web services composition.In the control of cytokine network,bio-entity delegates Web service with basic functions of cytokine network entity.Moreover,bio-entity is extended to support distributed awareness.Considering the connect affinity,multiple affinity-based service quality model,and trust affinity,the concrete methods for service awareness are supported. The simulation results show that the approach is of high performance and extendable capability.
     Finally,a summary of the thesis is made,and the deficiency in the project and the further development are narrated respectively.
引文
[1]J.Suzuki,T.Suda,A middleware platform for a biologically inspired network architecture supporting autonomous and adaptive applications.IEEE Journal on selected areas in communications,2005.23(2):249-260.
    [2]L.N.d.Castro,J.Timmis,Artificial immune systems as a novel soft computing paradigm.Soft Computing,2003.7:526-544.
    [3]丁永生,计算智能的新框架:生物网络结构.智能系统学报,2007.2(2):26-30.
    [4]丁永生,计算智能--理论、技术与应用.2004,北京:科学出版社.
    [5]丁永生,任立红,一种基于免疫突现计算的生物网络结构的设计.控制与决策,2003.18(2):185-189.
    [6]丁永生,张向锋,任立红,孙霏,基于生物网络中间件的网络自适应性研究.计算机工程与应用,2007.43(17):123-126.
    [7]皋磊,丁永生,任立红,张向锋.基于生物网络平台的网格体系结构研究.2003年中国智能自动化会议.2003.香港.
    [8]皋磊,丁永生,张向锋,任立红,面向网络突现计算的生物网络通信机制.模式识别与人工智能,2004.17(7):446-450.
    [9]皋磊,任立红,张向锋,丁永生,生物网络通信语言的设计和实现.计算机科学,2003.30(11):10-12.
    [10]刘宝,基于生物网络的智能控制系统及其应用.2006,东华大学:上海.
    [11]孙宏彬,丁永生,基于生物网络的e-service自进化组合方法研究.计算机应用研究,2008.25(4):999-1003.
    [12]孙宏彬,丁永生,基于生物网络的Web服务突现模型研究与实现.计算机科学,2007.34(8):34-37.
    [13]张向锋,任立红,丁永生,基于神经内分泌免疫系统的网络计算仿真平台.系统仿真技术,2005.1(2):79-83.
    [14]张向锋,任立红,皋磊,丁永生,生态网络仿真平台的能量服务管理.计算机工 程与应用,2003.39(31):145-148.
    [15]张向锋,任立红,皋磊,丁永生,基于生物实体的网络服务突现.系统仿真学报,2004.16(8):1797-1800.
    [16]张向锋,任立红,皋磊,丁永生,一种面向网络突现计算的生物网络中间件的设计方法.东南大学学报(增刊),2003(33):59-63.
    [17]H.Haken.,Synergetics,an introduction.1977,Berlin:Springer.
    [18]H.Haken,R.Haas,W.Banzhaf,A new learning algorithm for synergetic computers.Biol.Cybem.,1989.62:107-111.
    [19]H.Haken.,Advanced Synergetics.1983,Berlin:Springer.
    [20]H.Haken.,Information and self-organisation.1988,Berlin:Springer.
    [21]H.Haken.,Morphogenesis of Behaviour and Information Compression in Biological Systems,Thermodynamics and Pattern Formation in Biology.1988,Berlin,New York.:Walter de Gruyter&Co.
    [22]H.Haken.,Some Basic Concepts of Synergetics with Respect to Pattern Formation.Morphogenesis of Behavior Ber.Bunsenges.Phys.Chem.,1985.89:565.
    [23]H.Haken.,Synergetic computer and cognition-a top-down approach to neural nets.1991,Berlin:Springer.
    [24]P.R.Ehrlich,P.H.Raven,Evolution.1964.18:586-608.
    [25]D.H.Janzen.,evolution.1980.34:611-612.
    [26]J.Roughgarden.,Theory of population genetics and evolutionary ecology:an introduction.1979,New York:Macmillan.1-68.
    [27]钦俊德,昆虫与植物的关系-论昆虫与植物的相互作用及其演化.1986,北京:科学出版社.1-227.
    [28]李俊年,刘季科,植食性哺乳动物与植物协同进化研究进展.生态学报,2002.22(12):2196-2193.
    [29]Mitchell,Melanie,An introduction to genetic algorithms.1996,Cambridge.
    [30]徐锐,康立山,陈毓屏,对策论中最优策略搜索的协同进化演化算法.计算机工程与设计,2004.25(11):1966-1968.
    [31]周芳荣.基于自适应协同进化遗传算法的RBF神经网络及其在专家系统中的应用.2003.
    [32]孙红金,基于自适应和协同进化的遗传算法及其在模糊神经控制中的应用.2001.
    [33]李碧,雍正正,基于多层竞争的高效并行遗传算法.电子学报,2002.30(12A):2161-2162.
    [34]李碧,雍正正,周安宁,一种嵌入式的协同进化模型.计算机工程与应用,2005.9:62-64.
    [35]邹丽珊,共同进化算法及其应用研究.2002.
    [36]郑浩然,基于生态特征的进化与协同研究.2000.
    [37]郑浩然,曹先彬,刘克胜,基于食物链的生态进化算法.计算机工程与设计,2004.26(4):6-8.
    [38]郑浩然,吴赵斌,齐培中,王煦法,基于共生策略的多模式进化算法.计算机工程,2000.26(8):7-8.
    [39]曹先彬,罗文坚,王煦法,基于生态种群竞争模型的协同进化.软件学报,2001.12(4):556-562.
    [40]H.Haken,杨家本译,协同计算机和认知- 神经网络的自上而下方法.中国计算机学会学术著作丛书.1994:清华大学出版社.
    [41]王海龙,协同神经网络在图像识别中的应用研究.2000.
    [42]王海龙,戚飞虎,一种有效的最优序参量重构方法.中国图象图形学报,2001.6A(1):56-60.
    [43]王海龙,戚飞虎,基于聚类法的协同神经网络学习算法.上海交通大学学报,1998.32(10):39-41.
    [44]王海龙,戚飞虎,任庆生,多字体字符识别的分级协同模型.上海交通大学学报,2001.35(2):184-187.
    [45]王海龙,戚飞虎,任庆生,协同神经网络中的参数的优化.红外与毫米波学报,2001.20(3):215-218.
    [46]鲍捷,协同神经网络若干关键问题研究.2001.
    [47]史忠植,智能主体及其应用.2000,北京:科学出版社.
    [48]M.Wooldridge,N.R.Jennings,Intelligent agents:theory and practice.The knowledge Engineering Review,1995.10(2):115-152.
    [49]G.Cabri,L.Leonardi,F.Zambonelli,Agents for information retrieval:Issues of mobility and coordination.Journal of Systems Architecture,2000.46(15):1419-1433.
    [50]L.Gasser,T.Ishda.A dynamic organizational architecture for adaptive problem solving,in AAAI-91.1991.
    [51]L.Hern.,On Distributed Artificial Intelligence.The Knowledge Engineering Review,1988.(3):21-57.
    [52]M.Wooldridge,N.R.Jennings.Agent Theories,Architectures and Languages:A Survey.in Intelligent Agents.1994.Berlin:Springer-Verlag.
    [53]李红臣,史美林,Agent在工作流管理系统中的应用研究(in Chinese).通信学报,1999.(9):16-22.
    [54]郑庆华,李人厚,基于Agent的多层次多群体协同工作的建模.西安交通大学学报,2001(2):128-133.
    [55]H.Tarumi,Y.Ishiguro,K.Yoshifu,T.Asakura.Work Web systems -Multi workflow management with a multi-agent system,in Proc.ACM International Conference on Supporting Group Work.1997.
    [56]赵亚伟,张海盛,基于Agent的协同关系模型研究.系统仿真学报,2003.15(11):1529-1532.
    [57]关新民,医学神经生物学纲要:2003:北京科学出版社.
    [58]谢启文,现代神经内分泌学.1999,上海:上海医科大学出版社.
    [59]H.O.Besedovsky,A.Ray,Immune-neuro-endocrine interactions:facts and hypotheses.Nature,1996(249):356-358.
    [60]I.M.Kvetnoy,Neuroimmunoendocrinology:Where is the field for study?Neuroendocrinology Letters,2002(23):119-120.
    [61]孙卫民,王惠琴,细胞因子研究方法学.1999,北京:人民卫生出版社.
    [62]盛树力,多肽激素的当代理论和应用.1998,北京:科学技术文献出版社.
    [63]高亮,高德,人体信息控制系统生理学-现代中医生理学和中医药理学.1997.呼和浩特:内蒙古人民出版社.
    [64]侯健,人类细胞因子手册.1996,上海:同济大学出版社.
    [65]陈政良,朱锡华,淋巴细胞识别与激活的双信号理论.免疫学志,2003.19(3): 236-239.
    [66]黄悦,朱立平,张伟,从克隆选择学说到危险模式.中国医学科学院学报,2002.24(4):430-433.
    [67]D.W.Talmage,D.S.Pearlman,The antibody response:a model based on antagonistic actions of antigen.J.Theor.Biol.,1963.5(2):321-339.
    [68]A.Sahu,J.D.Lanmbris,Structure and biology of complement protein C3,a connecting link between innate and acquired immunity.Immunol.Rev.,2001.180:35-48.
    [69]P.A.Bretscher,M.Cohn,Minimal model for the mechanism of antibody induction and paralysis by antigen.Nature,1968.220(66):444-448.
    [70]P.Bretscher,M.Cohn,A theory of self-nonself discrimination.Science,1970.169(950):1042-1049.
    [71]K.J.Lafferty,M.A.Jones,Reactions of the graft versus-host(GVH) type.Aust J.Exp.Biol.Med.Sci.,1969.47(1):17-54.
    [72]K.J.Lafferty,L.S.Misko,M.A.Cooley,Allogeneic stimulation modulates the in vitro response of Tcells to tanrsplantation antigen.Nature,1974.249(454):275-276.
    [73]K.J.Lafferty,A.J.Cunningham,A new analysis of allogeneic interactions.Aust.J.Exp.Biol.Mod.Sci.,1975.53(1):27-42.
    [74]A.J.Cunningharn,K.J.Lafferty,A simple conservative explanation of the H-2restriction of interactions between lymphocytes.Stand J.Immunol.,1977.6(1-2):1-6.
    [75]M.Jenkins,R.Schwartz,Antigen presentation by chemically modified splenocytes induces antigen-specific T-cell unresponsiveness in vitro and in vivo.J Exp.Med.,1987.165(2):302-319.
    [76]C.Janeway,Approching the asymptote? Evolution and revulotion in immunology.Cold Spring Harb Symp Quant Biol,1989.54(1):1-13.
    [77]C.Janeway,R.Medzhitov,lnnate immune recognition.Annu.Rev Immunol,2002.20197-216.
    [78]P.Brown,Cinderella goes to the hall.Nature,2001.410(6832):1018-1020.
    [79]P.Matzinger,Tolerance,danger and the extended family.Annu.Rev.Immunol.,1994.12:991-1045.
    [80]S.Gallucci,P.Matzinger,Danger signals:SOS to the immune system.Curr.Opin.Immunol.,2001.13(1):114-119.
    [81]P.Matzinger,The danger model:a renewed sense of self.Science,2002.296(5566):301-305.
    [82]C.C.Anderson,J.M.Carroll,S.Gallucci,Testing time-,ignorance-,and danger-based models of tolerance.J.Immunol.,2001.166(6):3663-3671.
    [83]F.Balkwill,The cytokine network.2000:Oxford university press.
    [84]陈晓萍,徐远扬,神经、内分泌、免疫网络的通用生物学语言.自然杂志,2002.24(4):194-197.
    [85]K.Soonjo,C.G.Steven,Synergistic cytokine-Induced nitric oxide production in human alveolar epithelial cells.Biology and Chemistry,1999.3(4):348-357.
    [86]S.S.Watowich,Cytokine recepter signal transduction and the control of hematopoietic cell development.Annu.Rev.Cell Dev.Biol.,1996.12:91-128.
    [87]P.C.Heinrich,I.Behrmann,Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway.J.Biochem.,1998.334:297-314.
    [88]V.Chesnokova,S.Melmed,Neuro-Immuno-Endocrine Modulation of the Hypothalamic-Pituitary-Adrenal(HPA) Axis by gp130 Signaling Molecules.Endocrinology,2002.143:1571-1574.
    [89]P.A.Bretscher,A two-step,two-signal model for the primary activation of precursor helper T cells.Immunology Proc.Natl.Acad.Sci.,1999.96(1):185-190.
    [90]A.Kariagina,D.Romanenko,S.-G.Ren,V.Chesnokova,Hypothalamic-pituitary cytokine network.Endocrinology,2004.145(1):104-112.
    [91]T.W.Klein,B.Lane,C.A.Newton,H.Friedman.The cannabinoid system and cytokine network,in Proceedings of the Society for Experimental Biology and Medicine.2000.
    [92]E.Ottaviani,S.Valensin,C.Franceschi,The neuro-immunological interface in an evolutionary perspective:the dynamic relationship between effector and recognition systems.Bioscience,1998.16(3):431-435.
    [93]H.O.Besedovsky,E.Sorkin,Network of immune-neuroendocrine interactions.Clin.Exp.Immunol.,1977.27(1):1-12.
    [94]A.M.Penelope,mathematical modeling of immunological reactions.Bioscience,1998. 3:338-347.
    [95]H.Kitano,Biological robustness.Nature genetics,2004.5:826-837.
    [96]曹雪涛,细胞因子研究的现状与发展趋势.中国肿瘤生物治疗杂志,1995.2(3):175-181.
    [97]曹雪涛,叶天星,细胞因子和细胞因子网络的基础研究进展.国外医学免疫学分册,1990.13(5):230-237.
    [98]曹雪涛,章卫平,陈国友,肿瘤基因治疗的受体细胞研究进展.国外医学肿瘤学分册,1996.23(1):9-12.
    [99]刘永学,贺福初,吴祖泽,生长因子及细胞因子的两条重要信号转导通路.生物化学与生物物理进展,1996.23(1):4-8.
    [100]徐红梅,曹雪涛,免疫细胞TLRs信号转导机制研究进展.中国免疫学杂志,2006.22(3):278-282.
    [101]王莉,浅谈细胞因子网络性.河北省科学院学报,2002.19(2):92-97.
    [102]王亚奇,刘丽,刘爽,细胞因子在中枢神经系统中的作用及其突破:中国临床康复,2002.6(6):784-785.
    [103]丁永生,任立红,一种基于免疫突现计算的生物网络结构的设计.控制与决策,2003.18(2):185-189。
    [104]任立红,丁永生,一种新颖的基于生态网络的仿真平台.系统仿真学报,2002.14(11):1497-1499,1503.
    [105]C.Zixing,Intelligent control:Principles,techniques and applications.1997,Singapore:World Scientific Publishers.
    [106]M.G.Madan,K.S.Naresh,Intelligent control systems:Theory and applications.1996,New York:IEEE Press.
    [107]E.K.Robert,Computational intelligence in control engineering.1999,New York:Marcel Dekker,Inc.
    [108]张智星,张春在,水谷英二,神经-模糊和软计算.2000,西安:西安交通大学出版社.
    [109]王耀南,智能控制系统-模糊逻辑·专家系统·神经网络控制.1996,湖南:湖南大学出版社.
    [110]孙增圻,智能控制理论与技术.1997,北京:清华大学出版社.
    [111]李士勇,模糊控制.神经控制和智能控制论.1998,哈尔滨:哈尔滨工业大学出版社.
    [112]D.Dasgupta,Artificial immune systems and their applications.1999,New York:Springer-Verlag.Inc.
    [113]丁永生,任立红,人工免疫系统:理论与应用.模式识别与人工智能,2000.13(1):52-59.
    [114]L.S.Farhy,M.Straume,A construct of interactive control of the GH axis in the male.Am J Physiol Regulatory Integration Comp Physiol,2001.281:38-51.
    [115]F.L.S.,Modeling of oscillations of endocrine networks with feedbaek[EB/OL].
    [116]B.Liu,Y.-S.Ding.A decoupling control based on the bi-regulation principle of growth hormone,in Computational Intelligence:Methods& Application 2005.Istanbul,Turkey.
    [117]B.Liu,L.-h.Ren,Y.-S.Ding,A novel intelligent controller based on modulation of neuroendocrine system.Lecture Notes in Computer Science,2005.3498:119-124.
    [118]刘宝,丁永生,一种基于睾丸素分泌调节原理的双层结构控制器.上海交通大学学报,2006.40(5):822-824.
    [119]K.Krishnakumar,J.Neidhoefer,Immunizedneurocontrol.Expert System with Applications,1997.13(3):201-214.
    [120]F.T.Vertosiek,R.H.Kelly,The immune system as a neural network:A multi-epitope approach.J.Theor.Biol.,1991.150:225-237.
    [121]刘宝,丁永生,一种基于免疫存储记忆的智能控制器的设计与实现.控制与决策,2005.20(10):1169-1172.
    [122]刘宝,丁永生,一种新颖的基于内分泌激素调控的智能控制器.计算机仿真,2006.23(2):129-132.
    [123]R.Ader,D.L.Felten,N.Cohen,Psychoneuroimmunology.2001,New York:Academic Press.
    [124]W.Savino,M.Dardenne,Neuroendocrine control of thymus physi6logy.Endocrine Reviews 2000.21(4):412-443.
    [125]A.O'Garra,Cytokines induce the development of functionally heterogeneous T helper cell subsets.Immunity,1998.8:275-283.
    [126]P.Kourilsky,P.Truffa-Bachi,Cytokine fields and the polarization of the immune response.Trends in Immunology 2001.22 502-509.
    [127]A.Hone,H.v.d.Berg.Modelling a cytokine network.in Proceedings of the 2007IEEE Symposium on FOCI.2007.
    [128]S.Bunk,Signal blues:stress and cytokine levels underpin a provocative theory of depression.The Scientists,2003.25:24-28.
    [129]M.Hisada,Potent antitumor activity of interleukin-27.Cancer Research,2004.64:1152-1156.
    [130]A.O.Tarakanov,L.B.Goncharova,O.A.Tarakanov.A Cytokine Formal Immune Network.in ECAL 2005,LNAI 2005.
    [131]F.H.Igney,P.H.Krammer,Immune escape of tumors:apoptosis resistance and tumor counterattack.J.Leukoc.Biol.,2002.71(6):907-920.
    [132]V.Tecchio,IFN{alpha}-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand(TRAIL/Apo-2 ligand) displaying apoptotic activity on leukemic cells.Blood,2004.103(10):3837-3844.
    [133]L.Wall,F.Burke,B.Caroline,J.Smyth,F.Balkwill,IFN-gamma induces apoptosis in ovarian cancer cells in vivo and in vitro.Clinical Cancer Research,2003.92487-2496.
    [134]S.D.Bay,D.o.I.a.C.Science,Editor.1999,Irvine,CA:University of California.
    [135]A.O.Tarakanov,Y.A.Tarakanov.A comparison of immune and neural computing for two real-life tasks of pattern recognition.in Lecture Notes in Computer Science.2004.Berlin:Springer-Verlag.
    [136]A.O.Tarakanov,Y.A.Tarakanov,A comparison of immune and genetic algorithms for two real-life tasks of pattern recognition.Int.J.Unconventional Computing,2005.1(4):357-374.
    [137]U.S.Bhalla,R.Iyengar,Emergent properties of networks of biological signaling pathways.Science,1999.283(5400):381-387.
    [138]B.Wellman.,Computer networks as social networks.Science,2001.293(14):2013-2034.
    [139]李夏,戴汝为,突现(emergence)--系统研究的新观念.控制与决策,1999.14(2): 97-102.
    [140]N.R.Jennings,An agent-based approach for building complex software systems.Communications of the ACM,2001.44(4):35-41.
    [141]M.Wooldridge,Agent-based software engineering IEEE Proc.Software Engineering,1997.144(1):26-37.
    [142]S.Russel,P.Norvig,Artificial Intelligence:A Modern Approach.1995,New York:Prentice Hall.
    [143]J.E.Blalock,The syntax of immune-neroendocrine communication.Immunol Today,1994.15:504-511.
    [144]朱长庚,李正莉,细胞因子与免疫-神经-内分泌调节网络 解剖学报,1996.27(4):339-344.
    [145]胡格,穆祥,段慧琴,杨佐君,高立云,免疫、神经和内分泌系统间的关系.动物医学进展,2003.24(1):5-7.
    [146]郑仲承,免疫-神经内分泌相互作用.用生命的化学,1996.16(5):42-45.
    [147]G.Dan,S.B.Lall,Neuroendocrine modulation of immune system.Indian Journal of Pharmacology,1998.30:129-140.
    [148]I.Pyarali,An overview of the CORBA portable object adapter.Special Issue on CORBA in the ACM Standard View Magazine,1998.6(1):30-43.
    [149]Object Management Group.1997,Specification of the PortableObject Adapter (POA).p.OMG Document orbos/97-05-15 ed.
    [150]Extensible Markup Language(XML) 1.0(Second Edition) Recommendation.2000,World Wide Web Consortium.p.http://www.w3c.org/TR/REC-xml/.
    [151]Foundation for Intelligent Physical Agents.1999,RIPA specification Part 2:Agent Communication Language.p.http://www.fipa.crg/spec/fipa99.
    [152]CORBA~(TM)/ⅡOP~(TM)Specification[DB/OL].http://www.omg.org/technology/documents/formal/corba_iiop.htm.
    [153]T.Finin,D.McKay,R.Fritzson.KQML:an information and knowledge exchange prolocol,in Knowledge Building and Knowleged Sharing.1994:Ohrnsha and ICS Press.
    [154]Y.Labou,T.Finin,A proposal for a new KQML specification,in Tech.Report CS-97-03.1997,Computer Science and Electrical Engineering Dept.Univ of Maryland:Baltimcre County.
    [155]Java~(TM) RMI-ⅡOP Documentation[DB/OL].,http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop.
    [156]D.Dasgupta,Artificial Immune Systems and Their Applications.Springer-Verlag.Inc.,1999.
    [157]N.D.C.Leandro,T.Jonathan.Artificial immune system:a new computational intelligence approach.2002:Springer-Verlag.Inc.
    [158]J.Kim,W.O.Wilson,U.Aickelin,J.McLeod.Cooperative automated worm response and detection immune alLgorithm(CARDINAL) inspired by T-cell immunity and tolerance.4th International Conference,ICARIS 2005,Banff,Alberta,Canada,August,2005.pp 168-181.
    [159]D.J.Lenschow,T.L.Walunas,J.A.Bunestone,CD28/B7 system of T cell costimulation.Annu.Rev.Immunol.,1996.14:233-258.
    [160]N.Toma,S.Endo,K.Yamada.Immune algorithm with immune network and MHC for adaptive problem solving,in Proc.IEEE SMC IV.1999.Tokyo,Japan.
    [161]M.A.Potter,K.A.D.Jong.The coevolution of antibodies for concept learning,in Parallel Problem Solving From Nature- PPSN V.1998:Springer-Verlag.
    [162]M.A.Potter,K.A.D.Jong,Cooperative coevolution:An architecture for evolving coadapted subcomponents.Evolutionary Computation,2000.8(1):1-29.
    [163]X.-F.Zhang,Y.-S.Ding,L.-H.Ren,L.Gao.Immune emergent computation-based bio-network architecture and its simulation platform,in 6th Int.FLINS Conf.on Applied Computational Intelligence.2004.Blankenberge,Belgium.
    [164]M.Surdeanu,D.Modovan,S.Harabagiu.Performance analysis of a distributed question/answering system,in IEEE Trans.on Parallel and Distributed Systems.2002.
    [165]X.Qin,H.Jiang,Y.Zhu,D.R.Swanson.Dynamic load balancing for I/O- and Memory- Intensive workload in clusters using a feedback control mechanism,in Lecture Notes in Computer Science.2003:Springer.
    [166]S.Moqattash,J.D.Lutton,Leukemia cells and the cytokine network:therapeutic prospects.Cytokine Therapy in Leukemia.Exp Biol Med 2004.229:121-137.
    [167]L.Gao,Y.-S.Ding,Y.Hao,An adaptive social network-based computation platform as grid middleware system.International Journal of Intelligent Systems,2004.19(10):859-884.
    [168]T.Bultan,F.Xiang,R.Hull.Convehation specification:a new approach to design and analysis of e-service composition.in Proceeding of the 12th International WWW Conference.2003.
    [169]孙宏彬,丁永生,基于生物网络的e-service自进化组合方法研究.计算机应用研究,2008.25(4):999-1003.
    [170]Z.-G.Hai,The future interconnection environment.IEEE Computer,2005.38(4):27-33.
    [171]P.A.Vargas,R.Moioli,L.N.D.Castro.Artificial homeostatic system:a novel approach advances in artificial life.in Proceeding of the 8th European Conference.2005.
    [172]Y.-S.Ding,H.-B.Sun,K.-R.Hao,A bio-inspired emergent system for intelligent Web service composition and management.Knowledge-Based Systems,2007.20(5):457-465.
    [173]D.Berardi,G.D.Glacomo,M.Lenzenrini.Synthesis of underspecified composite e-services based on automated reasoning.in Proceeding of the 2nd International Conference on Service Oriented Computing.2004.
    [174]L.-Z.Zeng,B.Benatallah,A.H.H.Ngu,QoS-aware middleware for services composition.IEEE Trans on Software Engineering,2004.30(5):311-327.
    [175]J.Timmis,M.Neal,Once more upto the breach:towards artificial homeostasis,in Recent Developments in Biologically Inspired Computing,L.N.d.Castro and F.J.V.Zuben,Editors.2003,Idea Group Inc.p.340-366.
    [176]T.Bultan,F.Xiang,R.Hull.Convehation specification:a new approach to design and analysis of e-service composition.in Proceeding of the 12th International WWW Conference.2003.
    [177]G.Canfora,M.D.Penta,R.Esposito.A lightweight approach for QoS-aware service composition.in Proceedings of the 2nd International Conference on Service Oriented Computing.2004.New York,USA.
    [178]L.-J.Zhang,B.Li,T.Chao.On demand Web services-based business process composition.in IEEE International Conference on System,Man,and Cybernetics. 2003.Washington.USA.
    [179]蔡红,孙宏彬,基于分布感知的Web服务组合方法研究.计算机工程与应用,2008.44(5):143-146.
    [180]C.Gutwin,S.Greenberg.Workspace awareness,in Proceedings of CHI'97 workshop on awareness in collaborative systems.1997.
    [181]P.Dourish,V.Bellotti.Awareness and Coordination in Shared Workspace.in Proceedings of Conference on Computer Supported Cooperative Work.1992.
    [182]M.Endsley,Toward a Theory of Situation Awareness in Dynamic Systems.Human Factors,1995.37(1):32-64.
    [183]W.K.Edwards,Coordination Infrastructure in Collaborative Systems.1995:College of Computing,Georgia Institute of Technology.
    [184]M.L.Minsky,Theory of neural-analog reinforcement systems and its application to the brain-model problem.1954:Princeton University.
    [185]A.Onat,N.Kosino,M.Kuramitu,H.Kita.Reinforcement Learning under Incomplete Perception Using Stochastic Gradient Ascent and Recurrent Neural Networks.in Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.1999.
    [186]J.Peng,B.Bhanu,Delayed reinforcement learning for adaptive image segmentation and feature extraction.IEEE Transactions on Systems Man,and Cybernetics Part C,1998.28(3):482-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700