光照及投礁方式对刺参(Apostichopus Japonicus)行为、生长的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了光照与投礁方式对棘皮动物行为及生理生态学特征影响的研究进展,并通过一系列的室内实验研究了光照强度、光照周期和不同类型人工参礁对刺参行为、生长、能量收支、耗氧率及排氨率的影响。研究结果总结如下:
     1本实验对体重(30.27±3.08)g的刺参(Apostichpus japonicus Selenka)在自然光、全黑暗及15lx、30lx、60lx、125lx、250lx和500lx等6种光强下的行为特性进行了研究。结果表明:1、自然光下刺参存在显著的昼伏夜出行为节律,其在拂晓的5:00至6:00以及黄昏的19:00至20:00间存在迅速移入、移出参礁的行为转变过程。2、刺参在全黑暗条件下亦存在昼伏夜出行为节律,但是其摄食活动时间更长、活动的节律性较弱。3、不同光照强度下,光照时段刺参在光照侧分布比率DR与光强I的关系式为:lgDR=0.351[lg(I+6)]3-1.922[lg(I+6)]2+ 2.751lg(I+6)+0.557 (0≤I≤500);5.18lx及更弱光照下,光强的变化对刺参行为无显著影响(礁外刺参数量≥44%),其行为节律主要受机体内生物钟支配;在5.18lx~278lx光照范围内,随光照的增强刺参出现避光行为的比率逐渐增加(43.96%→8.17%);278lx及更强光照下刺参行为受到光照较强的影响(≤8.17%),并且光强的增加对刺参影响不再显著增强。
     2本实验对体重(29.73±0.23)g的刺参(Apostichpus japonicus Selenka)在0L:24D、3L:21D、6L:18D、9L:15D、12L:12D、15L:9D、18L:6D、21L:3D和24L:0D等9种光照周期下的行为特性进行了研究。结果表明:1、刺参在全黑暗(0L:24D)或全光照(24L:0D)条件下存在显著的昼伏夜出行为节律(P<0.05),但是其摄食、活动时间较自然光相应的延长或缩短,活动节律性均较弱;并且刺参在全黑暗条件下比全光照条件下具有更短的“昼伏”及更长的“夜出”状态。2、6~12h光照时间的光照周期处理下,刺参均存在一个逐渐移入参礁的过程和两个逐渐移出参礁的过程;该行为主要受其内在生物钟节律控制,同时还受到光照信号的诱导。3、光照时间的长短显著地影响刺参的行为,除3L:21D外,“白昼”时段分布在参礁外的刺参数量随光照时间的延长呈增加趋势(P<0.05),但每天6、9、15h光照与12h光照下刺参全天分布在参礁外的平均比率无显著差异(P>0.05)。
     3本实验研究了不同种类人工参礁对刺参行为特性的影响。实验结果表明:1、8种不同材料显著影响人工参礁对刺参的聚集效果(P<0.05),其聚集效果由大到小顺序如下:石块>水泥管>编织袋>瓦片>PVC管>低压聚乙烯管>木板>波纹板,其中前5种人工参礁的集参效果显著地优于后3种(P<0.05)。2、4个不同培养时间人工参礁的集参效果均优于未培养过的参礁,且1M(月)、1.5M和2M显著地优于未培养参礁(0M)(P<0.05);其中,1.5M人工参礁的集参效果最佳,显著地优于除2M外的所有处理(P<0.05)。3、不同颜色的人工参礁显著地影响刺参的遮蔽行为,绿色参礁的集参效果显著地优于白色参礁(P<0.05),其它颜色人工参礁集参效果间差异不显著(P>0.05)。
     4本文研究了光照强度对刺参生长、能量收支和生化组成的影响。实验光照强度为0lx、100lx、500lx、1000lx、2000lx和3000lx,实验共持续56天。实验结果表明:1、实验条件下,刺参的特定生长率(SGRw)随光照强度的增加逐渐增加,在2000lx达到最大(1.50±0.12%),并且显著地高于其它处理(P<0.05),随后逐渐减小,其大小顺序为:2000lx>3000lx>1000lx>500lx>0lx>100lx。2、刺参摄食率(FIw)随光照强度的增加逐渐增加,在2000lx达到最大(25.10±1.51%),并且显著地高于其它处理(P<0.05),随后逐渐减小。3、6种光照强度下,刺参食物转化率(FCEw)间的差异未达到显著水平(P>0.05)。4、不同光照强度下刺参的能量分配比例各异。其中,生长耗能占摄食能的比例(G/C)间差异不显著(P>0.05);粪能占摄食能的比例(F/C)随光照强度的增加而增加,在2000lx达到最大(56.98±4.25%),并且显著地高于其它处理(P<0.05),随后逐渐减小;排泄能和呼吸能占摄食能的比例(U/C,R/C)变化趋势与F/C相反,2000lx达到最小(7.49±0.04%、29.72±4.20%),显著地低于其它处理(P<0.05)。5、伴随光照强度的增加,刺参粗蛋白、粗脂肪含量均逐渐降低。实验结果表明,光照强度通过影响刺参的摄食率和能量分配比例,从而对其生长乃至生化组成产生影响。
     5本文研究了光照周期对刺参生长、能量收支和生化组成的影响。实验光照周期为0L:24D、10L:14D、12L:12D、14L:10D和24L:0D,实验共持续56天。实验结果表明:1、实验条件下,刺参的特定生长率(SGRw)随光照时间的延长逐渐增加,在14L:10D达到最大(1.24±0.04%),显著地高于除12L:12D外的所有处理(P<0.05),然后逐渐减小,其大小顺序为:14L:10D>12L:12D>10L:14D>0L:24D >24L:0D。2、5种光照周期下,刺参摄食率(FIw)随光照时间的延长先增加然后减小,10L:14D、12L:12D和14L:10D(15.48±0.16%)显著地高于连续黑暗(0L:24D)和连续光照(24L:0D)(13.83±0.16%)(P<0.05)。3、5种光照周期下,刺参食物转化率(FCEw)所受影响有与FIw相似,14L:10D>12L:12D>10L:14D >0L:24D>24L:0D。4、5种光照周期下,呼吸和排泄耗能占摄食能的比例(R/C,U/C)间差异不显著(P>0.05);生长占摄食能量的比例(G/C)间差异显著(P<0.05),且0L:24D显著地低于10L:14D(P<0.05);刺参排粪能占摄食能的比例(F/C)所受影响与G/C相反,14L:10D显著地高于0L:24D(P<0.05)。5、随光照时间的延长,刺参组织内粗蛋白、粗脂肪含量均逐渐降低,在14L:10D达到最低(41.10±0.16%、5.37±0.05%),然后逐渐增加;而刺参体能值的变化趋势与之相反。实验结果表明,光照周期通过影响刺参的摄食率、食物转化率和能量分配比例,从而对刺参的生长及生化组成产生影响。
     6本文研究了刺参在4种光照强度和4种光照周期相互搭配下的生长、能量收支及生化组成。实验设0L:0D-0lx、10L:14D-1000lx、10L:14D-2000lx、10L:14D- 4000lx、14L:10D-1000lx、14L:10D-2000lx、14L:10D-4000lx、24L:0D-1000lx、24L:0D-2000lx和24L:0D-4000lx等共计10种光照处理,实验持续56天。实验结果表明:1、光照强度和光照周期均显著地影响刺参的生长(SGRw),且交互作用显著(FP=35.019,FLI=11.429,F=3.100;P<0.05),刺参在14L:10D和2000lx条件下具有较快的生长。2、光照强度和光照周期均显著地影响刺参的摄食率(FIw),且交互作用显著(FP=15.411,FLI=15.501,F=21.866;P<0.05),随光照时间的延长和光照强度的增加,FIw先逐渐上升而后下降。3、光照周期显著地影响刺参食物转化率(FCEw),光照强度作用不显著,但两者交互作用影响显著(FP =18.416,F=8.845;P<0.05;FLI =2.549;P>0.05);适宜的光照条件下(2000lx、14L:10D),刺参具有较高的FCEw。4、随光照时间的延长及光照强度的增加,刺参的含水量与生长表现出一致的变化趋势,而脂肪含量与能值则与生长表现出相反趋势。实验结果表明,不同光照强度和光照周期通过影响刺参的摄食率,同时光照周期还影响刺参的食物转化率,从而影响刺参的生长及生化组成。
     7本实验采用静水法研究了16℃下,体重(11.43±0.68)g的刺参在6种光照强度下的耗氧率和排氨率。实验光照强度为0lx、100lx、500lx、1000lx、2000lx和3000lx,光照周期为12L:12D。实验结果表明:1、6种光照强度下,刺参耗氧率随光照强度的增加先逐渐下降而后上升,3000lx>0lx>100lx>500lx>1000lx> 2000lx。其中,2000lx下刺参的耗氧率显著地低于其它处理(P<0.05),而3000lx显著地高于除0lx外的其它处理(P<0.05)。2、刺参的排氨率随光照强度的增加先逐渐下降后上升,0lx>3000lx>100lx>500lx>1000lx>2000lx。其中,2000lx下刺参的排氨率显著地低于其它处理(P<0.05),0lx显著地高于除3000lx外的其它处理(P<0.05),而3000lx显著地高于500lx和1000lx(P<0.05),但与100lx差异不显著(P>0.05)。3、刺参主要以脂肪和碳水化合物为代谢为底物,仅代谢底物中的脂肪比例随着光照强度的增加先上升而后下降。
     8本实验采用静水法研究了16℃下,体重(13.71±1.71)g的刺参在5种光照周期下耗氧率和排氨率的昼夜变化节律。实验光照周期为0L:24D、10L:14D、12L:12D、14L:10D和24L:0D,光照强度为2000lx。实验结果表明:1、5种光照周期下,刺参的耗氧率和排氨率均存在昼夜波动,且波峰大多出现在“夜间”,而低谷多出现在“白天”;连续光照(24L:0D)和连续黑暗(0L:24D)条件下昼夜波动较大。2、光照周期显著地影响刺参的平均耗氧率(P<0.05),且连续光照和连续黑暗下刺参的耗氧率显著地高于具有一定光照时间的光照周期(10L:14D、12L:12D和14L:10D)(P<0.05)。3、光照周期显著地影响刺参的平均排氨率(P<0.05),且连续光照和连续黑暗下刺参的排氨率显著地高于一定光照时间的光照周期(P<0.05)。4、不同光照周期下,刺参的O:N值范围为12.16~27.45,相互之间差异显著(P<0.05),且连续光照和连续黑暗下刺参的O:N值显著地低于10L:14D、12L:12D和14L:10D(P<0.05)。
1. Eight light-intensity treatments (natural light, continuous darkness, and 15 lx, 30 lx, 60 lx, 125 lx, 250 lx, and 500 lx under LD 12:12 cycle) were used to investigate the effects of light intensity on the daily activity of 30.27±3.08 g sea cucumber Apostichopus japonicus. Cyclic nocturnal activity patterns of behaviour were observed under natural light cycles (with 73.85% kept hidden at day and 58.64% became active at night under the equivalent LD 13:11 cycle), which were also observed at different light intensities in the range 15 lx to 500 lx under LD 12:12 cycle. And an ongoing nocturnal cycle persisted in DD cycle for up to 8 days, but longer feeding time and less marked rhythm occurred at continuous darkness. A. japonicus moved to shelter around sunrise (5:00-6:00 h) and emerged close to sunset (19:00-20:00 h). The relationship between light intensity (I) and the distribution rate (DR) of A. japonicus exposed to light under different light intensity treatments could be described by the cubic equation as follow: lgDR=0.351[lg(I+6)]3-1.922[lg(I+6)]2+ 2.751lg(I+6)+0.557 (0≤I≤500 lx) (F=804.05, P=0.000, R2=0.993). The equation showed that under poor light conditions (I<5.18 lx), the daily activity rhythm of A. japonicus was governed by an innate biological clock and the effect of light intensity was not significant among different treatments. And more individuals tended to retreat to shelters (from 56.04% to 91.83%) with the increase of light intensity within the weak light condition (from 5.18 lx to 278 lx). However, the daily behaviors of A. japonicus were influenced under strong light conditions (>278 lx). Less than 8.17% individuals kept actively feeding and the proportion was not decreased with the increase of light intensity.
     2. Ten photoperiod treatments (LD 0:24 cycle (DD cycle), LD 3:21 cycle, LD 6:18 cycle, LD 9:15 cycle, LD 12:12 cycle, LD 15:9 cycle, LD 18:6 cycle, LD 21:3 cycle and LD 24:0 cycle under 500 lx) were used to investigate the effects of photoperiod on the daily activity of 29.77±0.21 g sea cucumber Apostichopus japonicus. Cyclic nocturnal activity patterns of A. japonicus were observed under all photoperiods. But the juveniles spent more or less time moving and feeding with the less marked ongoing nocturnal activity cycle under continuous darkness (DD cycle) or continuous light (LD 24:0 cycle) than natural light cycle, respectively. And there were shorter sheltering time and longer feeding time under them. There were a sheltering behavior transition and two emerging behavior trasitions of juvenile A. japonicus under 6~12 h L photoperiods in the experiments. The behavior transitions were governed by innate biological clock and induced by the signal of daily light variation.The behaviors of juvenile A. japonicus at“daytime”increased significangtly with the lengthening of“light time”(P<0.05) except LD 3:21 cycle. But there was not significant difference among the mean DR of juvenile A. japonicus per day under LD 6:18 cycle, LD 9:15 cycle, LD 15:9 cycle and LD 12:12 cycle.
     3. In the present study, the effect of various artificial shelters on shelter selection of juvenile sea cucumber Apostichopus japonicus, was evaluated. The preference of juveniles in the experiments with eight different material artificial shelters was compared and showed that the stone, cement duct, polywoven bag, ceramic tile and PVC (polyvinylchloride) duct attracted significantly more juveniles than low-pressure polyethylene duct, wood block and corrugated board (P<0.05). In addition, the influence of biofilmed shelters which were pre-cultured for 0.5 M (month), 1 M, 1.5 M and 2 M were compared with non-filmed shelters (0 M). The number of juveniles attracted by biofilmed shelters was significantly higher than that without biofilm, as follows: 1.5 M>2 M>1 M>0.5 M>0 M. And the number of juveniles of 1.5 M was significantly higher than the other treatments (P<0.05) except 2 M (P>0.05). The selection of juveniles with six different color shelters was compared, and the green shelters attracted significantly more juveniles than the white shelters (P<0.05).
     4. Growth performance, energy budget and biochemical composition of juvenile sea cucumber (Apostichopus japonicus) were studied over 56 days under 6 different light intensities, as follows: 0 lx, 100 lx, 500 lx, 1000 lx, 2000 lx and 3000 lx. First, the specific growth rate (SGRw) of juvenile A. japonicus increased with the increase of light intensity and it peaked at light intensity of 2000 lx with 1.50±0.12% (P<0.05), then decreased; SGRw under different light intensities was as follows: 2000 lx>3000 lx>1000 lx>500 lx>0 lx>100 lx. Second, the feed intake (FIw) increased with the increase of light intensity then decreased, and it peaked at 2000 lx (25.10±1.51%, P<0.05). Third, there was not significant difference among the food conversion efficiency (FCEw) under different light intensities (P>0.05). Fourth, the energy budget of A. japonicus was significantly affected by different light intensities (P<0.05). The percentage of energy deposited for growth (G) to energy consumed in food (C) was not significantly affected by light intensity (P>0.05). The percentage of energy lost in feces (F) to C increased and peaked at 2000 lx (56.98±4.25%, P<0.05) then decreased with the increase of light intensity. The percentage of excretion energy and respiration energy to consumption decreased and peaked at 2000 lx (7.49±0.04%, P<0.05; 29.72±4.20%, P<0.05) then increased with the increase of light intensity, respectively. Fifth, the body content of crude protein and crude lipid decreased with the increase of light intensity (P<0.05). In conclusion, the effects of light intensity on FI and energy budget contributed to the differences among growth and proximate body composition of A. japonicus under different light intensities.
     5. Growth performance, energy budget and biochemical composition of juvenile sea cucumber (Apostichopus japonicus) were studied over 56 days under 5 different photoperiods, as follows: LD 0:24 cycle (DD cycle), LD 10:14 cyele, LD 12:12 cycle, LD 14:10 cycle and LD 24:0 cycle. First, the specific growth rate (SGRw) of juvenile A. japonicus increased with the lengthening of days and it peaked at LD 14:10 cycle with 1.24±0.04% (P<0.05), then decreased; SGRw under different photoperiods was as follows: LD 14:10 cycle>LD 12:12 cycle>LD 10:14 cycle>DD cycle>LD 24:0 cycle. Second, the feed intake (FIw) increased then decreased with the lengthening of days, and FIw under LD 10:14 cycle, LD 12:12 cycle and LD 14:10cycle was significantly more than DD cycle and LD 24:0 cycle (13.83±0.16%) (P<0.05). Third, photoperiod affected the food conversion efficiency (FCEw) significantly (P<0.05) and FCEw under different photoperiods was as follows: LD 14:10 cycle> LD 12:12 cycle> LD 10:14 cycle>DD cycle>LD 24:0 cycle. Fourth, there were not significant differences among effects of different photoperiods on the percentage of excretion energy and respiration energy to consumption (P>0.05). But the percentage of energy deposited for growth (G) and energy lost in feces (F) to energy consumed in food (C) was affected significantly by photoperiod. G/C under LD 10:14 cycle was significantly more than that DD cycle, and F/C under LD 14:10 cycle was significantly more than DD cycle (P<0.05), respectively. Fifth, body content of crude protein and crude lipid decreased with the lengthening of days then increased, and they peaked at LD 14:10 cycle with 41.10±0.16% and 5.37±0.05% (P<0.05), respectively. In conclusion, the effects of photoperiod on FI, FCE and energy budget contributed to the differences among growth and proximate body composition of juvenile sea cucumber A. japonicus under different photoperiods.
     6. The growth performance, energy budget and biochemical composition of juvenile sea cucumber (Apostichopus japonicus) were studied over 56 days under 4 light intensities (0 lx, 1000 lx, 2000 lx and 4000 lx) and 4 photoperiods (LD 0:24 cycle (DD cycle), LD 10:14 cycle, LD 14:10 cycle and LD 24:0 cycle). First, the specific growth rate (SGRw) of juvenile A. japonicus was significantly affected by light intensity, photoperiod and the relationship between them (FP=35.019, FLI=11.429, F=3.100; P<0.05), and the juveniles grew faster under LD 14:10 cycle and 2000 lx. Second, the feed intake (FIw) was also affected by light intensity, photoperiod and the relationship between them (FP=15.411, FLI=15.501, F=21.866; P<0.05), and the FIw increased with the lengthening of days and increased of light intensity then decreased, respectively. Third, the food conversion efficiency (FCEw) was affected significantly by photoperiod and the relationship between light intensity and photoperiod, but it wasn’t affected by light intensity (FP =18.416, F=8.845; P<0.05; FLI =2.549, P>0.05). Fourth, the body crude lipid content and energy content decreased with the water content being increased with the increase in final body weight. The juveniles gained the higher FIw under 2000 lx and LD 14:10 cycle and the higher FCEw under LD 14:10 cycle, so LD 14:10 cycle-2000 lx maybe the better illumination condition of the intensive A. japonicus culture industry.
     7. The effects of light intensity on the oxygen consumption rate and ammonia-N excretion rate of 11.43±0.68 g sea cucumber Apostichopus japonicus were examined at 16℃, and six light intensities were 0 lx, 100 lx, 500 lx, 1000 lx, 2000 lx and 3000 lx, respectively. The results were as follows: Light intensity had significant effect on the oxygen consumption rate (OCR) and ammonia-N excretion rate (AER) of juvenile A. japonicus. First, the OCR of A. japonicus decreased with the increase of light intensity then increased. And the OCR under 2000 lx was significantly lower than the other light intensities (P<0.05), and 3000lx was significantly higher than the other light intensities (P<0.05) except 0lx (P>0.05). Second, the AER also decreased with the increase of light intensity then increased. And the AER under 2000 lx was significantly lower than the other light intensities (P<0.05), and 0 lx was significantly higher than the other light intensities (P<0.05) except 3000 lx (P>0.05) with 3000 lx being higher than 500 lx and 1000 lx (P<0.05). Third, light intensity also had significant effect on the O:N rate (P<0.05), and the O:N rate increased with the increase of light intensity then decreased. The O:N ratios indicating that A. japonicus mainly utilized lipid and carbohydrate as its energy sources, while the percentage of lipid and carbohydrate increased with the increase of light intensity then decreased.
     8. The effects of photoperiod on the diel rhythm of the oxygen consumption rate and ammonia-N excretion rate of 13.71±1.71 g sea cucumber Apostichopus japonicus were examined at 16℃and 2000 lx, and five photoperiods were LD 0:24 cycle (DD cycle), LD 10:14 cycle, LD 12:12 cycle, LD 14:10 cycle and LD 24:0 cycle, respectively. The results were as follows: There were diel rhythm of oxygen consumption rate and ammonia-N excretion rate under different photoperiods with the positive peak of A. japonicus mostly appeared at dark while the negative peak appeared at light, and it was more definite under DD cycle and LD 24:0 cycle. There were significant differences among the mean oxygen consumption rates of A. japonicus under different photoperiods (P<0.05), and they were significantly larger under DD cycle and LD 24:0 cycle than the other photoperiods (P<0.05). There were also significant differences among the mean ammonia-N excretion rates of A. japonicus under different photoperiods (P<0.05), and they were significantly larger under DD cycle and LD 24:0 cycle than the other photoperiods (P<0.05). The O:N ratios of A. japonicus were also affected significantly by different photoperiods and they were between 12.16~27.45, and the O:N ratios of A. japonicus under LD 24:0 cycle and DD cycle were significantly lower than the other treatments (P<0.05).
引文
[1] Nelson B V, Vance R R. Diet foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy. Mar. Biol., 1979, 51: 251-258
    [2] Wells R A. Activity pattern as a mechanism of predator avoidance in two species of Acmaeid limpet. J. Exp. Mar. Biol. Ecol., 1980, 48: 151-168
    [3] Carpenter R C. Predator and population density control of homing behaviour in the Caribbean echinoid Diadema antillarum. Mar. Biol., 1984, 82: 101-108
    [4] Tegner M J. The feasibility of enhancing red sea urchin, Strongylocentrotus franciscanus, stocks in California: an analysis of the options. Mar. Fish. Rev., 1989, 51(2): 1-22
    [5] Underwood A J, Kingsford M J, Andrew N L. Patterns in shallow subtidal marine assemblages along the coast of New South Wales. Aust. J. Ecol., 1991, 6: 231-249
    [6] Ebeling A W, Laur D W, Rowley R J. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol., 1985, 84: 287-294
    [7] Harrold C, Reed D C. Food availability, sea urchin grazing and kelp-forest community structure. Ecology, 1985, 66: 1160-1169
    [8] Vadas R L, Elner R W. Plant-animal interactions in the north-west Atlantic. In: John D M, Hawkins S J, Price J H (Eds.), Plant-Animal Interactions in the Marine Benthos. Systematics Association. Special Volume, vol. 46. Clarendon Press, Oxford, 1992. 33-60
    [9]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [10]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [11] Yamanouchi T. The daily rhythms of the holothurians in the coral reefs of Palao Islands. Palao Trop. Biol. Station Studies, 1956, 3: 347-362
    [12] Berrill M. The ethology of the synaptid holothurian, Opheodesoma spectabilis. Can. J. Zool., 1966, 44: 457-482
    [13] Hammond L S. Patterns of feeding and activity in deposit-feeding holothurians and echinoids (Echinodermata) from a shallow back-reef lagoon, Discovery Bay. Jamaica. Bull. Mar. Sci., 1982, 32: 549-571
    [14] Mercier A, Battaglene S C, Hamel J-F. Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. J. Exp. Mar. Biol. Ecol., 1999, 239: 125-156
    [15] Graham J, Battaglene S C. Periodic movement and sheltering behaviour of Actinopyga mauritiana (Holothurioidea: Aspidochirotida) in Solomon Islands. SPC BDM Info. Bull., 2004, 19: 23-31
    [16]武模戈.光照对水生动物的影响.河南教育学院学报(自然科学版),2001,10(2):38-39
    [17] Olmsted J. The comparative physiology of Synapta hydriformis (Lesueur). J. Exp. Zool., 1917, 24: 333-379
    [18] Millot N. La photosensibilitédes animaux dépourvus d’yeux. Endeavour, 1957, 16: 19-28
    [19] Stubbs T R. The neurophysiology of photosensitivity in ophiuroids. In: Lawrence J M (Ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay, A A Balkema, Rotterdam, 1982. 403-408
    [20] Yoshida M, Takasu N, Tomatsu S. Photoreception in echinoderms. In: Ali M A (Ed.), Photoreception and Vision in Invertebrates, Plenum, New York, 1984. 743-771
    [21] Gehrke P C. Influence of light intensity and wavelength on phototactic behaviour of larval silver perch Bidyanus bidyanus and golden perch Macquaria ambigua and the effectiveness of light traps. J. Fish Biol., 1994, 44: 741-751
    [22] Salmon M, Witherington B E. Artificial lighting and seafinding by loggerhead hatchlings: evidence for lunar modulation. Copeia, 1995, 4: 931-938
    [23] Crozier W J. The sensory reaction of Holothuria surinamensis Ludwig. Zool. Jahrb. Abt. Physiol., 1915a, 35: 233-297
    [24] Crozier W J. The orientation of a holothurian by light. Am. J. Physiol., 1915b, 36: 8-20
    [25]廖玉麟.棘皮动物门-海参纲.中国动物志.北京:科学出版社,1997. 58-68
    [26]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [27]张硕,陈勇,孙满昌.光强对刺参行为特性和人工参礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [28]王波.大连紫海胆的生物学特性及增养殖.齐鲁渔业,1996,13(1):25-27
    [29]蔡玉婷.海胆的生态习性及其养殖实用技术.中国水产,2006,8:23-26
    [30]李元山,王元隆,李美芝.马粪海胆的生态研究.海洋湖沼通报,1995,2:37-42
    [31]尤凯,曾晓起,刘晖,等.马粪海胆对环境变化的耐受性与选择性研究.应用生态学报,2003,14(3):409-412
    [32] Cowles R P. Stimuli produced by light and by contact with solid walls as factors in the behavior of ophiuroids. J. Exp. Zool., 1910, 10: 387- 416
    [33] Hendler G. Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophoicomidae). P. S. Z. N. I., Mar. Ecol., 1984, 5: 379-401
    [34] Drolet D, Himmelman J H, Rochette R. Effect of light and substratum complexity on microhabitat selection and activity of the ophiuroid Ophiopholis aculeate. J. Exp. Mar. Biol. Ecol., 2004, 313: 139-154
    [35] Uthicke S. Distribution patterns and growth of two reef flat holothurians, Holothuria atra and Stichopus chloronotus. In: David B, Guille A, Féral J-P, Roux M (Eds.), Echinoderms through time, Proceedings of the 8th International Echinoderm Conference, Dijon. France, 6–10 September 1993, 1994. 569–575
    [36]赵晓燕.光对刺参稚体色素影响的实验.海水养殖,1986,(1):37-38
    [37] Blaxter J H S. Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol., 1968, 48: 39-53
    [38] Sweatt A J, Forward R B Jr. Diel vertical migration and photoresponses of the chaetognath Sagitta hispida Conant. Biol. Bull., 1985, 168: 18-31
    [39] Smith K C, Macagno E R. UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166(5): 597-606
    [40]郑微云,张岚.长毛对虾复眼的感受系统及其适应特性.厦门大学学报(自然科学版),1985,24(02):256-262
    [41] Millott N, Yoshida M. Reactions to shading in the sea urchin, Psammechinus miliaris (Gmelin). Nature Lond., 1956, 178: 1300
    [42] Thornton I W B. Diurnal migrations of the echinoid Diadema setosum (Leske). Be. J. Anim. Behav., 1956, 4: 143-146
    [43] Johnsen S. Extraocular sensitivity to polarized light in an echinoderm. J. Exp. Biol., 1994, 195: 281-291
    [44] Johnsen S, Kier W M. Shade-seeking behavior under polarized light by the brittlestar Ophiderma brevispinum (Echinodermata: Ophiuroidea). J. Mar. Bio. Ass. U. k., 1999, 79: 761-763
    [45] Dumont C P, Drolet D, Deschènes I, et al. Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis. Animal Behaviour, 2007, 73: 979-986
    [46] Willows A O D, Coming W C. In Invertebrate leurning, Vol. 3: Cephalopods and echinoderm, edited by Coming W C, Dyal J A, Willows A O D, Plenum Press, New York, 1975. 103-135
    [47] Sides E M, Woodley J D. Niche separation in three species of Ophiocomina (Echinodermata: Ophiuroidea) in Jamaica, West Indies. Bull. Mar. Sci., 1985, 36: 701-715
    [48] Crump R. The diurnal activity of holothurians. Symposium of the Underwater Association. Malta., 1965, 43-45
    [49] Reese E. The complex behaviour of echinoderms. In: Boolootian R A (ed). Physiology of Echinodermata. New York: John Wiley & Sons. 1966. 157-218
    [50] Conand C. Long–term movements and mortality of some tropical sea cucumbers monitored by tagging and recapture. In: Yanagisawa, Yasumasu, Oguro, Suzuki and Motokawa (eds). Biology of Echinodermata. Balkema, Rotterdam, 1991. 169-175
    [51] Preston G L. Beche-de-mer. In: Wright, A. and Hill L. (eds). Nearshore Marine Resources of the South Pacific. Institute of Pacific Studies, Suva; Forum Fisheries Agency, Honiara; International Centre for Ocean Development, Canada, 1993. 371-407
    [52] Wiedemeyer W L. Feeding behaviour of two tropical holothurians, Holothuria (Metriatyla) scabra (Jager 1833) and H. (Halodeima) atra (Jager 1833), from Okinawa, Japan. In: Richmond R H (ed). Proceedings of the Seventh International Coral Reef Symposium. 1992, Vol 2, Guam. Mangilao: University of Guam Press, 1992. 863-870
    [53] Wiedemeyer W L. Biology of small juveniles of the tropical holothurian Actinopyga echinites: growth, mortality and habitat preferences. Mar. Biol., 1994, 120: 81-93
    [54] Yamanouchi T. Ecological and physiological studies on the holothurians in the coral reef of Palao Islands. Palao Tropical Biological Station Studies, 1939, 1(4): 603-634
    [55]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-48
    [56]孙儒泳.动物生态学原理.北京:北京师范大学出版社,1992. 82-90
    [57]尤凯,曾晓起,陈大刚,等.青岛近岸海域马粪海胆摄食的实验生态学研究.生态学报,2004,24(5):1006-1014
    [58] Emery A R. Preliminary comparisons of day and night habits of freshwater fish in ontario lakes. J. Fish. Res. Bd. Can., 1973, 30: 761-774
    [59] Burrows M T, Gibson R N, Maclean A. Effects of endogenous rhythms and light conditions on foraging and predator-avoidance in juvenile plaice. J. Fish Biol., 1994, 45A: 171-180
    [60] Petersen J H, Gadomski D M. Light-mediated predation by northern squawfish on juvenilechinook salmon. J. Fish Biol., 1994, 45A: 227-242
    [61] Coulon P, Jangoux M. Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed off Ischia Island, Italy. Mar. Ecol. Progr. Ser., 1993, 92: 201-204
    [62] Barbeau M A, Durelle K A, Aiken R B. A design for multifactorial choice experiments: an example using microhabitat selection by sea slugs Onchidoris bilamellata (L.). J. Exp. Mar. Biol. Ecol., 2004, 307: 1-16
    [63] Pawson D L, Caycedo I E. Holothuria (Thymiosycia) thomasi n.sp., a large Caribbean coral reef inhabiting sea cucumber (Echinodermata: Holothuroidea). Bull. Mar. Sci., 1980, 30: 454-459
    [64] Millott N. The photosensitivity of echinoids. Advances in Marine Biology, 1975, 13: 1-52
    [65] Sharp D T, Gray I E. Studies on factors affecting the local distribution of two sea urchins, Arbacia punctulata and Lytechinus variegatus. Ecology, 1962, 43: 309-313
    [66] Lees D C, Carter G A. The covering response to surge, sunlight, and ultraviolet light in Lytechinus anamesus (Echinoidea). Ecology, 1972, 53: 1127-1133
    [67] Adams N L. UV radiation evokes negative phototaxis and covering behavior in the sea urchin Strongylocentrotus droebachiensis. Marine Ecology Progress Series, 2001, 213: 87-95
    [68] Verling E, Crook A C, Barnes D K A. Covering behaviour in Paracentrotus lividus: is light important?. Marine Biology, 2002, 140: 391-396
    [69] Kehas A J, Theoharides K A, Gilbert J J. Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus. Marine Biology, 2005, 146: 1111-1117
    [70] Dix T G. Covering response of the echinoid Evechinus chloroticus (Val.). Pacific Science, 1970, 24: 187-194
    [71] Douglas C A. Availability of drift materials and the covering response of the sea urchin Strongylocentrotus purpuratus (Stimpson). Pacific Science, 1976, 30: 83-89
    [72] Ebert T A. Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology, 1968, 49: 1075-1091
    [73] Scheibling R E, Hamm J. Interactions between sea urchins (Strongylocentrotusdroebachiensis) and their predators in field and laboratory experiments. Marine Biology, 1991, 110: 105-116
    [74] Agatsuma Y. Effect of the covering behavior of the juvenile sea urchin Strongylocentrotus intermedius on predation by the spider crab Pugettia quadridens. Fisheries Science, 2001, 67: 1181-1183
    [75] Hastings J W, Morin J G. Bioluminescence. In: Prosser, C.L. (Ed.), 4th Edition, Neural and Integrative Animal Physiology - Animal Physiology, John Wiley, New York, 1991. 131-170
    [76] Morin J G. Coastal bioluminescence: patterns and functions. Bull. Mar. Sci., 1983, 33(4): 787-817
    [77] Herring P J. Bioluminescent communication in the sea. In: Herring P J, Campbell A K, Whitfield M, Maddock L (Eds.), Light and Life in the Sea, Cambridge University Press, Cambridge, 1990. 245-264
    [78] Herring P J. Bioluminescent echinoderms: unity of function in diversity of expression. In: Emson R H, Smith A B, Campbell A C (Eds.), Echinoderm Research, A A Balkema, Rotterdam, 1995. 1-9
    [79] Tett P. The effects of temperature upon the flash-stimulated luminescence of the euphausiid Thysanoessa raschi. J. Mar. Biol. Assoc. UK, 1969, 49: 245-258
    [80] Hastings J W. Dinoflagellate bioluminescence: biochemistry, cell biology and circadian cycle. In: Scholmerich J, Andreesen R, Kapp A, Ernst M, Woods W G (Eds.), Bioluminescence and Chemiluminescence, John Wiley, Chichester, 1986. 343-350
    [81] Shimomura O. Bioluminescence of the brittle star Ophiopsila californica. Photochem. Photobiol., 1986, 44(5): 671-674
    [82] Latz MI. Physiological mechanisms in the control of bioluminescent countershading in a midwater shrimp. Mar. Fresh. Behav. Physiol., 1995, 26: 207-218
    [83] Deheyn D, Mallefet J, Jangoux M. Evidence of seasonal variation in bioluminescence of Amphipholis squamata (Ophiuroidea, Echinodermata): effects of environmental factors. J. Exp. Mar. Biol. Ecol., 2000, 245: 245-264
    [84] Amsler C D, McClintock J B, Baker B J. An Antarctic feeding triangle: defensive interactions betweenmacroalgae, sea urchins, and sea anemones. Marine Ecology Progress Series, 1999, 183: 105-114
    [85] Millott N. The covering reaction of sea urchins. I. A preliminary account of covering in the tropical echinoid Lytechinus variegates (Lamarck) and its relation to light. J. Exp. Biol., 1956, 33: 508-523
    [86] James D W. Diet, movement, and covering behavior of the sea urchin Toxopneustes roseus in rhodolith beds in the Gulf of California, Mexico. Mar. Biol., 2000, 137: 913-923
    [87]周玮,王志松,王军.黄海北部仿刺参浮游幼体发生与附着习性的初步研究.大连水产学院学报,2001,16(3):228-232
    [88]陈勇,吴晓郁,邵丽萍,等.模型礁对幼鲍、幼海胆行为的影响.大连水产学院学报,2006,21(4):361-365
    [89] Gosselin L A, Chia F S. Distribution and dispersal of early juvenile snails: effectiveness of intertidal microhabitats as refuges and food sources. Mar. Ecol. Prog. Ser., 1995, 128: 213- 223
    [90] Jones K M M, Boulding E G. State-dependant habitat selection by an intertidal snail: the costs of selecting a physically stressfull microhabitat. J. Exp. Mar. Biol. Ecol., 1999, 242: 149-177
    [91] Johns P M, Mann K H. An experimental investigation of juvenile lobster habitat preference and mortality among habitats of varying structural complexity. J. Exp. Mar. Biol. Ecol., 1987, 109: 275-285
    [92] Russo A R. Role of habitat complexity in mediating predation by the gray damselfish Abudefduf sordidus on epiphytal amphipods. Mar. Ecol. Prog. Ser., 1987, 36: 101-105
    [93] Diehl S. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos, 1988, 53: 207-214
    [94] Nelson W G, Bonsdorff E. Fish predation and habitat complexity: are complexity thresholds real? J. Exp. Mar. Biol. Ecol., 1990, 141: 183-194
    [95] Kenyon R A, Loneragan N R, Hughes J M. Habitat type and light affect sheltering behaviour of juvenile tiger prawns (Penaeus esculentus Haswell) and success rates of their fish predator. J. Exp. Mar. Biol. Ecol., 1995, 192: 87-105
    [96] Moksnes P-O, Pihl L, Van Montfrans J. Predation on postlarvea and juveniles of the shore crab Carcinus maenas: importance of shelter, size and cannibalism. Mar. Ecol. Prog. Ser., 1998, 166: 211-225
    [97] Stunz G W, Minello T J. Habitat-related predation on juvenile wild-caught and hatchery-reared red drum Sciaenops ocellatus (Linnaeus). J. Exp. Mar. Biol. Ecol., 2001, 260: 13-25
    [98] Main K L. Predator avoidance in seagrass meadows: prey behavior, microhabitat selection, and cryptic coloration. Ecology, 1987, 68: 170-180
    [99] Wahle RA, Steneck R S. Habitat restrictions in early benthic life: experiments on habitat selection and in situ predation with the American lobster. J. Exp. Mar. Biol. Ecol., 1992, 157: 91-114
    [100] Kenyon R A, Loneragan N R, Hughes J M, et al. Habitat type influences the microhabitat preference of juvenile tiger prawns (Penaeus esculentus Haswell and Penaeus semisulcatus De Haan). Estuar. Coast. Shelf Sci., 1997, 45: 393-403
    [101] Mercier A, Battaglene S C, Hamel J. Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J. Exp. Mar. Biol. Ecol., 2000, 249: 89-110
    [102] Ito s, Kitamura H. Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by periphitic diatoms. Hydrobiologia, 1997, 358: 281-284
    [103] Yanagisawa T. Aspects of the biology and culture of the sea cucumber. Tropical Mariculture (De Silva S S Ed.), Academic Press, London, 1998. 292-308
    [104]薛素燕.养殖刺参的生态习性及代谢生理的初步研究:[硕士学位论文].青岛:中国海洋大学水生生物学,2007
    [105] Dumas P, Kulbicki M, Chifflet S, et al. Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J. Exp. Mar. Biol. Ecol., 2007, 344: 88-100
    [106] Neveu A. Feeding rhythm in natural environment. Fish nutrition proceeding coll. Cnerna, Paris, France, 1979, 338-354
    [107]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(2):178-181
    [108]李大勇,何大仁,刘晓春.光照对真鲷仔、稚、幼鱼摄食的影响.台湾海峡,1994,13(1):26-31
    [109] Battaglene S C, Seymour J E, Ramofafia C. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculturc, 1999, 178: 293-322
    [110] Dance S K, Lane I, Bell J D. Variation in short-term survival of cultured sandfish (Holothuria scabra) released in mangrove–seagrass and coral reef flat habitats in Solomon Islands. Aquaculture, 2003, 220: 495-505
    [111] Pearse J B, Pearse V B, Davis K K. Photoperiodic regulation of gametogenesis and growth in the sea urchin, Strongylocentrotus purpuratus. J. Exp. Zool., 1986, 237: 107-118
    [112] Bay-Schmith E, Pearse J S. Effect of fixed lengths on the fotoperiod regulations of gametogenesis in the sea urchin Strongylocentrotus purpuratus. Invert. Reprod. Develop., 1987, 11: 287-294
    [113] McClintock J B, Watts S A. The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck) (Echinodermata: Echinoidea). J. Exp. Mar. Biol. Ecol., 1990, 139: 175-184
    [114] Pearse J S, Cameron R A. Echinodermata: Echinoidea. In: Giese C A, Pearse J S, Pearse V B (Eds.), Reproduction of Marine Invertebrates Volume VI Echinoderms and Lophophorates. The Boxwood Press, Pacific Grove, California, 1991. 513-662
    [115] Walker C W, Lesser M P. Manipulation of food and photoperiod promotes outof-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Marine Biology, 1998, 132 (4): 663-676
    [116] James P, Heath P. Long term roe enhancement of Evechinus chloroticus. Aquaculture, 2008, 278 (1-4): 89-96
    [117] Schpigel M, McBride S C, Marciano S, et al. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture, 2004, 232 (1-4), 343-355
    [118] Buisson P. Enhancement of Gonad Quality in the New Zealand sea urchin Evechinus chloroticus (Valenciennes). Masters Thesis, Otago University, 2001. 104
    [119] Kelly M S. Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. J. Exp. Mar. Biol. Ecol., 2001, 266: 67-80
    [120] Yamamoto M, Ishine M, Yoshida M. Gonadal maturation independent of photic conditions in laboratory-reared sea urchins, Pseudocentrotus depressus and Hemicentrotus pulcherrimus. Zool. Sci., 1988, 5: 979-988
    [121] Muthiga N A. The reproductive biology of a new species of sea cucumber, Holothuria(Mertensiothuria) arenacava in a Kenyan marine protected area: the possible role of light and temperature on gametogenesis and spawning. Mar. Biol., 2006, 149: 585-593
    [122] Viet Nam N, Britaev T A. Reproductive cycle of sea cucumber Holothuria leucospilota in Nha Trang Bay (southern Viet Nam). Russ. J. Mar. Biol., 1993, 5-6: 70-77
    [123]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):13-18
    [124] Vernberg W B, Vernberg F J. In: Environmental Physiology of Marine Animals, Springer-Verlag, New York, 1972. 346
    [125] Xu R A, Barker M F. Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis (Echinodermata: Asteroidea) during the reproductive cycle. Comp. Biochem. Physiol., 1990, 95A (1): 127-133
    [1] Sloan N A. Echinoderm fisheries of the world: A Review. In: Echinodermata, A. A. Balkema Publishers, Rotterdam, Netherlands, 1984. 109-124
    [2]廖玉麟.棘皮动物门-海参纲.中国动物志.北京:科学出版社,1997. 58-68
    [3]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [4] Barkai A. The effect of water movement on the distribution and interaction of three holothurian species on the South African west coast. J. Exp. Mar. Biol. Ecol., 1991,2(153):241-254
    [5] Eckert G L. Spatial patchiness in the sea cucumber Pachythyone rubra in the California Channel Islands. J. Exp. Mar. Biol. Ecol., 2007,348:121-132
    [6] Hudson I R, Wigham B D, Solan M, et al. Feeding behaviour of deep-sea dwelling holothurians: Inferences from a laboratory investigation of shallow fjordic species. J. Mar. Syst., 2005, 57: 201-218
    [7] Mercier A, Battaglene S C, Hamel J. Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. J. Exp. Mar. Biol. Ecol., 1999, 239: 125-156
    [8] Rodgers S A, Bingham B L. Subtidal zonation of the holothurian Cucumaria Zubrica (Clark). J. Exp. Mar. Biol. Ecol., 1996, 204: 113-129
    [9]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-48
    [10] Svane I, Dolmer P. Perception of light at settlement: a comparative study of two invertebratelarvae, a scyphozoan planula and a simple ascidian tadpole. J. Exp. Mar. Biol. Ecol., 1995, 187: 51-61
    [11] Wang F, Dong S L, Dong S S, et al. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2004, 234: 475-483
    [12] Marchesan M, Spoto M, Verginella L, et al. Behavioural effects of artificial light on fish species of commercial interest. Fish. Res. 2005, 73: 171-185
    [13] Sheng J Q, Lin Q, Chen Q X, et al. Effects of food, temperature and light intensity on the feeding behavior of three-spot juvenile seahorses, Hippocampus trimaculatus Leach. Aquaculture, 2006, 256: 596-607
    [14] Strand ?, Alan?r? A, Staffan F, et al. Effects of tank colour and light intensity on feed intake, growth rate and energy expenditure of juvenile Eurasian perch, Pera fluviatilis L.. Aquaculture, 2007, 272: 312-318
    [15]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [16]张硕,陈勇,孙满昌.光强对刺参行为特性和人工礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [17]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [18] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [19] Hammond L S. Patterns of feeding and activity in deposit-feeding holothurians and echinoids (Echinodermata) from a shallow back-reef lagoon, Discovery Bay, Jamaica. Bull. Mar. Sci., 1982, 32: 549-571
    [20] Nelson B V, Vance R R. Diel foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy. Marine Biology, 1979, 51: 251-258
    [21] Dance S K, Lane I, Bell J D. Variation in short-term survival of cultured sandfish (Holothuria scabra) released in mangrove–seagrass and coral reef flat habitats in Solomon Islands. Aquaculture, 2003, 220: 495-505
    [22] De’ath G, Moran P J. Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef: 1 Patterns of activity. J. Exp. Mar. Biol.Ecol., 1998, 220: 83-106
    [23] McFarland W N, Munz F W. The photic environment of clear tropical seas during the day. Vision Research, 1975, 15: 1063-1070
    [24] Mercier A, Battaglene S C, Hamel J. Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J. Exp. Mar. Biol. Ecol., 2000, 249: 89-110
    [25]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):3-18
    [1] Sloan N A. Echinoderm fisheries of the world: A Review. In: Echinodermata, A. A. Balkema Publishers, Rotterdam, Netherlands, 1984. 109-124
    [2] Chen, J.X., 2004. Present status and prospects of sea cucumber industry in China. In: Lovatelli, A., Conand, C., Purcell, S., Uthicke, S., Hamel, J.F., Mercier, A. (Eds.), Advances in sea cucumber aquaculture and management, 463. FAO, Rome, pp. 25-38.
    [3]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [4] Nelson B V, Vance R R. Diel foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy. Marine Biology, 1979, 51: 251-258
    [5] Mercier A, Battaglene S C, Hamel J. Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. J. Exp. Mar. Biol. Ecol., 1999, 239: 125-156
    [6] Dance S K, Lane I, Bell J D. Variation in short-term survival of cultured sandfish (Holothuria scabra) released in mangrove–seagrass and coral reef flat habitats in Solomon Islands. Aquaculture, 2003, 220: 495-505
    [7] Barkai A. The effect of water movement on the distribution and interaction of three holothurian species on the South African west coast. J. Exp. Mar. Biol. Ecol., 1991,2(153):241-254
    [8] Eckert G L. Spatial patchiness in the sea cucumber Pachythyone rubra in the California Channel Islands. J. Exp. Mar. Biol. Ecol., 2007,348:121-132
    [9] Hudson I R, Wigham B D, Solan M, et al. Feeding behaviour of deep-sea dwelling holothurians: Inferences from a laboratory investigation of shallow fjordic species. J. Mar. Syst., 2005, 57: 201-218
    [10] Rodgers S A, Bingham B L. Subtidal zonation of the holothurian Cucumaria Zubrica (Clark).J. Exp. Mar. Biol. Ecol., 1996, 204: 113-129
    [11]尤凯,曾晓起,陈大刚,等.青岛近岸海域马粪海胆摄食的实验生态学研究.生态学报,2004,24(5):1006-1014
    [12] Deheyn D, Mallefet J, Jangoux M. Evidence of seasonal variation in bioluminescence of Amphipholis squamata (Ophiuroidea, Echinodermata): effects of environmental factors. J. Exp. Mar. Biol. Ecol., 2000, 245: 245-264
    [13] Pearse J B, Pearse V B, Davis K K. Photoperiodic regulation of gametogenesis and growth in the sea urchin, Strongylocentrotus purpuratus. J. Exp. Zool., 1986, 237: 107-118
    [14] McClintock J, Watts S. The effects of ambient water temperature ranges between 19-22℃and during the summer between 22-26℃of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides. J. Exp. Mar. Biol. Ecol., 1990, 139: 175-184
    [15] Kelly M. Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. J. Exp. Mar. Biol. Ecol., 2001, 266: 67-80
    [16] James P J, Heath P L. The effects of season, temperature and photoperiod on the gonad development of Evechinus chloroticus. Aquaculture, 2008, 285: 67-77
    [17]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [18] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [19] Yamanouchi T. The daily rhythms of the holothurians in the coral reefs of Palao Islands. Palao Trop. Biol. Station Studies, 1956, 3: 347-362
    [20] Hammond L S. Patterns of feeding and activity in deposit-feeding holothurians and echinoids (Echinodermata) from a shallow back-reef lagoon, Discovery Bay, Jamaica. Bull. Mar. Sci., 1982, 32: 549-571
    [21] Shiell G R, Knott B. Diurnal observations of sheltering behaviour in the coral reef sea cucumber Holothuria whitmaei. Fisheries Research, 2008, 91: 112-117
    [22] De’ath G, Moran P J. Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef: 1 Patterns of activity. J. Exp. Mar. Biol. Ecol., 1998, 220: 83-106
    [23]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [1]廖玉麟.我国的海参.生物学通报,2001,35(9):1-3
    [2]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼,2006,37(4):348-354
    [3] Chen J X. Present status and prospects of sea cucumber industry in China. In: Lovatelli A, Conand C, Purcell S, et al. (Ed.), Advances in sea cucumber aquaculture and management, FAO, Rome, 2004, 463, pp. 25-38
    [4]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [5]李吉强,郝小星,高伟,等.虾池垒石刺参养殖技术.科学养鱼,2004,4:33
    [6]赵中堂.我国沿海海上人工鱼礁参礁的现状及其管理问题.海洋通报,1995,14(4):79-84
    [7]林培振.池塘编织布造礁海参养殖技术.中国水产,2007,10:49
    [8]王义民,张少华,张秀丽,等.可移动式轻便隐蔽物在池塘养参中的应用研究.齐鲁渔业,2004,21(7):9-10
    [9]张硕,陈勇,孙满昌.光强对刺参行为特性和人工参礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [10] Drolet D, Himmelman J H, Rochette R. Effect of light and substratum complexity on microhabitat selection and activity of the ophiuroid Ophiopholis aculeate. J. Exp. Mar. Biol. Ecol., 2004, 313: 139-154
    [11]陈勇,吴晓郁,邵丽萍,等.模型礁对幼鲍、幼海胆行为的影响.大连水产学院学报,2006,21(4):361-365
    [12] Millott N, Yoshida M. Reactions to shading in the sea urchin, Psammechinus miliaris (Gmelin). Nature, Lond., 1956, 178: 1300
    [13] Thornton I W B. Diurnal migrations of the echinoid Diadema setosum (Leske). Be. J. Anim. Behav., 1956, 4: 143-146
    [14] Johnsen S. Extraocular sensitivity to polarized light in an echinoderm. J. Exp. Biol., 1994, 195: 281-291
    [15] Johnsen S, Kier W M. Shade–seeking behavior under polarized light by the brittlestar Ophiderma brevispinum (Echinodermata: Ophiuroidea). J. Mar. Biol. Ass. U.k., 1999, 79: 761-763
    [16] Mercier A, Battaglene S C, Hamel J-F. Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J. Exp. Mar. Biol. Ecol., 2000, 249: 89-110
    [17]李元山,王元隆,李美芝.马粪海胆的生态研究.海洋湖沼通报,1995,2:37-42
    [18]周玮,王志松,王军.黄海北部仿刺参浮游幼体发生与附着习性的初步研究.大连水产学院学报,2001,16(3):228-232
    [19] Dumas P, Kulbicki M, Chifflet S, et al. Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J. Exp. Mar. Biol. Ecol., 2007, 344: 88-100
    [20] Su Z X, Huang L M, Yan Y, et al. The effect of different substrates on pearl oyster Pinctada martensii (Dunker) larvae settlement. Aquaculture, 2007, 271: 377-383
    [21] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [22] Nelson B V, Vance R R. Diet foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy. Mar. Biol., 1979, 51: 251-258
    [23] Wells R A. Activity pattern as a mechanism of predator avoidance in two species of Acmaeid limpet. J. Exp. Mar. Biol. Ecol., 1980, 48: 151-168
    [24] Cameron R A, Schroeter S C. Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser., 1980, 2: 243-247
    [25] Rowley R J. Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes? Mar. Biol., 1989, 100: 485-494
    [26] Maki J S, Little B J, Wagner P, et al. Biofilm formation on metal surfaces in antarctic waters. Biofouling, 1990, 2: 27-38
    [27] Pearce C M, Scheibling R E. Induction of settlement and metamorphosis in the sand dollar Echinarachnius parma: evidence for an adult-associated factor. Mar. Biol., 1990, 107: 363-369
    [28] Johnson C R, Lewis T E, Nichols D S, et al. Bacterial induction of settlement and metamorphosis in marine invertebrates. Proc 8th Int. Coral Reef Symp., 1997, 2: 1219-1224
    [29] Yamanouti T. Ecological and physiological studies on the holothurians in the coral reef of Palao Islands. Palao Trop. Biol. Stn. Stud., 1939, 25: 603-634
    [30] Wiedemeyer W L. Feeding behaviour of two tropical holothrians Holothuria (Metriatyfa) scabra (Edger 1833) and H. (Halodeima) atra (Jager 1833). from Okinawa, Japan. In: Richmond, B., et al., (Eds.), Proceedings of the 7th International Coral Reef Congress, Mangilao. Guam, 1992, 2: 863-870
    [31] Battaglene S C, Seymour J E, Ramofafia C. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture, 1999, 178: 293-322
    [32] Mercier A, Battaglene S C, Hamel J-F. Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holorhuria scabra in response to environmental factors. J. Exp. Mar. Biol. Ecol., 1999, 239: 125-156
    [1]廖玉麟.我国的海参.生物学通报,2001,35(9):1-3
    [2]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼,2006,37(4):348-354
    [3]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-18
    [4]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(2):178-181
    [5]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [6]陈勇,高峰,刘国山,等.温度、盐度和光周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [7]张硕,陈勇,孙满昌.光照对刺参行为特性和人工参礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [8]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):13-18
    [9] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [10] Carfoot T H. Animal Energetics. New York: Academic Press, 1987. 89-172
    [11] Levine D M,Sulkin S D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol., 1979, 40: 247-257
    [12] Wang F, Dong S L, Dong S S, et al. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2004, 234: 475-483
    [13]严正凛,陈建华,吴萍茹,等.光照强度对九孔鲍幼虫及幼鲍生长存活的影响.水产学报,2001,25(4):336-341
    [14]尤凯,曾晓起,刘晖,等.马粪海胆对环境变化的耐受性与选择性研究.应用生态学报,2003,14(3):409-412
    [15]蔡玉婷.海胆的生态习性及其养殖实用技术.中国水产,2006,8:23-26
    [16] Christain R, Timothy P F, Johann D B. Growth of juvenile Actinopyga mauritiana (Holothuroidea) in captivity. Aquaculture, 1997, 152: 119-128
    [17] Koskela J, Pirhonen J, Jobling M. Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperature . Aquaculture International, 1997, 5: 351-360
    [18] VanHam E H, Berntssen M H G, Imsland A K, et al. The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture, 2003, 217: 547-558
    [19]廖玉麟.中国动物志:棘皮动物门海参纲.北京:科学出版社,1997
    [1]廖玉麟.我国的海参.生物学通报,2001,35(9):1-3
    [2]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼,2006,37(4):348-354
    [3]董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响.中国水产科学,2005,12(1):33-37
    [4]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [5] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255,514-521
    [6]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-18
    [7]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(2):178-181
    [8]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):13-18
    [9] Shimomura O. Bioluminescence of the brittle star Ophiopsila californica. Photochem. Photobiol., 1986, 44(5): 671-674
    [10] Deheyn D, Mallefet J, Jangoux M. Evidence of seasonal variation in bioluminescence of Amphipholis squamata (Ophiuroidea, Echinodermata): effects of environmental factors. J. Exp. Mar. Biol. Ecol., 2000, 245: 245-264
    [11] Bay-Schmith E, Pearse J S.. Effect of fixed daylengths on the photoperiodic regulation of gametogenesis in the sea urchin Strongylocentrotus purpuratus. Int. J. Invert. Reprod. Dev., 1987, 11: 287-294
    [12] Bouland C, Jangoux M. Investigation of the gonadal cycle of the asteroid Asterias rubens under static condition. In: Burke, R.D., Mladenov, P.V., Lambert, P., Parsley, R.L. (Eds.), Echinoderm Biology, A.A. Balkema, Rotterdam, 1988. 169-175
    [13] Xu R A, Barker M F. Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis (Echinodermata: Asteroidea) during the reproductive cycle. Comp. Biochem. Physiol., 1990, 95A (1): 127-133
    [14] Carfoot T H. Animal Energetics. New York Academic Press, 1987. 89-172
    [15] Levine D M,Sulkin S D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol., 1979, 40, 247-257
    [16] Wang F, Dong S L, Dong S S, et al. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2004, 234: 475-483
    [17] Deheyn D, Alva V, Jangoux M. Fine structure of the photogenous areas in the bioluminescent ophiuroid Amphipholis squamata (Echinodermata, Ophiuroidea). Zoomorphology, 1996, 116: 195-204
    [18] Deheyn D, Mallefet J, Jangoux M. Intraspecific variations of bioluminescence in a polychromatic population of Amphipholis squamata (Echinodermata: Ophiuroidea). J. Mar. Biol. Assoc. UK, 1997, 77: 1213-1222
    [19] Christine S, Philippe G, Michel J. Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture, 2000, 185: 85-99
    [20] Muki S, Susan C M B, Sharon M, Ingrid L. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture, 2004, 232: 343-355
    [21] Massin C. Food and feeding mechanisms: Holothuroidea. In: Jangoux M, Lawrence J M eds., Echinoderm Nutrition. Rotterdam, the Netherlands: A. A. Balkema Publishers, 1982
    [22] Cui L B, Dong Z N, Lu Y H. Histological and histochemical studies on the digestive system of Apostichopus japonicus.Chinese. J. Zool., 2000, 35: 1-4
    [23] Yuan X T, Yang H S, Wang L L, et al. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Acta Ecologica Sinica, 2007, 27(8): 3155-3161
    [24]安振华,董云伟,董双林.日粮水平对周期性变温模式下刺参生长和能量收支的影响.中国海洋大学学报,2008,38(5):739-743
    [25] An Z H, Dong Y W, Dong S L. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 2007, 272: 644-648
    [26] Jobling M. Fish Bioenergetics. London: Chapman & Hall,1994
    [27] Shearer K D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 1994, 119: 63-88
    [1] Sloan N A.. Echinoderm fisheries of the world: A Review. In: Echinodermata, A. A. Balkema Publishers, Rotterdam, Netherlands, 1984. 109-124
    [2]廖玉麟.中国动物志:棘皮动物门海参纲.北京:科学出版社, 1997
    [3]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [4]廖玉麟.我国的海参.生物学通报,2001,35(9):1-3
    [5]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼,2006,37(4):348-354
    [6]董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响.中国水产科学,2005,12(1):33-37
    [7]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [8]王国利,祝文兴,李兆智,等.温度与盐度对刺参(Apostichopus japonicus)生长的影响.山东科学,2007,20(3):6-9
    [9]于明志,常亚青.低温对不同群体仿刺参幼参某些生理现象的影响.大连水产学院学报,2008,23(1):31-36
    [10] An Z H, Dong Y W, Dong S L. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 2007, 272: 644-648
    [11] Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2008, 275: 329-334
    [12] Dong Y W, Dong S L, Tian X L. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [13] Yuan X T, Yang H S, Zhou Y, et al. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture, 2006, 256: 457-467
    [14]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):3-18
    [15] Carfoot T H. Animal Energetics. New York: Academic Press, 1987. 89-172
    [16] Levine D M,Sulkin S D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol., 1979, 40: 247-257
    [17] Wang F, Dong S L, Dong S S, et al. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2004, 234: 475-483
    [18]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(2):178-181
    [19]严正凛,陈建华,吴萍茹,等.光照强度对九孔鲍幼虫及幼鲍生长存活的影响.水产学报,2001,25(4):336-341
    [20]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [21]张硕,陈勇,孙满昌.光强对刺参行为特性和人工参礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [22] Deheyn D, Alva V, Jangoux M. Fine structure of the photogenous areas in the bioluminescent ophiuroid Amphipholis squamata (Echinodermata, Ophiuroidea). Zoomorphology, 1996, 116: 195-204
    [23] Deheyn D, Mallefet J, Jangoux M. Intraspecific variations of bioluminescence in a polychromatic population of Amphipholis squamata (Echinodermata: Ophiuroidea). J. Mar. Biol. Assoc. UK, 1997, 77: 1213-1222
    [24] Christine S, Philippe G, Michel J. Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture, 2000, 185: 85-99
    [25] Deheyn D, Mallefet J, Jangoux M. Evidence of seasonal variation in bioluminescence of Amphipholis squamata (Ophiuroidea, Echinodermata): effects of environmental factors. J. Exp. Mar. Biol. Ecol., 2000, 245:245-264
    [26] Muki S, Susan C M B, Sharon M, et al. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture, 2004, 232: 343-355
    [27]蔡玉婷.海胆的生态习性及其养殖实用技术.中国水产,2006,8:23-26
    [28] Lawrence J M, Lane J M. The utilization of nutrients by postmetamorphic echinoderms. In: Jangoux M, Lawrence J M eds., Echinoderm Nutrition. Rotterdam, the Netherlands: A. A. Balkema Publishers, 1982. 368-371
    [29] Massin C. Food and feeding mechanisms: Holothuroidea. In: Jangoux M, Lawrence J M eds., Echinoderm Nutrition. Rotterdam, the Netherlands: A. A. Balkema Publishers, 1982
    [30] Cui L B, Dong Z N, Lu Y H. Histological and histochemical studies on the digestive system of Apostichopus japonicus.Chinese J. Zool., 2000, 35: 1-4
    [31]安振华,董云伟,董双林.日粮水平对周期性变温模式下刺参生长和能量收支的影响.中国海洋大学学报,2008,38(5):739-743
    [32] Yuan X T, Yang H S, Wang L L, et al. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Acta Ecologica Sinica, 2007, 27(8):3155-3161
    [33]董云伟,董双林,张美昭,等.变温对刺参幼参生长、呼吸代谢及生化组成的影响.水产学报,2005,29(5):659-665
    [34] Vondracek B, Cech J J, Buddington R K. Growth, growth efficiency and assimilation efficiency of the Tahoe sucker in cyclic and constant temperature. Environ. Biol. Fish., 1989, 24: 151-156
    [1]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-18
    [2]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(2):178-181
    [3]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [4]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [5]张硕,陈勇,孙满昌.光强对刺参行为特性和人工礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [6]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [7] Mercier A, Battaglene S C, Hamel J-F. Settlement preferences and early migration of the tropical sea cucumber Holothuri scabra. J. Exp. Mar. Biol. Ecol , 2000, 249: 89-110
    [8]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):3-18
    [9]刘永安,李馥馨,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究I:夏眠生态特点的研究.中国水产科学,1996,3(2):41-48
    [10]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33(2):182-187
    [11]袁秀堂,杨红生,周毅,等.盐度对刺参呼吸和排泄的影响.海洋与湖沼,2006,37(4):348-354
    [12] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth,oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [13] Yang H S, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol., 2006, 300: 505-510
    [14] Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka: Aestivation and temperature. Aquaculture, 2008, 283: 180-187
    [15] Widdows J. Physiological of stress in Mytilus edulus. J. Mar. Biol. Ass. UK, 1978, 58: 125-14
    [16] Bayne B L, Newall R C. Physiological Enerigetics of Marine Molluscs. In: Wilburg K M, Saleuddin A S M ed. The Mollusca.London: Academic Press, 1983, 4: 407-515
    [17] Corner E D S, Cowey C B. Biochemical studies on the production of marine zoo plankton. Biol. Rev., 1965. 43: 393-426
    [18] Bayne B L, Widdows J. Physiological ecology of two populations of Mytilus edulis L.. Oecologia, 1978, 37: l37-162
    [19] Mayzaud P. Respiration and nitrogen excretion of zooplankton: IV The influence of starvation on the metabolism and the biochemical composition of some species. Mar. Biol., 1976, 37(1): 47-58
    [20] Shirley T C, Stickle W B. Responses of Leptasterias hexactis ( Echinodermata: Asteroidea ) to Low Salinity: Nitrogen Metabolism, Respiration and Energy Budget. Mar. Biol., 1982, 69: 155-16
    [1]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-48
    [2]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(2):178-181
    [3]周玮,王志松,王树海.附着刺参苗的行为观察.水产科学,1999,18(6):17-19
    [4]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004. 3-89
    [5]张硕,陈勇,孙满昌.光强对刺参行为特性和人工礁模型集参效果的影响.中国水产科学,2006,13(1):20-27
    [6]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):3-18
    [7]陈勇,高峰,刘国山,等.温度、盐度和光照周期对刺参生长及行为的影响.水产学报,2007,31(5):687-691
    [8] Shimomura O. Bioluminescence of the brittle star Ophiopsila californica. Photochem. Photobiol., 1986, 44(5): 671-674
    [9] Deheyn D, Mallefet J, Jangoux M. Evidence of seasonal variation in bioluminescence of Amphipholis squamata (Ophiuroidea, Echinodermata): effects of environmental factors. Journal of Experimental Marine Biology and Ecology, 2000, 245: 245-264
    [10] Pearse J B, Pearse V B, Davis K K. Photoperiodic regulation of gametogenesis and growth in the sea urchin, Strongylocentrotus purpuratus. J. Exp. Zool., 1986, 237: 107-118
    [11] Bay-Schmith E, Pearse J S. Effect of fixed daylengths on the photoperiodic regulation of gametogenesis in the sea urchin Strongylocentrotus purpuratus. Int. J. Invert. Reprod. Dev., 1987, 11: 287-294
    [12] Bouland C, Jangoux M. Investigation of the gonadal cycle of the asteroid Asterias rubens under static condition. In: Burke R D, Mladenov P V, Lambert P, Parsley R L (Eds.), Echinoderm Biology, A A Balkema, Rotterdam, 1988. 169-175
    [13] McClintock J B, Watts S A. The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck) (Echinodermata: Echinoidea). J. Exp. Mar. Biol. Ecol., 1990, 139: 175-184
    [14] Xu R A, Barker M F. Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis (Echinodermata: Asteroidea) during the reproductive cycle. Comp. Biochem. Physiol., 1990, 95A (1): 127-133
    [15] Pearse J S, Cameron R A. Echinodermata: Echinoidea. In: Giese C A, Pearse J S, Pearse V B (Eds.), Reproduction of Marine Invertebrates Volume VI Echinoderms and Lophophorates. The Boxwood Press, Pacific Grove, California, 1991. 513-662
    [16] Walker C W, Lesser M P. Manipulation of food and photoperiod promotes outof-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Marine Biology, 1998, 132 (4): 663-676
    [17] James P, Heath P. Long term roe enhancement of Evechinus chloroticus. Aquaculture, 2008, 278 (1-4): 89-96
    [18]尤凯,曾晓起,陈大刚,等.青岛近岸海域马粪海胆摄食的实验生态学研究.生态学报,2004,24(5):1006-1014
    [19] Vernberg W B, Vernberg F J. In: Environmental Physiology of Marine Animals, Springer-Verlag, New York, 1972. 346
    [20]刘永安,李馥馨,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究I--夏眠生态特点的研究.中国水产科学,1996,3(2):41-48
    [21]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002, 33(2),182-187
    [22]袁秀堂,杨红生,周毅,等.盐度对刺参呼吸和排泄的影响.海洋与湖沼, 2006, 37 (4):348-354
    [23] Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 2006, 255: 514-521
    [24] Yang H S, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol., 2006, 300: 505-510
    [25] Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka: Aestivation and temperature. Aquaculture, 2008, 283: 180-187
    [26] Corner E D S, Cowey C B. Biochemical studies on the production of marine zoo plankton. Biol. Rev., 1965. 43: 393-426
    [27] Bayne B L, Widdows J. Physiological ecology of two populations of Mytilus edulis L. Oecologia, 1978, 37: l37-162
    [28] Mayzaud P. Respiration and nitrogen excretion of zooplankton: IV. The influence of starvation on the metabolism and the biochemical composition of some species. Mar. Biol., 1976, 37(1): 47-58
    [29] Shirley T C, Stickle W B. Responses of Leptasterias hexactis ( Echinodermata: Asteroidea ) to Low Salinity: Nitrogen Metabolism, Respiration and Energy Budget. Mar. Biol., 1982, 69: 155-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700