中国和CIMMYT普通小麦puroindoline基因分子基础研究及其对加工品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
籽粒硬度是最重要的小麦品质性状之一,对磨粉和食品加工品质有重要影响,研究籽粒硬度基因的分子基础对小麦品质改良具有重要意义。本试验选用805份中国当前主栽冬、春麦品种(系)、地方品种和历史品种(共计3个试验)以及596份来自CIMMYT的小麦品种(系)(共计3个试验)材料,采用单籽粒谷物特性测试仪、PCR扩增、酶切、改进的SDS-PAGE和测序技术对其籽粒硬度及其基因型进行了鉴定,并对286份品种(共计2个试验)的磨粉和食品加工品质进行了测试。主要结果如下:
     1.我国冬、春小麦主栽品种均以硬质类型为主,由北向南,硬质麦比例逐渐减少。硬质冬麦中共有Pina-D1b、Pinb-D1b和Pinb-D1d两种已知基因型,所占比例分别为12.9%、73.4%和1.6%;而硬质春麦中则发现有Pina-D1b、Pinb-D1b和Pinb-D1c三种已知基因型,所占比例分别为37.9%、51.5%和4.9%。发现了两种Pinb突变新类型:农大3213等13份冬麦和6份春麦品种(系)的Pinb基因的第42氨基酸中有一碱基A缺失,引起了移码突变,导致该基因第60位氨基酸变成了终止密码子,从而致使该类型PINB蛋白缺失,将其命名为Pinb-D1p;京冬11和沧核030的Pinb基因第218位点碱基G突变成了T,导致该基因第44位点色氨酸变成了亮氨酸,将其命名为Pinb-D1q。
     2.我国地方品种和历史品种均以硬质类型为主。从地方品种、历史品种到当前主栽品种,软麦(分别为42.7%、45.2%和25.1%)和混合麦(24.3%、13.9%和14.1%)的比例逐渐减少,而硬麦(33.0%、40.9%和60.8%)的比例显著增加。硬质麦中共发现Pina-D1b、Pinb-D1b和Pinb-D1p三种已知基因型。从基因型的变化来看,PINA缺失(43.8%、48.5%和24.2%)和Pinb-D1p(39.7%、14.7%和8.4%)分布频率逐渐减少,而Pinb-D1b(12.3%、36.8%和63.4%)的频率显著增加。在地方品种中发现了三种新突变类型:来自贵州的光头线麦和红麦Pinb基因中第226位点碱基由G变成了C,导致其推断的第47位氨基酸由甘氨酸变成了精氨酸,命名为Pinb-D1t;来自江苏的红和尚Pina基因的第187位点碱基由C变成了T,导致该基因第35位点脯氨酸变成了丝氨酸,命名为Pina-D1m类型;有6个地方品种的Pina基因第212位点碱基由G变成了A,导致其第43位点色氨酸变成了终止密码子,被命名为Pina-D1n类型。另外,有5份地方品种Pina基因第265位点有一碱基C缺失,产生了移码突变,从而导致该基因推断的第93位点氨基酸变成了终止密码子,致使PINA蛋白不能表达,尽管该类型先前已经报道,但命名有误,本文重新命名为Pina-D1l类型。其中,Pina-D1m是目前发现的第一个含有PINA蛋白并且导致普通小麦胚乳质地变硬的突变类型,修订了先前的籽粒硬度分子理论模型。
     3.CIMMYT普通小麦以硬质类型为主,硬质麦中只有Pina-D1b和Pinb-D1b两种基因型,Pina-D1b是最常见的基因型,占硬麦总数的86.3%,Pinb-D1b占13.7%。建议CIMMYT多引进一些其它硬度变异类型的小麦种质,如Pinb-D1b类型等,以减少Pina-D1b对品质改良的负面影响。在人工合成小麦与普通小麦杂交的高世代材料中共鉴定出Pina-D1a/Pinb-D1a、Pina-D1j/Pinb-D1i、Pina-D1c/Pinb-D1h、Pina-D1a/Pinb-D1i和Pina-D1a/Pinb-D1j五种基因型,均表现为软质,其中Pina-D1j/Pinb-D1i是最为常见的突变类型。Pina-D1c/Pinb-D1h和
Kernel hardness is one of the most important characters with a profound influence on milling performance and end-use quality of common wheat (Triticum asetivum L.). Understanding molecular characterization of puroindoline genes controlling kernel hardness would be beneficial for improving wheat quality. Materials used in this study are consisted of 805 Chinese cultivars, including current winter and spring wheat cultivars, landraces and historical cultivars, and 596 CIMMYT cultivars and advanced lines. All of the surveyed materials were used to measure kernel hardness by Single Kernel Characterization System (SKCS) or Partical Size Index (PSI) and detect the variation of puroindoline alleles with STS (sequence tagged site) marker, site-specific cleavage with the restriction enzyme PvuII and modified SDS-PAGE (sodium dodecyl-sulfate polyacrylamide gel electrophoresis) of Triton X-114 soluble protein, 10% glycerol substituting of water for resolving gels and PDA (piperiazine diacrylamide) substituting of N, N'-methylene bisacrylamide for gels, respectively. In addition, 286 genotypes were used to measure milling and processing quality. The main results obtained in this study are summarized below.1. Hard wheat was dominant in Chinese current winter and spring wheats and its percentage was gradually decreased from north to sourth. Pinb-Dlb, Pina-D1b and Pinb-D1d of known alleles were present in hard winter wheat and Pinb-Dlb, Pina-Dlb and Pinb-D1c of known alleles were present in hard spring wheat. Pinb-Dlb was the most prevalent hard genotype in Chinese current winter and spring wheats with percentages of 76.5% and 51.5%, respectively. Pina-Dlb with percentage of 37.9% in Chinese spring wheat was higher than that with percentage of 16.0% in Chinese winter wheat. Pinb-Dld was identified in two Chinese winter wheat cultivars, while Pinb-Dlc was detected in five Chinese spring wheats. Two novel puroindoline alleles were identified in Chinese winter wheat cultivars, which were designated as: i) Pinb-Dlp with characterization of a single nucleotide (A) deletion corresponding to position 42 in the amino acid sequence of puroindoline b, resulting in a Lysine (K) to Asparagine (N) change and leading to a shift in the open reading frame (ORF) and ii) Pinb-D1q with characterization of a base G to T substitution at position 218th nucleotide in the coding sequence of the Pinb gene, resulting in a tryptophan to leucine change (TGG to TTG) at position 44 in the deduced amino acid sequence of puroindoline b.2. Hard wheat was dominant in Chinese landraces and historical cultivars. Pinb-Dlb, Pina-Dlb and Pinb-Dlp of known alleles were present in hard wheat. From Chinese landraces, historical cultivars to current wheat cultivars, the percentages of soft (42.7%, 45.2% and 25.1%) and mixed (24.3%, 13.9% and 12.4%) wheats were gradually reduced, whereas the percentage of hard wheat (33.0%, 40.9% and 62.5%) was significantly increased. PINA null (43.8%, 48.5% and 13.4%) and Pinb-Dlp (39.7%, 14.7% and 8.4%) were gradually reduced while percentage of Pinb-Dlb (12.3% and 36.8% and 76.5%) was significantly increased. Three novel puroindoline alleles were identified in Chinese landrance cultivars, which were designated as: i) Pinb-D1t with characterization of a base G to C substitution at the 226th
    nucleotide in the coding sequence of the Pinb gene, resulting in a glycine (GGC) to arginine (CGC) substitution at position 47 in the deduced amino acid sequence of puroindoline b, ii) Pina-DH with characterization of a base G to A change at position 212, resulting in tryptophan-43 to a 'stop' codon, and iii) Pina-Dlm with characterization of a base C to T substitution at the 187th nucleotide in the coding sequence of the Pina gene, which results in a proline (CCG) to serine (TCG) substitution at position 35 in the deduced amino acid sequence of puroindoline a. In addition, the Pina-Dlc allele, characterizing as a base C deletion at position 265, was renamed as Pina-DH due to conflicting with a previous report after negotiation with Drs Mclntosh and Morris. Pina-Dlm allele reported in this study is the first amino acid subsitution in PINA of bread wheat that is known to result in hard endosperm, which modifies the molecular genetic model of grain hardness.3. In CIMMYT wheat cultivars and advanced lines, hard wheat was the most dominant phenotype. Pina-Dlb and Pinb-Dlb were present in hard wheat. Pina-Dlb was the most popular genotype in CIMMYT hard wheats with a percentage of 86.3% and all other hard wheats possessed Pinb-Dlb genotype. Pina-Dlb genotype had inferior milling and processing quality than that of Pinb-Dlb. Therefore, it was recommended that other types of puroindoline alleles should be introduced in CIMMYT wheat breeding program to reduce the negetive influence of the Pina-Dlb genotype on milling and processing quality. In addition, Pina-Dla/Pinb-Dla, Pina-Dlj/Pinb-Dli, Pina-Dlc/Pinb-Dlh, Pina-Dla/Pinb-DH and Pina-Dla/Pinb-Dlj were present in genotypes with puroindoline alleles from various Aegilops tauschii. They were still soft wheats and Pina-Dlj/Pinb-Dli was the most popular genotype among them. Means of SKCS hardness with Pina-Dlc/Pinb-Dlh and Pina-Dla/Pinb-DH were significantly higher than those of Pina-Dlj/Pinb-Dli and Pina-Dla/Pinb-Dla. It is very useful to improve the efficiency of wheat breeding that new puroindoline alleles have recently been introduced through the extensive use of synthetic hexaploid wheat.4. Kernel hardness have significantly positive correlations with flour particle size (r=0.91), water solvent retention capacity (r=0.73), sodium carbonate solvent retention capacity (r=0.59) and farinograph water absorption (r=0.80), and significantly negetive correlations with flour colour L* (r=-0.77). Means of flour ash content and farinograph water absorption of lines with Pinb-Dlb were significantly lower than those of Pina-Dlb, while means of milling yield, volume and total score of steamed bread, firmness and total score of noodle of Pinb-Dlb genotypes were significantly higher than those of Pina-Dlb, suggesting that Pinb-Dlb genotype has slightly superior milling quality and processing qualities of steamed bread and noodle to Pina-Dlb genotype.This is the first extensive survey of puroindoline alleles in Chinese and CIMMYT wheats. It also indicates that variations of puroindoline locus have dramatic effect on milling and processing quality, and suggest that increasing Pinb-Dlb genotype in CIMMYT and Chinese wheat breeding, especially in spring wheat region, will be crucial for improvement of wheat quality in China and CIMMYT.
引文
1.陈锋。Nagamine T,张艳,何中虎,王德森,Yoshida H.中国冬播小麦面粉颗粒度分布及近红外透射光谱技术研究.作物学报,2005a,31:302-307
    2.陈锋,何中虎,崔党群,赵武善,张艳,王德森.利用近红外透射光谱技术测试小麦品质性状的研究.麦类作物学报,2003,23:1-4
    3.陈锋,何中虎,崔党群.利用近红外透射光谱技术测试小麦籽粒硬度的研究.作物学报,2004,5:840-844
    4.陈锋,李根英,耿洪伟,夏兰芹,夏先春,何中虎.小麦籽粒硬度及其分子遗传研究回顾与展望.中国农业科学,2005b,38:1088-1094
    5.陈锋,钱森和,张艳,夏先春,何中虎.中国冬小麦puroindoline类型分布及其对溶剂保持力的影响.中国农业科学,2005c,38:2173-2181
    6.董玉琛,郑殿升.中国小麦遗传资源.中国农业出版社,2000,pp:16-31
    7.杜金哲,李文雄,胡尚连,刘锦红.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系.作物学报,2001,27:253-260
    8.郭世华,何中虎,夏兰芹,王洪刚,张庆祝.中国春小麦品种籽粒硬度等位变异的STS检测.中国农业科学,2004,37:1797-1803
    9.郭世华,何中虎,王洪刚,夏兰琴,张庆祝,张岐军,于亚雄.Friabilin蛋白表达量与小麦籽粒硬度的关系.中国农业科学,2003,36:991-995
    10.何中虎,林作楫,王龙俊,肖志敏,万富世,庄巧生.中国小麦区划的研究.中国农业科学.2002,35:359-364
    11.兰秀锦,郑有良,刘登才,魏育民,颜泽红,周永红.节节麦抗穗发芽基因的染色体定位及其抗性机理.中国农业科学,2002,35:12-15.
    12.李硕碧.小麦籽粒胚乳结构性状的研究.西北农林科技大学学报,2002,30:7-10
    13.李宗智,卢少源,张彩英,常文锁.小麦遗传资源籽粒硬度和面粉沉降值的研究.中国农业科学,1993,26:15-20
    14.钱森和,张艳,王德森,何中虎,张歧军,姚大年.小麦品种戊聚糖和溶剂保持力遗传变异及其与品质性状关系的研究.作物学报,2005,31:902-907
    15.夏兰琴,何中虎,陈新民,张庆祝,周阳.小麦硬度主效基因Pina和Pinb的克隆和序列分析,作物学报,2003,29:25-30
    16.杨武云,颜济,杨俊良,郑有良,余毅,胡晓蓉,杨家秀.硬粒小麦-节节麦人工合成种.Decoyl/Aegilops tauschii 510抗条锈性状(条中30,条中31)的遗传分析.西南农学报,1999,38:39-41.
    17.张歧军,张艳,何中虎,王继忠,Pena R J.软质小麦品质性状与酥性饼干品质参数的关系研究.作物学报,2005,31:1125-1131
    18.张学勇,庞斌双,游光霞,王兰芬,贾继增,董玉琛.中国小麦品种资源Glu-1位点组成概况 及遗传多样性分析.中国农业科学.2002,35:1302-1310
    19.张顒,杨武云,胡晓蓉,余毅,邹裕春,李青茂.源于硬粒小麦-节节麦人工合成种的高产抗病小麦新品种川麦42主要农艺性状分析.西南农学报,2004,17:141-146
    20.张勇,吴振录,张爱民,Ginke M V,何中虎.CIMMYT在中国春麦中的适应性分析.中国农业科学,2006,39:655-663
    21.周艳华,何中虎,阎俊,张艳,王德森,周桂英.中国小麦硬度分布及遗传分析.中国农业科学,2002,35:1177-1185
    22.庄巧生.中国小麦品种改良及系谱分析.中国农业出版社.北京,2003,PP:1-681
    23. AACC, Approved methods of the AACC, 10th ed. American Assiociation of Cereal Chemists, 1995, St. Paul, MN
    24. Anjum F M, Walker C E. Review on significance of starch and protein to wheat kernel hardness. Journal of the Science of Food Agriculture, 1991, 56: 1-13
    25. Arlorio M, Coisson J D, Cereti E, Travaglia F, Capasso M, Martelli A. Polymerase chain reaction (PCR) of puroindoline b and ribosomal/puroindoline b multiplex PCR for the detection of common wheat (Triticum asetivum) in Italian pasta. Europen Food Research Technology, 2003, 216: 253-258
    26. Baker R J. Inheritance of kernel hardness in spring wheat. Crop Science, 1977, 17: 960-962
    27. Barlow K K, Buttrose M S, Simmonds D H, Vesk M. The nature of the starch-protein interface in wheat endosperm. Cereal Chemistry, 1973, 50: 443-454
    28. Bechtel D B, Wilson J D, Martin C R. Determining endosperm texture of developing hard and soft red winter wheats by different methods using the Single-Kernel Wheat Characterization System. Cereal Chemistry, 1996, 73: 567-570
    29. Beecher B, Bettge A, Smidansky E, Giroux M J. Expression of wild-type Pinb sequence in transgenic wheat complements a hard phenotype. Theoretical and Applied Genetics, 2002 105: 870-877
    30. Berg S O. Is the degree of grittiness of wheat flour mainly a varietal character? Cereal Chemistry, 1947,24:274-283
    31. Bettge A D, Morris C E Greenblatt G A. Assessing genotypic softness in single wheat kernels using starch granule-associated friabilin as a biochemical marker. Euphytica, 1995, 86:65-72
    32. Bettge A D, Morris C F. Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chemistry, 2000, 77: 241-247
    33. Biffen R H. On the inheritance of strength in wheat. Journal of Agriculture Science. 1908, 3: 86-101
    34. Bihan TL, Blochet JE, Desormeaux A, Marion D, Pezolet M. Determination of the secondary structure and conformation of puroindolines by infrared and Raman spectroscopy. Biochemistry, 1996, 35: 12712-12722
    35. Blochet J E, Chevalier, Forest E, Pebay-peyroula E. Complete amino acid sequence of puroindoline. A new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. Federation of European Biochemical Societies, 1993, 329: 336-340
    36. Blochet J E, Kaboulou A, Compoint J P and Marion D. Amphiphilic proteins from wheat flour: specific extraction, structure and lipid binding properties. In: W. Bushuk and R.Tkachuk (Eds.) Gluten proteins. American Association of Cereal Chemists, St. Paul, MN, 1991, pp: 314-325
    37. Buchmann Nils B, Henrik Josefsson, Ian A Cowe. Performance of European artificial neural network (ANN) calibrations for moisture and protein in cereals using the Danish near infrared transmission (NIT) network.. Cereal Chemistry, 2001, 78: 572-577
    38. Campbell K G, Bergmem C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher R G Sorrels M E, Finney P L. Quantitative trait loci associated with kernel traits in a softx hard wheat cross. Crop Science, 1999, 39: 1184-1195
    39. Cane K, Spackman M, Eagles H A. Puroindoline genes and their effects on grains quality traits in southern Australian wheat cultivars. Australian Journal of Agricultural Research, 2004, 55: 89-95
    40. Capparelli R, Amoroso M G, Palumbo D, Iannaccone M, Faleri C, Cresti M. Two plant puroindolines colocalize in wheat seed and in vitro synergistically fight against pathogens. Plant Molecular Biology, 2005, 58: 857-867
    41. Capparelli R, Borriello G, Giroux M J, Amoroso M G Puroindoline A-gene expression is involved in association of puroindoline to starch. Theoretical and Applied Genetics, 2003, 107: 1463-1468
    42. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M F, Cattolico L, Bechert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B. Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). The Plant Cell, 2005, 17: 1033-1045
    43. Chen F, He Z H, Xia X C, Lillemo M, Morris C F. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11. Journal of Cereal Science, 2005,42: 267-269
    44. Chen F, He Z H, Xia X C, Xia L Q, Zhang X Y, Lillemo M, Morris C F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theoretical and Applied Genetics, 2006, 112: 400-409
    45. Chen M J, Wilkinson M, Tosi P, He G Y, Shewry P. Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theoretical and Applied Genetics, 2005,111: 1159-1166
    46. Clarke B, Rahman S. A microarray analysis of wheat grain hardness. Theoretical and Applied Genetics, 2005, 110: 1259-1267
    47. Cobb N A. The hardness of the grain in the principal varieties of wheat. Agriculture Gazette of New South Wales, 1896, 7: 279-289
    48. Corona V, Gazza L, Boggini G, Pogna N E. Variation in friabilin composition as determined dy A-PAGE fractionation and PCR amplification, and its relationship to grain hardness in bread wheat. Journal of Cereal Science, 2001a, 34: 243-250
    49. Corona V, Gazza L, Zanier R, Pogna N E. A tryptophan-to-arginine change in the tryptophan-rich
     domain of puroindoline b in five French bread wheat cultivars. Journal of Genetics and Breeding, 2001b, 55: 187-189
    50. Cox T S, Sears R G, Bequette R K, Martin T J. Germplasm enhancement in winter wheat x Triticum tauschii backcross populations. Crop Science, 1995, 35: 913-919
    51. Culter G H and Brinson G A. The granulation of whole wheat meal and a method of expressing it numerically. Cereal Chemistry, 1935, 12:120-129
    52. Darlington H F, Rouster J, Hoffmann L, Halfor N G, Shewry P R, Simpson D J. Identification and molecular characterization of hordolindolines from barley grain. Plant Molecular Biology, 2001, 47:785-794
    53. Day L, Bhandari D G, Greenwell P, Schofield. Biochemical studies of puroindoline proteins in relation to the endosperm texture of hexaploid wheat. Walter Bushuk Student Award Paper: American Association of Cereal Chemistries, 2002, pp: 235-243
    54. Day L, Greenwell P, Lock S, Brown H. Analysis of wheat flour proteins related to grain hardness using capillary electriphoresis. Journal of Chromatography A, 1999, 836:147-152
    55. Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: version Ⅱ, Plant Molecular Biology, 1983, 1:19-21
    56. Delwiche S R. Measurement of single-kernel wheat hardness using near-infrared transmittance. Transactions of the American Society of Agricultural Engineers, 1993, 36: 1431-1437
    57. Digeon J F, Guiderdoni E, Alary R, Michaux-Ferridre N, Joudrier P, Gautier M F. Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Molecular Biology, 1999, 39: 1101-1112
    58. Drew J L, David R, S. Fallow management and nitrogen fertilizer influence winter wheat kernel hardness. Crop Science, 1999, 39:448-452
    59. Dubreil L, Compoint J P, Marion D. Interaction of puroindolines with wheat flour polar lipids determining their foaming properties. Journal of Agriculture and Food Chemistry, 1997, 45: 108-116
    60. Dubreil L, Gaborit T, Bouchet B, Galliant D J, Broekaert W F, Quillien L, Marion, Spatial and temporal distribution of the two major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein (ns-LTPel) of Triticum asetivum seeds. Relationships with their in vitro antifungal properties. Plant Science, 1998b, 138: 121-135
    61. Dubreil L, Meliande S, Chiron H, Compoint J P, Quillien L, Branlard G, Marion D. Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chemistry, 1998a, 75: 2222-2229
    62. Eagles H A, Cane K, Eastwood R F, Hollamby G J, Kuchel H, Martin P J, Cornish G B. Contributions of glutenin and puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Australian Journal of Agricultural Research, 2006, 57: 179-186
    63. Eastwood R F. Lagudah E S, Appels R, Hannah M, Kollmorgen J E Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Australian Journal of Agricultural Research, 1991: 42: 69-77
    64. Fabijanski S, Chang S C, Dukiandjiev S, Banhramian M B, Ferrara P. The nucleotide sequence of a cDNA for a major prolamin (avenin) in oat (Arena sativa L. cultivar Hinoat), which reveals homology with oat globulin. Biochemical Physiological Pflanzen, 1988, 183: 143-152
    65. Gaines C S, Donelson J R. Evaluating cookie spread potential of whole wheat flours from soft wheat cultivars. Cereal Chemistry, 1985a, 62:134-136
    66. Gaines C S, Donelson J R. Influence of certain flour quality parameters and postmilling treatments on size of angel food and high ratio white layer cake. Cereal Chemistry, 1985b, 62:60-63
    67. Gaines C S. Associations among soft wheat flour particle size, protein content, chlorine response, kernel hardness, milling quality, white layer cake volume, and sugar-snap cookie spread. Cereal Chemistry, 1985a, 62:190-292
    68. Gaines C S. Collaborative study of methods for solvent retention capacity profiles. Cereal Food World, 2000, 45:303-306
    69. Galleschi L, Ingrosso M, Ghiringhelli S, Calucci L, Lorenzi R. Isolation of wheat puroindoline b from flour by preparative acid electrophoresis. Cereal Chemistry, 2003, 80: 99-101
    70. Garcia-Olmedo F, Molina M, Josefa M A, Rodriguez-Palenzuela P. Plant defence peptides. Biopolymers, 1998, 47:479-491
    71. Gautier M F, Aleman M E, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cysteinerich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Molecular Biology, 1994, 25:43-57
    72. Gautier M F, Cosson P, Guirao A R, and Joudrier P. Puroindoline genes are highly conserved in diploid ancestor wheat and related species but absent in tetraploid triticum species. Plant science, 2000, 153: 81-91
    73. Gazza L, Conti S, Taddei F, Pogna N E. Molecular characterization of puroindolines and their encoding genes in Aegilops ventricosa. Molecular Breeding, 2006, 17: 191-200
    74. Gazza L, Nocente F, Ng P K W, Pogna N E. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theoretical andApplied Genetics, 2005, 110:470-478
    75. Gazza L, Zanier R, Mei E, Pogna N E, Corona V, Boggini G. Allelic variability of puroindoline and hardness of soft wheat kernel. Technical Molitoria, 2001, 52:854-859
    76. Gedye K R, Morris C F, Bettge A D. Determination and evaluation of the sequence and testural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theoretical and Applied Genetics, 2004, 109:1597-1603
    77. Gedye K R., Bettge A D, King G E, Morris C F. Evaluation of maternal parent and puroindoline allele on kernel texture in a reciprocal cross between two hard spring wheat cultivars. Euphytica, 2005, 141:121-127
    78. Gill B S, Raupp W J. Direct genetic transfers from Aegilops squarrosa. Crop Science, 1987, 27: 445-450
    79. Giroux M J, Morris C E Structure and presence of the amyloplast membrane proteins, puroindolines, are associated with wheat grain hardness. Plant Physiology, 1997b, 114:46-55
    80. Giroux M J, Morris C F. Wheat grain hardness results from highly conserved mutations in friabilin components puroindoline a and b. Proceedings of National Academic Science of the United States of the America, 1998, 95: 6262-6266.
    81. Giroux M J, Morris C. F. A glycine to serine change in puroindoline b is asssociated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics, 1997a, 95: 857-864
    82. Giroux M J, Talbert L, Debrrah K, Habernicht, Lanning S, Hemphill A, Martin J M. Association of puroindolines sequence type and grain hardness in hard red spring wheat. Crop Science, 2000, 40: 370-374
    83. Glenn G M, Saunders R M. Physical and structural properties of wheat endosperm associated with grain texture. Cereal Chemistry, 1990, 67:176-182
    84. Greenblatt G A, Malkawi H I, Morris C F. Biochemical characterization of friabilin. Cereal Foods World, 1992, 37: 567-568
    85. Greenblatt G A., A D Bettge, C F Morris. The relationship among endosperm texture, friabilin occurrence, and bound pollar lipids on wheat starch. Cereal Chemistry, 1995, 72: 172-176
    86. Greenwell P, Schofield J D. A starch granule protein associated with endosperm softness in wheat. Cereal Chemistry, 1986, 63: 379-380
    87. Greenwell P. Biochemical studies of endosperm texture in wheat. Chorleywood Digest, 1992, 118: 74-76
    88. Groos C, Bervas E, Charmet G. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard × hard bread wheat progeny. Journal of Cereal Science, 2004, 40: 93-100
    89. Guttieri M J, Bowen D, Gannon D, O'Brien K, Souza E. Solvent retention capacities of irrigated soft white spring wheat flours. Crop Science, 2001, 41: 1054-1061
    90. Guttieri M J, Souza E. Sources of variation in the solvent retention capacity test of wheat flour. Crop Science, 2003, 43: 1628-1633
    91. Hang S D, Betker S, Quail K, Moss R. An optimized processing procedure by response surface methodology (RSM) for northern style Chinese steamed bread. Journal of Cereal Science, 1993, 18: 89-102
    92. Hashimoto S, Shogren M D, Pomeranz Y. Cereal pentosan: their estimation and significance: Ⅰ. Pentosan in wheat and milled wheat products. Cereal Chemistry, 1987, 64: 30-34
    93. Hazen S P, Ward R W. Variation in soft wheat characteristics measured by the single kernel characterization system. Crop Science, 1997, 37:1076-1086.
    94. He Z H, Pena R J, Rajaram S, Wang L Z, Dai J R. Proceedings of national crop breeding conference. Assessment of bread making quality of Chinese wheats. Beijing: China Agriculture Press, 1998:157-162
    95. He Z H, Pena R J, Rajaram S. Quality characteristics of Chinese spring wheats. Proceeding of 8th International Wheat Genetics Symposium, 1995:209-213
    96. He Z H, Rajaram S, Xin Z Y, Huang G Z. A history of wheat breeding in China. 2001. Mexico, D.F.: CIMMYT, pp: 1-94
    97. He Z H, Yang J, Zhang Y, Quail K J, Pena. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257-267
    98. Heisey P W, Lantican M A, Dubin H J. Impacts of international wheat breeding research in developing countries, 1966-97. CIMMYT, Mexico, D.F. 2002
    99. Hogg A C, Sripo T, Beecher B, Martin J M, Gorpux M J. Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theoretical and Applied Genetics, 2004, 108:1089-1097
    100. Hong B H, Rubenthaler G L, Allan R E. Wheat pentosans. I .Cultivar variation and relationship to kernel hardness. Cereal Chemistry, 1989, 66: 369-373
    101.Igrejas G, Gaborit T, Oury F X, Chiron H, Marion, D, Branlard G Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. Journal of Cereal Science, 2001, 34: 37-47
    102. Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 106: 19-27
    103. Ikeda T M, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H. Identification of new puroindoline genotypes and their protein products among wheat cultivars. Journal of Cereal Science, 2005,41: 1-6
    104. Jolly C J, Glenn G M, Rahman S. Gsp-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D. Proceedings of National Academic Science of the United States of the America, 1996,93:2408-2413
    105. Jolly C J, Rahman S, Kortt A A, Higgins T J. Characterisation of grain-softness protein, a marker of endosperm texture in wheat. In: T. Westcott and Y. Williams (Eds.) Proceedings of the 40th Australian Cereal Chemistry Conference (Albury, NSW, Australia, 10-14 September 1990), Cereal Chemistry Division, Royal Australinan Chemical Institute, Parkville, Vic,. 1990, pp: 92-95
    106. Jolly C J, S Rahman A, Kortt A, Higgins T J V. Characterization of the wheat Mr 15000 "grain-softness protein" and analysis of the relationship between its accumulation in the whole seed and grain softness. Theoretical and Applied Genetics, 1993, 86: 589-597
    107. Jolly C. The biochemistry and molecular genetics of grain softness and hardness in wheat (Triticum aestivum). Ph.D.dissertation, 1991, Macquarie University, Sydney, Australia.
    108. Kimber G Alonso L C, Sallee P J. The analysis of meiosis in hybrids. I. Aneuploid hybrids. Canada Journal of Genetics and Cytology, 1981, 23: 209-219
    109. Krishnamurthy K and Giroux M J. Expression of wheat puroindoline genes in transgenic rice enhances grain softness. Nature Biotechnology, 2001,19:162-166
    110. Krishnamurthy K, Balconi C, Sherwood J E, Giroux M J, Wheat puroindolines enhance fungal disease resistance in transgenic rice. Molecular Plant Microbe, 2001,14: 1255-1260
    111. Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triticum tauschii: natural variation and
     genetic linkage to makers on chromosome 5. Genome, 1991, 34: 387-395
    112. Li G Y, He Z H, Pena R J, Xia X C, Lillemo M, Sun Q X. Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines. Journal of Cereal Science, 2006, 43: 378-386
    113. Lillemo M and K Ringlund. Impact of puroindoline b alleles on the genetic variation for hardness in softx hard wheat crosses. Plant Breeding, 2002, 121: 210-217
    114. Lillemo M, Morris C F. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from northern Europe. Theoretical and Applied Genetics, 2000, 100: 1100-1107
    115. Lillemo M, Simeone M C, Morris C F. Analysis of puroindoline a and b sequences from Triticum aestivum cv. 'penawawa' and related diploid taxa. Euphytica, 2002, 126: 321-331
    116. Lu C M, Yang W Y, Zhang W J, Lu R B. Identification of SNPs and development of allelec specific PCR markers for high molecular weight glutenin subunit D'x1.5 from Aegilops tauschii through sequence characterization. Journal of Cereal Science, 2005,41: 13-18
    117. Lukow O M, Mckenzie R C, Pauw R M D. Genetic implications of kernel hardness variation in Canada prairie spring wheats. Canadian Journal of Plant Science, 1989, 69: 667-674
    118. Maeda T, Morita N. Flour quality and pentosan prepared by polishing wheat grain on breadmaking. Food Research International, 2003, 36: 603-610
    119. Marion D, Gautier M F, Joudrier P, Ptak M, Pezolet M, Forest E, Clark D C, Broekaert W. Structure and function of wheat lipid binding proteins. University delegation study transaction, 1994, 175-180
    120. Martin C R, Rousser R, Barbec D L. Development of a single-kernel wheat characterization system. Transactions of the American Society of Agricultural Engineers, 1993, 36: 1399-1404
    121. Martin C R, Rousser R, Barbec D L. Device for singulating particles. 1992, U.S.pantent 5, 082,141
    122. Martin C R, Rousser R, Barbec D L. Rapid single kernel characterization system. 1991, U.S.patent 5,005, 774
    123. Martin J M, Frohberg R C, C F Morris, L E Talbert, and M J Giroux. Milling and bread baking traits assoiated with puroindoline sequence type in hard red spring wheat. Crop Science, 2001, 41:228-234
    124. Massa A N, Morris C F, Gill B S. Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes in Aegilops tauschii cross. Crop Science, 2004,44: 1808-1816
    125. Massa A N, Morris C F. Relationship between sequence polymorphism of Gsp-1 and puroindolines in Triticum aestivum and Aegilops tauschii. In: Lafiandra D, Masci S, D'Ovidio R (eds) The gluten ptoteins. RSC, Cambridge, 2004, pp: 461-464
    126. Mattern P J, Morris R, Schmidt J W, Johnson V A. Location of genes for kernel properties in wheat cultivar 'Cheyenne' using chromosome substitution lines. In: Sears ER, Sears LMS (eds).Proceedings of 4th International Wheat Genetics Symposium, University of Missouri, Columbia, Mo., 1973, pp: 703-707
    127. McFadden E S, Sears E R. The origin of Triticum spelta and its free-threshing hexaploid relatives. Journal of Heredity, 1946, 37: 81-89
    128. Mclntosh R A, Devos K M, Dubcovsky J, Morris C F, Rogers W J. Catalogue of gene symbols for wheat. Catalogue of Gene Symbols for wheat: 2003 Supplement, 2003, published online at: http://wheat.pw.usda.gov/ggpages/wgc/2003upd.html
    129. Mclntosh R A, Devos K M, Dubcovsky J, Morris C F, Rogers W J. Catalogue of gene symbols for wheat. Catalogue of Gene Symbols for wheat: 2004 Supplement, 2004, published online at: http://wheat.pw.usda.gov/ggpages/wgc/2004upd.html
    130. Mclntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat: 2005 supplement, 2005, published online at: http://wheat.pw.usda.gov/ggpages/wgc/2005 upd.html
    131. Morris C F, Greenblatt G A, Bettge A D, Malkawi H I. Isolation and characterization of multiple forms of friabilin. Journal of Cereal Science, 1994, 20: 167-174
    132. Morris C F, Lillemo M, Simeone M C, Giroux M J, Babb S L, Kimberlee K K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Science, 2001, 41: 218-228.
    133. Morris C F, Massa A N. Puroindoline genotype of the U. S. national institute of standards & technology reference material 8441, wheat hardness. Cereal Chemistry, 2003, 80: 674-678.
    134. Morris C F, Massa A, Gedye K, Gill B S. Sequence diversity of the puroindoline a and b genes in Aegilops tauschii-relationship to kernel texture in wheat. Proceedings of the 10th Internatonal Wheat Genetics Symposium, 2003, 1: 451-454
    135. Morris C F, Rose S P. Wheat. In: Henry RJ, Kettlewell PS (eds). Cereal grain quality. Chapman and Hall, New York, 1996, pp: 3-54
    136. Morris C F. Impact of blending hard and soft white wheats on milling and baking quality. Cereal Foods World, 1992, 37: 643-648
    137. Morris C F. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Molecular Biology, 2002, 48: 633-647
    138. Morrison W R, Greenwell P, Law C N, Sulalman B D. Occurrence of friabilin, a low molecular weight protein associated with grain softness, on starch granules isolated from some wheats and related species. Journal of Cereal Science, 1992, 15: 143-149
    139. Mujeeb-kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. Non L.) in synthetic hexaploid wheats and its potential utilizatin for wheat improvement. Genetic Resources and Crop Evolution, 1996, 43: 129-134
    140. Nagamine T, Ikeda TM, Yanagisawa T, Yanaka M, Ishikawa N (2003) The effects of the hardness allele Pinb-Dlb on the flour quality of wheat for Japanese white salty noodles. Journal of Cereal Science, 37: 337-342
    141. Oda S, Schofield J D. Characterization of friabilin polypeptides. Journal of Cereal Science, 1997, 26: 29-36
    142. Ohm J B, Chung O K, and Deyoe C E. Single-kernel characteristics of hard winter wheats in relation to milling and baking quality. Cereal Chemistry, 1998, 75: 156-161
    143. Osborne B G, Anderssen. Single-kernel characterization principles and applications. Cereal Chemistry, 2003, 80: 613-622
    144. Osborne B G, Jackson R, Delwiche S R. Rapid prediction of wheat endosperm compressive strength properties using the single-kernel characterization system. Cereal Chemistry, 2001, 78: 142-143
    145. Pan Z, Song W, Meng F, Xu L, Liu B, Zhu J. Characterization of genes encoding wheat grain hardness from Chinese cultivar Gaocheng 8901. Cereal Chemistry, 2004, 81: 287-289
    146. Pena R J, villareal R L, Mujeeb-kazi. Quality characteristics and glutenin subunit composition of wheat lines derived from synthetic wheat and bread wheat. Proceedings of the 6th international gluten workshop, 1996, 55-59
    147. Perretant M R, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier M H, Branlard G, Bernard S. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoretical and Applied Genetics, 2000, 100: 1167-1175
    148. Pfluger L A, D'Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D. Characterization of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theoretical and Applied Genetics, 2001, 103: 1293-1301
    149. Piela L, Nemethy G, Shceraga H A. Proline-induced constraints in α-helices. Biopolymers, 1987, 26: 1587-1600
    150. Pogna N, Gazza L, Corona V, Zanier R, Niglio A, Mei E, Palumbo M, Boggini G. Puroindolines and kernel hardness in wheat species. Puroindolines and kernel hardness in wheat species: American Association of Cereal Chemistries, 2002, pp: 155-169
    151. Pomeranz Y, Willams P C. Wheat hardness: Its genetic, structure and biochemical background, measurement and significance. Wheat hardness: Advances in Cereal Science and technology, 1990, pp: 471-548
    152. Rahman S, Jolly C J, Kortt A A, Walloschek A and Higgins T J. Molecular characterisation of grain softness protein. Cereal Chemistry Division, 1991, 288-289
    153. Rahman S, Jolly C J, Skerritt J H and Wallosheck A. Cloning of a wheat 15 kDa grain softness protein (GSP). GSP is a mixture of puroindoline-like polypeptides. Europen Journal Biochemistry, 1994, 223: 917-925
    154. Rajaram S., Ginkel V M. Mexico: 50 years of international wheat breeding, In A. P. Bonjean and W. J. Angus, (eds.) The world wheat book. A history of wheat breeding. Lavoisier publishing, Paris. 2001, pp: 579-608
    155. Ram S, Boyko E, Giroux M J, Gill B G. Null mutation in puroindoline a is present in Indian wheats: puroindoline genes are located in the distal part of 5DS. Journal of Plant Biochemistry & Biotechnology, 2002, 11: 79-83
    156. Ram S, Jain N, Shoran J, Singh. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and Ni5439. Journal of Biochemistry & Biotechology, 2005, 14: 45-48
    157. Schofield J D;Greenwell P. Wheat starch granule proteins and their technological significance. In: Morton ID, editor. Cereals in a European Context. Chichester, UK: Ellis Horwood;1987, pp: 407-420
    158. See D R, Giroux M, Gill B S. Effect of mutiple copies of puroindoline genes on grain softness. Cereal Chemistry, 2004,44: 1248-1253
    159. Simmonds D H and Brien O. Morphological and biochemical development of the wheat endosperm. Cereal Chemistry, 1981,4: 5-70
    160. Simmonds D H. Morphological and molecular aspects of wheat quality. Wallerstein Lab. Commun, 1971,34: 17-34
    161. Simone M C, Lafiandra D. Isolation and characterization of friabilin genes in rye. Journal of Cereal Science, 2005, 41: 115-122
    162. Smail V W. Improving grain quality through rapid prediction systems. Cereal Foods World, 1995, 40:5-6
    163. Sourdille P, Perretant M R, Charmet G, Leroy P, Gautier M F, Joudrier P, Nelson J C, Sorrels M E, Bernard M. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theoretical and Applied Genetics, 1996,93: 580-586
    164. Stenvert N L and Kingswood K. The influence of the physical structure of the protein matrix on wheat hardness. Journal of the Science of Food Agriculture, 1977, 28: 11-19
    165. Symes K J. Classification of Australian wheat varieties based on the granularity of their whole meal. Australian Journal of Experimental Agriculture and Animal Husbandry, 1961, 1: 18-23
    166. Talbert L E, Smith L Y, Blake N K. More than one origin of hexaploid wheat is indicated by sequence comparison of low copy DNA. Genome, 1998,41: 402-407
    167. Tranquilli G, J Heaton, O chicaza and J Dubcovsky. Substitutions and deletions of gene related to grain hardness in wheat and their effect on grain texture. Crop Science, 2002,42: 1812-1817
    168. Turnbull K M, Moullet O, Appels R, Morell M, Rahman S. Cloning and characterisation of genes from the hardness locus of wheat. In: Panozo J F, Ratcliffe M, Wooton M, Wrigley C W. (eds.) Proceedings of the 49th Australian Cereal Chemistry Conference, (Melbourne, Australia, 12-16 September 1999), Cereal Chemistry Division, Royal Australian Chemical Institute, North Melbourne, Australia, 1999, pp: 325-328
    169. Turnbull K M, Turner M, Mukai Y, Yamamoto M, Morell M K, Appels R, Rahman. The organization of genes tightly linked to the Ha locus in Aegliops tauschii, the D-genome donor to wheat. Genome, 2003,46: 330-338
    170. Turnbull K M;Gaborit T;Marion D;Rahman S. Variation in puroindoline polypeptides in Australian wheat cultivars in relation to grain hardness. Australian Journal of Plant Physiology. 2000,27: 153-158
    171. Villareal R L, Fuentes-Davilla G, Mujeeb-Kazi A, Rajaram S. Inheritance of resistance to Tilletia
     indica (Mitra) in synthetic hexaploid wheat×Triticum aestivum crosses. Plant Breeding, 1995, 114: 547-548
    172. Villareal R L, Sayre K, Banuelos O, Mujeeb-Kazi A. Registration of four synthetic hexaploid wheat (Tricum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Science, 2001,41:274
    173. Wang M W, Robert J H, Ton V V, Gideon O. Interaction of water extractable pentosans with gluten protein: effect on dough propeties and gluten quality. Journal of Cereal Science, 2002, 36: 25-37
    174. Williams P C, Kilborn R H, Voisey P W, and Kloek M. Measuring wheat hardness by revolutions per minute reduction. Cereal Chemistry, 1987, 64: 422-427
    175. Williams P C, Sobering D C. Attempts at standardization of hardness testing of wheat. I. The grinding/sieving (particle size index) method. Cereal Food World, 1986, 31: 362-364
    176. Worzella W W, Cutler G H. A critical study of technique for measuring granulation in wheat meat. Journal of Agriculture Research, 1939, 58: 325-341
    177. Xia L Q, Chen F, He Z H, Chen X M, Morris C F. Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chemistry, 2005, 82: 38-43
    178. Yamazaki W T, Donelson R J. Kernel hardness of some U.S. wheats. Cereal Chemistry. 1983, 60: 344-350
    179. Yun R H, Anderson A, Hermans J. Proline in α-helices: stability and conformation studied by dynamics simulation. Proteins, 1991, 10: 219-228
    180. Zhang Y, Nagamine T, He Z H, Ge X X, Yoshida H, Pena R J. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality. Euphytica, 2005 a, 141: 113-120
    181. Zhang Y, Quail K, Mugford D C, He Z H. Milling quality and white salt noodle color of Chinese winter wheat cultivars. Cereal Chemistry, 2005b, 82: 633-638
    182. Zohary D, Harland J R, Vardi A. the wild diploid progenitors of wheat and their breeding value. Euphytica, 1969, 18: 58-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700